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ABSTRACT
During the Phanerozoic, Earth has experienced a number of tran-

sient global warming events associated with major carbon cycle per-
turbations. Paradoxically, many of these extreme greenhouse episodes 
are preceded or followed by cold climate, perhaps even glacial condi-
tions, as inferred from the occurrence of glendonites in high latitudes. 
Glendonites are pseudomorphs of ikaite (CaCO3·6H2O), a hydrated 
carbonate mineral increasingly stable at low temperatures. Here, 
we show that methane seepage and oxidation provide an overriding 
control on Mesozoic glendonite formation (i.e., ikaite fossilization). 
Geochemical and petrological analyses of 33 Early Jurassic to Early 
Cretaceous glendonites from five sections in Siberia (Russia) reveal 
that most of their infilling carbonate phases are reminiscent of meth-
ane-derived authigenic carbonates. Bulk glendonites and surrounding 
sediments exhibit exceptionally high and low carbon isotope values 
(+20‰ to −45‰ VPDB [Vienna Peedee belemnite]), typical for carbon 
sources linked to methane generation and oxidation. Gas inclusion 
data confirm the presence of methane and longer-chain hydrocarbon 
gases, suggesting a thermogenic source for the methane. Glendonite-
bearing layers can be traced for hundreds of kilometers, suggesting 
widespread trapping of methane in the sub-seafloor during the Juras-
sic. As such, glendonites constitute an unexplored archive for detect-
ing past episodes of methane release and oxidation in polar settings.

INTRODUCTION
Methane is a potent greenhouse gas, with multiple natural sources 

including marine cold seeps and gas hydrates. Authigenic carbonates 
associated with the anaerobic oxidation of methane (AOM) can be used to 
document the distribution in time and space of oceanic methane seepage 
(Peckmann et al., 1999) and its links to carbon cycle perturbations and 
climate change (Sun and Turchyn, 2014). One such authigenic carbonate 
mineral, ikaite (CaCO3·6H2O), which can become fossilized as glendonite, 
remains poorly understood. The stability of ikaite is favored by low tem-
peratures, and the mineral rapidly decomposes above 7 °C (Pauly, 1963). 
Three main types of ikaite are distinguished: (1) tufa and travertines in 
springs and alkaline lakes (Pauly, 1963; Shearman et al., 1989), (2) single 
microscopic crystals in Arctic and Antarctic ice (Dieckmann et al., 2010), 
and (3) macroscopic single euhedral to stellate crystal clusters found in 
marine sediments. The latter ikaite type is thought to form during early 
diagenesis. It has a wide range of δ13Ccarb (carb—carbonate) values (from 
−57‰ to +4‰; Kodina et al., 2003, Lu et al., 2012), which has been attrib-
uted to the mixing of carbon generated during organic matter degrada-
tion, methanogenesis, and AOM (Kodina et al., 2003; Lu et al., 2012). 
The term “glendonite” pertains to pseudomorphs after this type of ikaite 
(David and Taylor, 1905). The transformation of ikaite to glendonite is 

thought to result from the slow decrease in the concentration of Ca2+ and 
CO3

2– and high phosphate levels as ikaite grows (Bischoff et al., 1993), or 
to a change of carbon source and pore-water chemistry from sulfate reduc-
tion of organic-rich sediments to AOM-driven processes linked to burial 
and vent activity in the Sea of Okhotsk (Greinert and Derkachev, 2004).

Although ikaite formation has been linked to in situ methane gen-
eration and oxidation in previous work (Kodina et al., 2003; Lu et al., 
2012), glendonites have thus far mostly been used as a proxy record for 
cold temperatures, due to the peculiar thermodynamic parameters that 
control ikaite formation. Emphasis has been put on the reconstruction of 
seawater temperature from bulk glendonite δ18Ocarb values, but unexpect-
edly low δ18Ocarb values have proved ambiguous (Price and Nunn, 2010). 
Besides, and similarly to ikaite, glendonites show δ13C values ranging 
from −45‰ to 0‰ (Selleck et al., 2007; Teichert and Luppold, 2013), 
suggesting a connection between certain glendonite-bearing sites and 
methane seepage (Greinert and Derkachev, 2004; Teichert and Luppold, 
2013). Based on petrological and geochemical analyses on glendonites 
and host sediments, as well as on the molecular and isotopic composition 
of gas inclusions trapped in glendonites, we demonstrate that the ikaite-
to-glendonite transformation was an early diagenetic process linked to 
AOM. Glendonites may thus be used to document past events of methane 
release and oxidation in cold environments.

GEOLOGICAL SETTING AND METHODS
A total of 33 glendonites were sampled from five sections in Siberia 

(Russia), composed of marine sandstone, siltstone, and mudstone, span-
ning the late Pliensbachian (Anabar Bay; Suan et al., 2011), the late 
Bajocian (Cape Kystatym and Cape Khorongkho), the late Bajocian–early 
Bathonian (Chekurovka), and the early Bathonian and late Berriasian 
(Chucha) (Figs. 1A and 1B). The sedimentary successions were deposited 
in shallow to deep continental shelf settings (corresponding to shoreface 
to offshore environments) near the North Pole (Fig. 1C; see the GSA Data 
Repository1). The sampled sections are stratigraphically constrained by 
the occurrence of age-diagnostic ammonites, brachiopods, and bivalves, 
as well as accessory microfossils and chemostratigraphy in the Anabar 
Bay section (see the Data Repository). Except for some specimens found 
in a conglomerate bed, none of the glendonites were transported (shown 
by the preservation of their angular shape). All glendonites and enclos-
ing nodules and sediments were subjected to petrographical (optical and 
ultraviolet-light microscope), bulk stable isotope (inorganic carbon and 

1 GSA Data Repository item 2017159, coordinates of the sections, details on stra-
tigraphy, methods and geochemical results (Rock-Eval and CSIA), and tables of raw 
geochemical data, is available online at http://www.geosociety.org /datarepository 
/2017/ or on request from editing@geosociety.org.
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oxygen), and Rock-Eval (Espitalié et al., 1985) analyses. Gas inclusions 
of glendonites were examined by compound-specific isotope analyses 
(CSIA) on five selected specimens.

PETROLOGICAL CHARACTERISTICS
Thin-section analyses of the investigated glendonites reveal a number of 

genetic phases of carbonate growth alternating with phases of dissolution 

(Fig. 2). The following genetic phases are recurrent, independent of loca-
tion and age:

(1) Whitish calcite crystals organized into “rosettes”, containing organic 
matter impurities and which are overgrown by replacive calcite cements. 
Rosettes likely result from the direct recrystallization of ikaite into calcite 
(Teichert and Luppold, 2013).

(2) Fibrous to botryoidal carbonates in different shades of yellowish 
amber, in some cases also characterizing nodules surrounding glendonites.

(3) Anhedral irregular to clotted amber-colored calcites that have 
recrystallized part (or most) of the glendonite.

In a conglomerate bed at Cape Kystatym (Bajocian-Bathonian; Fig. 
2F), reworked glendonites bear genetic phases 1 and 2, which are equally 
observed in Quaternary ikaites from the Nankaï Trough (Stein and Smith, 
1986). Hence, these cements precipitated during very early diagenesis. 
Similar cementation patterns have been observed in glendonites from 
distant regions and different age (Greinert and Derkachev, 2004; Huggett 
et al., 2005; Teichert and Luppold, 2013), indicating that they represent 
widespread features of ikaite fossilization.

CARBON AND OXYGEN ISOTOPE DATA
The occurrence of fibrous/botryoidal carbonates in high latitudes, in 

association with clotted and anhedral carbonates (genetic phase 3) and 
repeated dissolution events, is reminiscent of mineralogical features 
described from hydrocarbon seep carbonates (Savard et al., 1996). A link 
to hydrocarbon oxidation is also apparent from stable isotope analyses. 
Glendonite samples show bulk δ13Ccarb and δ18Ocarb values ranging from 
–44.5‰ to 0‰ VPDB (Vienna Peedee belemnite) and from –14.7‰ to 
–0.8‰ VPDB, respectively, displaying a generally strong inverse cor-
relation (Fig. 3). Carbonate nodules surrounding glendonites have less-
variable δ13Ccarb and δ18Ocarb values, ranging between –30.4‰ and –16.4‰ 
VPDB and −4.0‰ to –2.7‰ VPDB, respectively. Diagenetic carbonates 
of bulk sediment enclosing glendonites exhibit low to exceptionally high 
δ13Ccarb values ranging from –29.5‰ to +21.3‰ VPDB, and δ18Ocarb values 
between –2.6‰ and –20.6‰ VPDB. A late diagenetic overprint of bulk 
sediment carbon and oxygen isotope values cannot be completely ruled 
out (Jacobsen and Kaufman, 1999). Cracking temperatures of organic 
material (Tmax) show a wide range of values (between 412 and 482 °C) 
corresponding to immature and mature material. However, this large 
uncertainty can be ascribed to very low values of S2 peaks linked to an 
intense oxidation of the organic material, and to low total organic contents 
(TOC) (Behar et al., 2001). Jurassic sediments on the Siberian craton were 
probably never deeply buried (Drachev et al., 2010). The preservation of 
aragonitic bivalves and Tmax data of Suan et al. (2011) also suggest that 
sediments only reached the uppermost part of the oil window. In our sam-
ples, sparry (blocky) calcite related to burial cementation represents only 
a minor carbonate phase, and no correlation has been observed between 
its relative occurrence and changes in δ18O and δ13C values.
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Figure 1. A,B: Location of North Siberian Basin 
(Russia), with red stars denoting location of 
sampled sections along Lena River (CKy—
Cape Kystatym; CKo—Cape Khorongkho; 
Chu—Chucha; Che—Chekurovka) and along 
Laptev Sea (AB—Anabar Bay), modified after 
Suan et al. (2011). C: Paleogeographic map of 
Early Jurassic (late Pliensbachian) showing 
past locations of glendonite formation (after 
Meledina et al., 2005).

Figure 2. Macroscopic and microscopic views of glendonite specimens 
from Siberia (Russia). A,B: Medium-size stellate-shape glendonite; 
upper Pliensbachian, profile and transverse views, respectively. 
C,D: Succession of carbonate cements observed in glendonites 
(Ros—rosette oriented crystals; Rov—rosette calcite overgrowths; 
Bot—botryoids); upper Bajocian, transmitted and ultraviolet light (UV), 
respectively. Rosettes contain black UV-fluorescent impurities result-
ing from organic particles. Some botryoidal carbonates have highly 
fluorescent rim that may be due to microbial film. E: Fluid exhaust 
microstructure associated with dissolution event (DE) disbanding 
rosette overgrowths (Rov) of glendonite and reworking noncon-
solidated host sediment (Sed); upper Bajocian. F: Conglomerate of 
reworked and broken glendonites containing rosette overgrowths 
(Rov) in sandy matrix with crinoid fragments (Cr), and highlighting 
early fossilization of ikaite; upper Bajocian.
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The isotopic data from bulk glendonite samples can be separated into 
two groups. The first has normal marine δ18Ocarb values (up to –0.8‰ 
VPDB) that are accompanied by extremely low δ13Ccarb values (–25‰ to 
–45‰ VPDB), implicating methane as a carbon source. The less-negative 
δ13Ccarb values obtained for some glendonites (~–25‰ VPDB) could be 
related to the mixing of various carbon sources and geochemical processes, 
including aerobic oxidation of organic matter, sulfate reduction, and/or 
fermentation (Whiticar, 1999), or to a changing proportion of biogenic 
versus thermogenic methane. The second group is strongly 13C enriched, 
which is explained by a residual CO2 source from microbial methano-
genesis. The 18O-depleted values indicate the late diagenetic circulation 
of fluids (Jacobsen and Kaufman, 1999).

IMPLICATION OF GAS INCLUSIONS FOR FORMATION OF 
GLENDONITES

Compound-specific isotope analyses performed on gas inclusions of 
bulk glendonites (Fig. 4) document the average gas composition during the 
ikaite-to-glendonite transformation. In addition to methane (C1), signifi-
cant concentrations of higher-molecular-weight hydrocarbon gases (C2+), 
including ethane (C2), propane (C3), butane (C4), and pentane (C5), were 
detected. The investigated glendonites samples have δ13Ccarb values between 
−13‰ and −28‰ VPDB, showing the limitations of bulk δ13Ccarb values 
as proxies for the role of methane in authigenic carbonate precipitation. 
Biogenic degradation of organic matter produces strongly 12C-enriched 
methane (up to −110‰ VPDB), whereas thermogenic cracking leads to 
the formation of various hydrocarbon gases (C1 to C5) with a δ13C signature 
closer to that of the parent organic matter (−30‰ to −50‰ VPDB; Schoell, 
1980). A gas interpretation plot (Prinzhofer and Huc, 1995) shows that a 
mixture of thermogenic and biogenic hydrocarbon gas was likely involved 
in ikaite/glendonite formation at the investigated locations (Fig. 4). The 

proportion of biogenic and thermogenic methane is difficult to evaluate 
due to additional CO2-reduction and Rayleigh-distillation processes (Whiti-
car, 1999). However, the high concentration of C2+ gas (varying between 
5%–28% of total hydrocarbons) and C1 / (C2 + C3) ratios between 3 and 
24 (Martin et al., 1997) indicate a major contribution of thermogenic gas 
in the inclusions (Schoell, 1980). Especially propane, which is known to 
be rapidly biodegraded both anaerobically and aerobically (Kinnaman et 
al., 2007; Quistad and Valentine, 2011), shows no significant carbon iso-
tope fractionation. This confirms the very rapid transformation of ikaite 
to glendonite and argues against a slow late diagenetic incorporation of 
hydrocarbons during the recrystallization of carbonates.

A local (i.e., in situ) methane source equally appears questionable, as 
glendonites are associated with clay, silt, and sandstone, which have a very 
low TOC (0–0.8 wt%, see the Data Repository). Conversely, glendonites 

Figure 3. Carbon and oxygen stable isotope distribution of carbonates belonging to bulk glendonites from Siberia (Russia; see Fig. 1 for 
sample locations), surrounding nodules, and enclosing sediment. Methane oxidation is a central process contributing to carbonate carbon 
sources. VPDB—Vienna Peedee belemnite.

Figure 4. Model of gas genetic 
fractionation based on anal-
yses of relative hydrocarbon 
composition of glendon-
ites and their specific stable 
carbon isotope content. Leak-
age and mixing can influence 
the molecular and isotopic 
composition of hydrocar-
bon gases at various stages 
of gas maturation (narrow 
arrows). The δ13C1-δ13C2 versus 
ln(C1/C2) diagram (Prinzhofer 
and Huc, 1995) confirms 
occurrence of mixed thermo-
genic and biogenic methane 
within glendonite samples. VPDB—Vienna Peedee belemnite.
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are not observed in certain nearby sections where TOC values are higher 
(Suan et al., 2011). Methane was likely sourced from a deeper reservoir with 
thermogenic methane diffusing upwards, perhaps linked to the activity of 
the Verkhoyansk and Taimyr fault zones (Fig. 1). Typical seep structures and 
fauna are not observed, suggesting that methane did not reach the sediment-
water interface and that fluxes were diffusive (Teichert and Luppold, 2013).

CONCLUSIONS
Our new multi-proxy data set clearly demonstrates that Siberian glen-

donites record the occurrence of methane seepage during the Jurassic and 
the Early Cretaceous. Their occurrence is decoupled from local TOC con-
tent, pointing to a deeper hydrocarbon source. The complex sequence of 
ikaite-calcite precipitation leading to glendonite formation, as well as the 
large range of δ18Ocarb values found here, prevent the use of bulk glendonite 
δ18Ocarb values to monitor past seawater temperatures. Instead, the relation-
ship between glendonite formation and methane oxidation is of interest 
with regards to past intervals of global carbon cycle perturbations. The 
Toarcian oceanic anoxic event (OAE), the Valanginian Weissert event, the 
Aptian-Albian OAEs, and to some extent the Paleocene-Eocene Thermal 
Maximum (Kaplan, 1978; Kemper, 1987; Price, 1999; Spielhagen and 
Tripati, 2009) were all accompanied by widespread glendonite formation.
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