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Abstract
In modern medicine, several different imaging techniques are frequently em-
ployed in the study of a single patient. This is useful, since different images
show complementary information on the functionality and/or structure of the
anatomy examined. This very difference between modalities, however, compli-
cates the problem of proper registration of the images involved, and rules out
the most basic approaches –like direct grey value correlation– to achieve reg-
istration. The observation that some common structures will always exist is
supportive of the statement that registration may be feasible using edges or
ridges present in the images. The existence of such structures defined in the bi-
nary sense is questionable, however, and their extraction from images requires
a segmentation by definition. In this paper we propose to use fuzzy edgeness
and ridgeness images, thus avoiding the need for segmentation and using more
of the available information from the original images. We will show that such
fuzzy images can be used to achieve accurate registration. Several ridgeness
and edgeness computing operators were compared. The best registration re-
sults were obtained using a gradient magnitude operator.
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4.1 Introduction

M edical imaging techniques in common use today show very different as-
pects of the anatomy examined. For example, CT1 shows mostly infor-
mation on dense matter, while MRI2 shows information on softer tissue

types. Both modalities clearly show anatomical morphology, while SPECT3 and
PET4 show functional aspects of the anatomy. When several imaging modal-
ities are used in a single patient’s case, correct registration, i.e., determining
the transformation to bring one of the acquired images into agreement with the
other(s), may facilitate correct diagnosis and/or treatment. Registration often is
the first of two steps of an integration process, the second being image fusion (in-
tegrated or combined display), which mainly concerns the proper visualization of
useful image information. In this paper we concentrate on the registration step.
In particular, we focus on the registration of CT and MR brain images. This type
of registration is useful, for example, in radiation therapy planning, where CT is
used for dose calculations, while the lesion to be treated is often best seen on
MR images (Chen & Pelizzari 1989). Another example for its use is skull base
surgery. The delicacy of this type of surgery requires maximum knowledge of
the anatomy involved, which can be supplied by integrating CT bone structures
and MR soft tissue contrast images (Ruff, Hill, Robinson & Hawkes 1993).

Medical image registration can be divided into extrinsic registration methods
based on artificial marking devices, and intrinsic registration methods using pa-
tient related image properties (van den Elsen, Pol & Viergever 1993, Viergever,
van den Elsen & Stokking 1992). The method described here falls into the
latter category. Registration algorithms using patient related image properties
maximize a similarity measure between two images. This similarity may ap-
ply directly to the original grey value images (van den Elsen et al. 1994), to
statistical voxel similarity measures, to feature images derived from the origi-
nal images, or to objects defined in the initial or the derived feature images.
Maximizing the similarity of the initial images will be useful in particular when
two images of the same modality are to be registered. In multi-modality image
registration, however, the physical realities of the two images can be quite dif-
ferent, which may call for statistical similarity based (Collignon, Vandermeulen,
Suetens & Marchal 1995, Collignon, Maes, Delaere, Vandermeulen, Suetens &
Marchal 1995, Studholme et al. 1995b, Woods et al. 1993, Hill et al. 1994),

1Computed Tomography
2Magnetic Resonance Imaging
3Single Photon Emission Computed Tomography
4Positron Emission Tomography
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feature based or object based registration. Features used in image registra-
tion are, for example, edges (Borgefors 1988) and ridges (Monga et al. 1992,
Guéziec & Ayache 1992, van den Elsen, Maintz & Viergever 1992, van den
Elsen 1993, Thirion 1994, Liu et al. 1994). Object based registration may, e.g.,
be based on surface definitions (Levin et al. 1988, Pelizzari et al. 1989, Hem-
ler, Sumanaweera, van den Elsen, Napel & Adler 1995) or anatomical land-
marks (Maguire et al. 1991, Hill, Hawkes, Crossman, Gleeson, Cox, Bracey,
Strong & Graves 1991, Lemoine, Barillot, Gibaud & Pasqualini 1991). Object
based image registration has the disadvantage that the objects must be defined
first, which is a high-level image processing task that often proves difficult, and
may introduce errors for complex images. The use of low-level differential ge-
ometric features for image registration is attractive, but requires the careful
choice of operators that produce sufficiently similar feature images when ap-
plied to multi-modal images. Note that such a similarity (within this context)
is not always immediately obvious by visually comparing images. The optimal
similarity with respect to specific computer vision measures does not necessarily
coincide with the ’visual’ optimum, as shown in our experiments.

When CT and MR brain images are depicted as intensity landscapes, the skull
forms a ridge in the CT image, and a negative ridge (trough) in the MR image.
If a ’ridgeness’ extracting operator is applied to these images, the resultant fea-
ture images show remarkable similarity when compared visually (van den Elsen,
Maintz & Viergever 1992). Moreover, since the skull is a virtually undeformable
structure, its ridge/trough is ideally suited for registration purposes. Edge-
ness images of CT and MRI brain scans often have less visual similarity than
ridgeness images, because the edge extraction generally produces a number of
structures in either image which are not matched by similar structures in the
companion image. Enough similarity, however, is present to furnish a good reg-
istration, as will be shown. It is the aim of this paper to compare the quality of
registration using ridgeness and edgeness operators, combined with grey value
cross-correlation of the feature images for registration.

Feature images can be extracted by means of differential operators. Conven-
tional differentiation is ill-posed in the sense of Hadamard since we are dealing
with digital, sampled images rather than smooth mathematical functions. Well-
posed differentiation is possible, however, by convolving images with derivatives
of Gaussians, as is explained in section two. This section also deals with the ne-
cessity of the operators being invariant under rigid transformations. In section
three we define ridgeness and edgeness measuring differential operators, and
include some examples of ridgeness and edgeness images. A cross-correlation
based hierarchical registration algorithm is proposed in section four. In sec-
tion five, the operators are applied to CT/MRI registration algorithm proposed,
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and the results are reviewed. In section 6 the results are discussed, and some
conclusions are drawn.

4.2 Differentiation of images

4.2.1 Invariants

Image features obtained by means of differential operators should be indepen-
dent of the choice of coordinate system; the position and orientation of the image
should have no impact on the features extracted. Hence invariance under the
group of orthogonal transformations (translations, rotations, reflections) is de-
manded. An operator that conforms to this restriction is called an orthogonal
invariant.

We will denote by L the image luminance as a function of spatial coordinates.
Subscripts denote derivation with respect to some spatial variable. We employ
the Einstein summation convention, i.e., the expression is summed over any
index occuring twice by letting the particular index assume all spatial dimen-
sions, e.g., LiLi denotes LxLx + LyLy in two-dimensional space. Any tensorial
expression in which all indices are resolved by means of contraction (pure or by
multiplication by the Kronecker tensor, �ij ) or alternation (multiplication by the
Lévi-civita tensor,"ij ) is an invariant (Spivak 1970). All operators presented in
this paper satisfy this requirement.

4.2.2 Scale space

The differentiation of any sampled signal (e.g., an image) is ill-posed in the sense
of Hadamard as opposed to the generally well-posed differentiation of smooth
mathematical functions. Well-posed differentiation is possible by convolving the
image with derivatives of a Gaussian (Florack et al. 1992). The width of the
Gaussian used introduces a new parameter, the image scale, �, which extends
the image dimensionality by one. The thus defined image is usually referred
to as the scale space of the original image (Witkin 1983, Koenderink 1984).
By convolving an image with derivatives of Gaussians, we can compute image
derivatives that correspond to the scale of structures. The scale is naturally
bounded by the inner scale, the finest possible resolution, usually determined
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A B C

Figure 4.1 A function with distinct low scale and high scale features (A) is shown. Two
convolutions of A with Gaussians of increasing width are also shown (B and C). Note that
in the final picture only the large scale features of the original function remain.

by the aperture of the scanning device, and the outer scale, the largest possible
scale, determined by the size of the entire image.

The use of the Gaussian as a convolution kernel is not mandatory. In fact,
we can use any smoothing kernel to ‘tune’ differential operators to multi-local
structures (local structures of certain spatial extent). However, upon demand-
ing shift invariance, directional invariance (isotropy) and scale invariance, the
Gaussian is the unique linear smoothing kernel (Florack et al. 1992, Florack
et al. 1994). The (Gaussian) scale space L(x; �) of an image L0(x) is the contin-
uous (hyper)stack of smoothed images, with the smoothing factor � increasing
as we rise in the stack. The original image rests at the bottom of the stack. The
scale space can be computed using

L(x; �) = (L0 �G)(x; �); (4.1)

with

G(x; �) = (2��2)�
d
2 e�

x2

2�2 ;

where G is the Gaussian kernel, x is the coordinate vector, � is the smoothing
factor, i.e., the scale, and d the number of spatial dimensions.

In figure 4.1 the notion of scale is illustrated. We show a function with a bimodal
spectrum. (f(x) = sin(x) + sin(20x), on a domain of [0; 2�].) At a low scale, this
function has 20 maxima and 20 minima –precluding boundary extrema– in the
domain depicted. At a sufficiently high scale, the function has one maximum
and one minimum). The use of the Gaussian (or, in fact, any smoothing ker-
nel) for extracting these high scale extrema or to act as a low-pass filter is widely
known and used. Scaling and differentiation however, are fused into a single op-
eration within scale space: computing a derivative of L is equivalent to replacing
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Figure 4.2 Three scaled first derivatives with increasing scale of the function in the previous
figure. Note that in the final picture only the large scale features of the original function
determine the resultant derivative. (Because the amplitude of the images varies largely,
the images have been rescaled for display purposes.)

the Gaussian G with its appropriate derivative in the convolution operation:

(Li1:::in)(x; �) = (L0 �Gi1:::in)(x; �); (4.2)

where subscripts ij denote the order of derivation with respect to the spatial vari-
ables; ij 2 fx;y; zg, n 2 N

+ , j = 1 : : : n. This property is easily verified: suppose
f = f(x), where f represents a sampled signal on a bounded domain (say, f(x) =
� (x)f 0

(x), � being the Shah or replicating symbol, and f
0

the actual signal) with
the Fourier transform defined in the limiting case, and suppose g = g(x), where
g is some well-behaved smooth kernel, and consider d

dx
(f �g). In theory, this last

expression equals df
dx
� g as well as f � dg

dx
, since the Fourier transform of all three

equals i2�sF(s)G(s),where calligraphic letters (F ;G) denote Fourier transforms.
The latter form is the only one well-posed, however. Figure 4.2 illustrates scaled
differentiation.

The numerical complexity of the computation of a differential image at a certain
scale is reduced to mere multiplications, when all computations are done in the
frequency domain:

(Li1:::in)(x; �) = (F�1[L0 � G � in �
Y
j

!ij ])(x; �); (4.3)

where F�1 denotes the inverse Fourier transform, and !ij represent the spatial
frequencies.



4.3 Feature measures 101

4.3 Feature measures

4.3.1 Ridgeness measures

For the differential-geometrical detection of ridge-like structures, many different
schemes and mathematical ridge definitions have been proposed, some dating
back for well over a century (Maxwell 1859). Koenderink showed that for some
popular definitions based on the water drainage pattern of a landscape, a local
ridge detector does not exist (Koenderink & van Doorn 1994). However, there
are a number of geometrical invariants that approximate ridges well in a wide
variety of images (Eberly et al. 1994). We have selected the so-called Lvv and
closely related operators (van den Elsen, Maintz, Pol & Viergever 1992, van den
Elsen, Maintz & Viergever 1993). A comparison with other ridge operators can
be found in (Maintz, van den Elsen & Viergever 1996b), which also illustrates
known shortcomings of this local operator.

Lvv: The ridgeness operators used in this paper are derived from the Lvv oper-
ator. In this formula v is defined in a local gradient based coordinate system
(v; w): wi = Li, and vi = "ijLj in tensor notation. Therefore Lvv represents the
second order derivative in the direction perpendicular to the local gradient. The
value of Lvv can be computed using (Cartesian) local derivatives:

Lvv =
1

kvk2 (v � r)
2L = (L2

yLxx � 2LxLyLxy + L2
xLyy)(L

2
x + L2

y)
�1: (4.4)

The generalization to 3D can be found in (Maintz, van den Elsen & Viergever
1996b). This generalization is non-trivial, since in 3D the v direction as be-
ing perpendicular to the local gradient, needs another constraint to be properly
defined.

Lvv=Lw: Lvv=Lw Can also be considered a ridgeness measuring operator. This
formula derives from the observation that in two dimensional images, the local
gradient changes direction when crossing a ridge. Consequently, an alternative
definition of ridgeness is the rate by which the gradient direction changes when
moving along the v direction. Let the two-dimensional gradient orientation be
denoted by � = arctan(

Ly
Lx

). The new ridge measure then is

@�

@v
=

1

kvk(v � r)� =
1

kvk(Ly
@�

@x
� Lx

@�

@y
) =

2LxLyLxy � L2
yLxx � L2

xLyy

(L2
x + L2

y)
3

2

; (4.5)

Notice that @�
@v

� �Lvv
Lw

, so in fact the only difference with Lvv is a negation and
a normalization with respect to the gradient magnitude. �Lvv

Lw
Often appears in
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literature as the isophote curvature, frequently denoted by �. The normalization
of Lvv with respect to the gradient magnitude (Lvv

Lw
) causes it to react stronger

than Lvv in areas of the image where the variation in image intensity is relatively
small, i.e., relatively flat areas in the intensity landscape.

LvvL
�
w: Both Lvv and LvvL

�1
w have been identified as ridgeness measures. The

notion of Lvv and Lvv=Lw as ridgeness measures can be readily expanded to-
wards the more general formula LvvL

�
w, where � is bounded. The ridgeness

operators used in this paper can be written in this form, with � 2 f�1;�0:5; 0g,
although other values for � could be considered as well.

4.3.2 Edgeness measures

Well known edge measures are the gradient magnitude (Lw), and the Laplacian
(Lii). Lw measures the local ’steepness’ of the intensity landscape, which pre-
sumably has a local maximum at an edge. It is a good detector for step edges.
When edges get less steep, use of the Laplacian often gives better results. For
example, in the 1D case of an edge, the Laplacian has a positive response in the
convex part of the edge flank, and a negative response in the concave part. The
edge locus is presumed to be at the zero crossing between these two parts.

4.3.3 Miscellaneous measures

Besides edge and ridge measures, we employed some other invariant measures,
which are briefly mentioned here. Cartesian expressions are given in their 2D
form.

LvvL
2

w: LvvL
2
w is a cornerness measure based on the work of Kitchen and

Rosenfeld (Kitchen & Rosenfeld 1982) and Blom (Blom 1992). Note that it
equals the (negated) isophote curvature times the gradient magnitude cubed:
LvvL

2
w =

Lvv
Lw

L3
w. The idea behind this detector is that the isophote curvature is

extremely high at corners. As the isophote curvature reacts equally strong at
’background’ structures and ’real’ objects, and has a response at ridges, it is
multiplied by a power of the gradient magnitude, to avoid phantom responses.
This also solves the faulty detection of corners at local extrema (where Lw = 0).
In the strictest sense, LvvL2

w is categorized in our class of ridge detectors LvvL
�
w.

However, valid values for � are bounded, and —although the exact bounds are
subjective– ’cornerness measure’ is a better description of LvvL2

w than ’ridgeness
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measure’: the strong response at corners relatively suppresses the response
at ridges. Some ridgeness information can be extracted from LvvL

2
w images by

windowed display, or by enhancing the response at ridges by re-mapping the
operator as (LvvL

2
w)

(1=n), where n > 1. Experiments have shown n = 3 to be
a satisfying choice. In Cartesian notation, LvvL2

w equals the numerator of the
Cartesian expression of Lvv: LvvL

2
w = L2

yLxx � 2LxLyLxy + L2
xLyy.

Lvw: As �Lvv
Lw

equals the isophote curvature, Lvw
Lw

equals the flowline curvature,
where the flowline is defined as the integral curve of the gradient. In each point
of an image, the local flowline and isophote are perpendicular by definition. We
employ Lvw, obtained by multiplying the flowline curvature with the gradient
magnitude, thus diminishing its response in uninteresting areas. The Cartesian
expression of Lvw equals (LxLy(Lyy � Lxx) + Lxy(L

2
x � L2

y))=(L
2
x + L2

y).

Lww: Lww
Lw

is a measure for isophote density. As with the previous expressions,
we use the expression Lww to reduce uninteresting responses. Lww is closely
connected to the Laplacian and Lvv ridgeness by the relation Lww = Lii � Lvv.
The Cartesian expression of Lww equals (LxxL

2
x + 2LxyLxLy + LyyL

2
y)=(L

2
x + L2

y)).

umbilicity, LijLji: The umbilicity of a point can be determined by computing
"ij"kl

LikLjl
LmnLnm

=
LiiLjj�LijLji

LklLlk
. The numerator equals twice the determinant of the

Hessian detLij , which is a measure for local ellipticity (positive value) or hyper-
bolicity (negative value) of a surface patch. A zero value of this determinant
indicates a parabolic or planar patch. The denominator normalizes the um-
bilicity measure so as to be bounded by �1 and 1, which is most obvious when
examining the form containing the " tensors. The denominator can therefore
be regarded as an ’unflatness’-measure. The Cartesian expression of umbilicity
equals 2(LxxLyy � L2

xy)=(L
2
xx + 2L2

xy + L2
yy).

checkerboard detector, Y-junction detector: The third and fourth order binary
forms L3 and L4 of an image L at coordinates ~x are 1

3!
Lijkxixjxk and 1

4!
Lijklxixjxkxl

respectively. The discriminants D3 and D4 of these forms can serve to de-
tect Y-junctions and ’checkerboard’ patterns respectively. The reader inter-
ested in a theoretical expansion of these expressions is referred to (Florack, ter
Haar Romeny, Koenderink & Viergever 1993, ter Haar Romeny, Florack, Koen-
derink & Viergever 1991). The Cartesian expressions are: D3 = 6L2

xyyL
2
xxy �

2L2
xxxL

2
yyy � 8LyyyL

3
xxy � 8L3

xyyLxxx + 12LyyyLxyyLxxyLxxx and D4 = (LxxxxLyyyy �
4LxxxyLxyyy+3LxxyyLxxyy)

3�27(Lxxxy(LxxxyLyyyy�LxyyyLxxyy)+Lxxyy(LxxxyLxyyy�
LxxyyLxxyy))

2.
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4.4 Registration method

The purpose of this paper is to register CT and MR brain images by means of geo-
metrical image features. After having determined feature images as discussed in
section 3 , we need to register the feature volumes or slices. The method we use
to this end is cross-correlation of grey values. By using the grey values directly
we avoid segmentation of our feature images. We seek the global optimum of the
correlation value c(t) of the CT feature volume L1 and the MR feature volume L2

over all rigid transformations t, where c(t) is defined

c(t) =
X

(x;y;z)2L1

L1(x; y; z)L2(t(x; y; z)):

A brute force approach in which all possible values of t are investigated is com-
putationally infeasible. We therefore resort to a multi-resolution method and
a number of assumptions on the behavior of c(t) to find the optimal t within
an acceptable number of computational operations. A multi-resolution pyramid
is created, with the original image at its bottom. The next level is formed by
maximizing or minimizing each group of up to eight neighboring voxels into one
voxel. The choice between maximizing and minimizing is based on the sign of the
relevant response. Some operators change sign at interesting voxels, e.g., Lii,
and here an often arbitrary choice between maximizing and minimizing has to
be made. New pyramid levels are formed as long as the largest image structures
are clearly discernible. Typically, the pyramid will consist of four levels. Between
the (very low resolution) top levels of the feature pyramids the optimal registra-
tion is found by optimizing the correlation value using an exhaustive search.
Local extrema within a certain percentage of the strongest extremum found are
passed on as search seeds to the next pyramid level, where new searches are
started. As we progress further down the pyramid, the absolute search range of
t (i.e., the actual range in parameter space in terms of millimeters and degrees
around a certain origin) diminishes, as do the step sizes. By keeping the search
range small, the number of values for t to test remain computationally feasi-
ble. To avoid the risk of a search range around a seed being too small, and a
correlation optimum being missed, a hill-climbing operation may be performed
after the search for a local optimum. Details on the procedure are furnished
in (van den Elsen, Maintz & Viergever 1993, van den Elsen 1993). These refer-
ences also explain in more detail the advantages of the correlation method over
e.g. surface based methods (Levin et al. 1988, Pelizzari et al. 1989), which are
computationally more attractive. These advantages include the absence of a seg-
mentation step and decreased sensitivity to differences in the structures used
for registration.
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4.5 Application of feature measures to CT/MRI reg-
istration

4.5.1 Similarity of feature volumes

The edge (Lw and Lii) and ridge operators (Lvv, Lvv=
p
(Lw), and Lvv=Lw) all have a

high degree of similarity when comparing CT and MR feature images of the brain
(see figure 4.3). Of the ridge operators, (when grey values are scaled equally)
Lvv looks most appealing because it shows less background response than the
other operators. All ridge operators show a clearly visible ridge at the center
of the skull. The Lw operator shows a high degree of similarity, notably the
skin and skull edges. Lii also shows this similarity, however, the CT pattern
at the skin edge matches that of the MRI, whereas the pattern at the skull
edge is reversed. Since both positive and negative responses are interesting
(and occur coupled at edges), the building of the resolution pyramids can be
done arbitrarily by maximizing or minimizing, as long as both pyramids are
constructed the same way, and either feature image is reversed beforehand.
We can then optimize the value of the correlation c(t), which is maximal if the
structures at the bone edge are properly aligned. It must be noted that the
simultaneously occuring alignment of the skin edge has the adverse effect of
lowering the correlation value. Fortunately, we have not seen this to disrupt
finding the correct registration.

Lww has the same ambiguity of patterns occuring both matched and reversed. It
shows both edge and –at higher scales– ridge structures, and also looks promis-
ing. LijLji is hard to assess visually, as it produces ’double-edge’-like structures
which tend to interfere with each other. Lvw also poses difficulties. There is a def-
inite similarity to the human eye, but its rapid sign changes at ridge structures
makes the matching behavior hard to predict. The checkerboard, Y-junction,
LvvL

2
w (corner), and umbilicity images show very little similarity to the human

eye.

Regardless of the above observations on similarity, all operators were tested in
the registration scheme described in section 4. We emphasize that we can only
draw conclusions concerning the registration quality of invariant operators for
our particular use of cross-correlation registration, not for integration regardless
of the registration paradigm.
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CT

6

MR

Lvv

Lvv=
p
(Lw)

Lvv=Lw

Figure 4.3 Visual comparison of the edge and ridge feature operators applied to an MR
image and a registered CT image. Various scales were employed. The images show a
zoom of the feature images around the right eye socket. The actual area depicted may
differ between images to allow the inclusion of some interesting features. Of some images
the grey values have been linearly re-mapped for display purposes.
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Lii

Figure 4.3 (Continued.)

4.5.2 2D registration experiments

To test the registration performance of all of the operators described, five repre-
sentative registered pairs of CT and MRI transverse slices were chosen. These
slices were chosen from volumes registered using skin markers (van den Elsen
& Viergever 1994).

Each of the 5 operators was tested by registering the 5 slice pairs, at scales rang-
ing from 1 to 7 mm, using 4 different artificially induced initial transformations
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initial transformation
# translation (mm) rotation (deg)
1 (0,0) 0
2 (10,10) 0
3 (0,0) 15
4 (15,15) 15

initial maiming
# power loss
1 0%
2 15.6%
3 55.9%
4 64.2%

Table 4.1 The initial transformations and initial ’maimings’ of the images used in the 2D
registration experiments. The last column shows the percentage of image power loss when
applying the maiming, to give an indication of the severity of the maiming.

of one of the images of the registration pair, ranging from no transformation to
15 mm translations and 15 degrees rotation (see table 4.1).

After artificial transformation of the CT image of a pair, the feature operator
in question was applied to both the images to be registered, and the resultant
feature images were registered. Since some operators can suffer from bound-
ary artifacts, additional experiments were performed to ensure these had no
influence on the registration outcome. Ideally, the registration transformation
found equals the inverse of the applied initial transformation, since the images
were taken from sets registered beforehand. We must be careful to accept this
transformation as a gold standard however, since the original registration will
inevitably have a (small) error. Moreover, the original registration was based on
3D information, while we now register using the 2D slice information only. To
make sure the original registration is an acceptable standard, it was re-assessed
visually within the 2D slice, and compared visually to typical transformations
found in the experiments. The original registration was visually found to be an
excellent standard for all experiments.

Based on this run of experiments, the checkerboard, Y-junction, umbilicity, Lvw,
Lww, and LijLji operators were discarded: in none or only very few cases a cor-
relation optimum was found at the ideal matching transformation. The regis-
tration results based on the edge and ridge operators were very good5 in almost
all of the experiments. The Lvv=Lw was not used in further experiments, how-
ever, since there often were many local registration optima near the value of the
optimum obtained at the correct registration transformation. Since all of these
optima will have to be investigated by the registration program, the runtime
increases dramatically. Because the Lvv=

p
(Lw) and Lvv operator had no such

problems, the Lvv=Lw operator was discarded.

5’Very good’ meaning here that shifting the registered images by a single pixel (or rotating the
image so that there was a single pixel shift at the edge of the region of interest) worsened the
registration when assessed visually.



4.5 Application of feature measures to CT/MRI registration 109

deviation index
0 � : � 1 1
1 < : � 2 0.75
2 < : � 5 0.5
5 < : � 10 0.25
10 < : 0
indeterminable 0

Table 4.2 Index values assigned to registations with a certain deviation from the reference
match.

The remaining operators (Lvv, Lvv=
p
(Lw), Lii, and Lw) were tested further in

three experiment runs, comprising 1680 experiments. Each run is similar to
the initial run of experiments, except we now ’maim’ the CT image before the
start of the experiments (by cutting away specific parts of it), making correct
registration harder, because there is less information available to base it on.
The particular image loss induced by each ’maiming’ is shown in table 4.1. To
interpret the large amount of experimental results, each registration result was
categorized as belonging to one of six classes of increasing registration accuracy.
These classes were subsequently indexed, where the index ranged from ’0’ for
the class of failed registrations (more than 10 pixels or degrees deviation, or no
registration transformation found at all), to ’1’ for the class of registrations with
less than 1 pixel or degree deviation from the original marker registration, as
shown in table 4.2.

For each operator, the average experimental index was computed. Note that
specific values of this index have no quantitative interpretation (in a sense like
’0.5’ means 50% of the registrations were registered adequately). Within one slice
pair it can be used to compare operators though, since a higher index can be
interpreted as a better registration performance. The overall performance index
for each operator as a function of scale is shown in figure 4.4.

The best performance index and the scale at which this index occured is given
in the table included in figure 4.4.

Evidently, Lw has the best overall performance. The edgeness detectors (Lw, Lii)
perform slightly better than the ridgeness detectors on their respective optimal
scales. Lw is the least sensitive to changes in scale, as the graph shows. The
maximum of the edge operators is a boundary maximum, which suggests that
the actual maximum may occur at a scale lower than 1 mm. As computing
derivatives at such low scales is infeasible on most image volumes since these
scales are undersampled, scales lower than 1 mm cannot be properly examined.
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Figure 4.4 Performance index of the four feature operators as a function of scale (top),
and the value of the best index that occured for each operator (bottom). In the graph,
edge operators are represented by dashed lines, and ridge operators as solid lines.

4.5.3 3D registration experiments

The 3D experiments comprised correlation registrations of the Lvv, Lvv=
p
(Lw),

Lii, and Lw feature images of high resolution 3D CT and MR brain images6.
The optimum operator scale was derived from the 2D experiments. The registra-
tion transformation found was compared to a previously established registration
based on marker methods (van den Elsen & Viergever 1994). Additionally, the
same experiments were carried out on volumes of lower transverse resolution.
These volumes were generated from the high resolution sets by averaging each
2 (CT) or 3 (MR) slices into one slice, thus simulating 3 mm slices. We use simu-
lated sets instead of directly acquired sets, because an accurate registration ref-
erence standard is needed, which is difficult to check visually for low-resolution

6The MR data set is a transverse T1 weighted 3D/FFE set, TR=30 msec, TE=9 msec, containing
180 slices, no gap, with cubic voxels of approx. 1mm3, obtained on a 1.5 Tesla Philips Gyroscan
S15/ACS. The CT data set is a contiguous 100 slice set, pixel size approx. 0.9 mm, slice thickness
1.5 mm, obtained on a Philips Tomoscan 350, set to 120 kV and 120 mA.
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Figure 4.5 The midsagittal planes from the volumes used in the 3D registration experiments
(top CT, bottom MRI). The right frames show the corresponding maimed images.

sets. Finally, we repeated all of the above described experiments on maimed
sets. Both the CT and MR volumes were maimed, as indicated in figure 4.5. The
power loss is 27.1% in the case of the MR volume, and 56.9% in case of the CT
volume.

The results are summarized in the tables 4.3 and 4.4.

We increased the scale of the edge operator when using the low resolution sets,
to maintain an appropriate scale relative to the slice thickness. If the scale were
not increased, the operator is asked to supply information on an under-sampled
level of detail. Table 4.3 shows the results of the 3D registration experiments.

The resultant registration transformation furthest from the reference registra-
tion was selected from the high resolution experiments (the Lvv registration),
and subsequently applied to the original datasets. The thus found registra-
tion was compared visually to the original reference registration. This compar-
ison was done by segmenting the bone contours –by grey value thresholding–
from various transversal and sagitally and coronally reformatted slices from the
registered CT volume, and overlaying these contours onto the corresponding
MR slices (Maintz, van den Elsen & Viergever 1996b, van den Elsen, Maintz &
Viergever 1992, van den Elsen, Maintz & Viergever 1993). Two independent ob-
servers concluded that the reference registration is inferior to the newly found
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operator � high maim result miss #
res translation rotation

x y z x y z
Lw 1 � -0.02 0.04 0.44 0.45 -0.62 2.04 1
Lw 2 0.22 -0.20 -0.39 0.68 -0.17 1.37 1
Lw 1 � � 0.22 0.98 0.44 0.00 0.28 1.37 6
Lw 2 � 0.45 0.27 -3.61 -0.22 1.17 2.04 0
Lii 1 � -0.02 0.04 1.22 0.45 -0.39 2.04 11
Lii 2 0.22 0.04 1.16 0.68 0.05 2.94 0
Lii 1 � � 0.22 0.74 0.84 0.00 0.05 2.04 15
Lii 2 � 0.45 0.98 -1.19 -0.44 0.05 2.04 1
Lvv 2 � -0.25 0.04 1.60 0.45 -0.39 2.27 0
Lvv 2 -0.25 0.04 1.20 0.45 -0.17 2.04 0
Lvv 2 � � -0.25 0.04 1.60 0.45 -0.39 2.27 0
Lvv 2 � 1 1 1 1 1 1 � (97)
Lvv=

p
(Lw) 2 � -0.48 0.98 1.60 0.68 -0.17 2.04 0

Lvv=
p
(Lw) 2 0.45 -0.66 -1.20 1.35 0.73 4.28 1

Lvv=
p
(Lw) 2 � � 0.22 0.98 0.83 0.23 0.05 1.82 4

Lvv=
p
(Lw) 2 � 0.22 1.21 -4.34 -0.44 0.50 0.92 16

Table 4.3 The results of the 3D registration experiments. The ’result’ column shows the
difference between the transformation found by feature registration and the reference
transformation obtained by marker registration. The figures show the translation and rota-
tion of the center CT volume voxel. All values mentioned are in millimeters or degrees. The
obvious mismatches have a mark in the ’miss’ column. The last column shows the number
of extra local minima examined. If this number is bracketed, convergence of the partic-
ular correlation was too slow, and the number of minima to be examined was reduced
manually.

Lvvp
Lw

Lvv Lii Lw

marker 5.27 6.00 4.21 3.97
Lw 2.29 2.33 1.18
Lii 1.46 1.89
Lvv 2.66

Lvvp
Lw

Lvv Lii

Lw 6.24 2.23 3.57
Lii 5.05 2.13
Lvv 6.74

Table 4.4 The maximal distances (in mm) between two corresponding voxels when trans-
formed according to the different registration parameters found in the experiments. The
distance was computed considering all voxels within a diameter of 20cm from the image
center. The found value is an upper bound for the actual distance between any 2 cor-
responding voxels in the images. The left table shows the maximal distances between
corresponding voxels for each of the edge or ridge based registrations and the marker
registration. For example the ’1.18’ in the Lii column and Lw row means that if you take
a voxel from the set as transformed according to the parameters obtained from the Lii
based registration, it is never more than 1:18mm apart from the set as transformed accord-
ing to the Lw based registration parameters. The right table shows the distances between
the low-resolution registrations.
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Lvv correlation registration. (This suggests that feature based registration is
better than marker based registration. However, this mere observation of a few
observers does not justify a definitive conclusion as regards the relative accu-
racy of feature based and marker based registration.) When visually comparing
all high resolution/no maiming registrations in the table in the same manner,
no conclusion could be drawn regarding the best registration. We may conclude
that –even though owing to the inevitable intrinsic distortion of the MR image,
the perfect rigid registration does not exist– these four registrations are clearly
good approximations, and seem to be equally accurate. This is supported by
table 4.4, which shows the same voxels from the high resolution sets to be never
more than 2:33mm apart.

Table 4.3 shows that for both the low resolution sets and the maimed sets, the
performance of all operators is still accurate. In the table, the last column shows
the number of additional local minima examined (i.e., besides the absolute min-
imum found on each pyramid level) by the algorithm. This number is bracketed
when the algorithm showed no or too slow convergence, e.g., too much incorrect
minima remained to be examined on the high resolution pyramid levels. In this
case, after the algorithm had run for a certain amount of time, all results but the
best were removed from the list of minima to be examined, and the algorithm
was continued. The final result is shown in the table.

When maimed low resolution sets are used, the performance of almost all opera-
tors diminishes. For the Lvv operator, the registration algorithm fails to converge
on a single minimum. The other operators provide registrations with a less ac-
curate z-translation. Given the poor z-resolution and the very severe maiming
of the CT volume, these cannot be called poor results.

We verified the 3D results on similar datasets from two other patients. The
registration results were almost identical.

4.6 Conclusion and discussion

We have tested and compared the registration of CT and MR brain images by cor-
relation of image features, notably edge and ridge features. In 2D experiments,
the registration merit of the feature operators was established using brute force
experiments. Both edge and ridge operators showed good performance, with
the edge operators having a slight advantage. Four operators and their optimal
scale were selected for 3D registration experiments, the edge operators Lw (the
gradient magnitude), and Lii (the Laplacian), and the ridge operators Lvv and
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Lvv=
p
(Lw). The 3D registration results were accurate, visually even more accu-

rate than the marker based results used as a reference. All operators showed
proper convergence. Only when severely maimed low resolution images were
employed, the Lvv registration failed, and the Lw and Lii registrations were less
accurate. The maiming of the volumes used borders the limits of normal protocol
scope, however. Based on both the 2D and 3D experiments, the gradient magni-
tude Lw seems to be the best choice of the originally proposed operators. In the
2D experiments, it produced accurate registration results, and appeared robust
under changes in scale, initial transformation and maiming of the original CT
and MR images. In the 3D experiments, it led to accurate results when realistic
initial CT and MR images were used. Moreover, of all operators mentioned, Lw
is the fastest to compute, since only the three first order derivatives are needed.

For the registration of 3D CT and MR brain images, we propose a registration
scheme using scaled Lw feature images in a hierarchical correlation algorithm.
This scheme requires no interaction, and is therefore devoid of human subjec-
tivity. Only patient-related geometrical features are used for the registration,
so registration can be performed even if pre-acquisition registration accommo-
dations have not been made. The use of patient-related features is also more
patient friendly than the use of external features, since no marking devices are
required to be attached to the patient’s head. In this paper, the proposed scheme
was shown to produce accurate registration results with the limited number of
datasets employed. In future work, we hope to extend the scope of the scheme
by testing it on more brain imaging protocols, and move on to other modali-
ties, as well as images of other parts of the body. We would also like to reduce
the number of computer operations required, in order to improve the clinical
applicability.
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