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WHY THE THEORY R IS SPECIAL

ALBERT VISSER

Abstract. Is it possible to give coordinate-free characterizations of salient

theories? Such characterizations would always involve some notion of same-
ness of theories: we want to describe a theory modulo a notion of sameness,

without having to give an axiomatization in a specific language. Such a char-

acterization could, e.g., be a first order formula in the language of partial
preorderings that describes uniquely a degree in a particular structure of de-

grees of interpretability. Our theory would be contained in this degree. There

are very few examples currently known along these lines, except some rather
trivial ones.

In this paper we provide a non-trivial characterization of Tarski-Mostowski-

Robinson’s theory R. The characterization is in terms of the double degree
structure of RE degrees of local and global interpretability. Consider the RE

degrees of global interpretability that are in the minimal RE degree of local

interpretability. These are the global degrees of the RE locally finitely satisfi-
able theories. We show that these degrees have a maximum and that R is in

that maximum. In more mundane terms: an RE theory is locally finite iff it
is globally interpretable in R.

Dedicated to Harvey Friedman on the occasion of his 60th birthday.

1. Introduction

Wouldn’t it be nice if we could characterize salient theories like Robinson’s Arith-
metic and Peano Arithmetic in a coordinate-free way, independent of particular
choices of signature and axiomatization? A moment’s reflection shows that such a
characterization would only be possible modulo some notion of sameness of theo-
ries. For example, one could imagine that a certain RE degree of interpretability
was characterized by a first-order formula A over the partial preorder of degrees of
interpretability of RE theories. If our salient theory were in that degree, our for-
mula A would be the coordinate-free characterization we are looking for. It would
be characterized modulo mutual interpretability.

Regrettably, we have very few examples of such characterizations and the ones
we have are rather trivial. Here are three examples.

• The theory EQ of pure equality is the initial element of the category of direct
interpretations (without parameters). (An interpretation is direct if it is
identity preserving and unrelativized.) The theory EQ is thus characterized
modulo synonymy (aka. definitional equivalence).
• Consider the lattice of degrees of local interpretability of theories, where we

impose no restriction on the signature nor on the complexity of the theory.
The intended notion of interpretation is more-dimensional interpretation
with parameters. This structure is studied by Mycielski, Pudlák and Stern
in [MPS90]. They call these degrees: chapters. The maximum of the
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structure is the degree of inconsistent theories. There is also an element
directly below this maximum: the maximal degree of consistent theories.
The following two salient theories are in the degree: Th(N) and ThΠ0

1
(N)

(the theory axiomatized by the true Π0
1-sentences).1

• Consider the degree structure of degrees of one-dimensional interpretability
with parameters. Let ↑n, for n = 1, 2, . . ., be EQ, the theory of pure
equality, plus the sentence ∃x0, . . . , xn−1

∧
i<j<n xi 6= xj . Let ↑∞ be the

union of the ↑n. Our degree structure yields a partial ordering of the
following form: we first have ω + 1 and above that something else. The
theory ↑n is in the (n−1)th degree from below and ↑∞ is in the ωth degree.
So each of these theories is characterized modulo mutual one-dimensional
interpretability with parameters. (See Theorem 3.3 of this paper.)

In the present paper, we produce a less trivial example of a characterization. The
structure in which the characterization is given is the double degree structure of
local and global interpretability for RE theories. The notion of interpretation in-
volved is: more-dimensional, piecewise interpretation with parameters.2 We will
show that the theory R is the maximum of the global degrees that are in the min-
imal local degree.3 As we will see this means that an RE theory is locally finitely
satisfiable iff it is globally interpretable in R.

The theory R was introduced by Tarski, Mostowski and Robinson in their book
[TMR53]. It is a very weak theory that is essentially undecidable. This means that
every consistent RE extension of the theory is undecidable. It was observed by
Cobham that one still has an essentially undecidable theory if one drops the axiom
R6 (given below), obtaining the theory R0. See [Vau62] and [JS83]. Cobham has
shown that R has a stronger property than essential undecidability. Consider any
RE theory T . Suppose we have translation α of the arithmetical language into the
language of T . Suppose T is consistent with Rα0 . Then, T is undecidable.4 For the
proof of a closely related result, see Vaught’s paper [Vau62]. In fact one can show
that, if T is consistent with Rα0 , then there is a finitely axiomatized extension A of
R0 and a translation β, such that T is consistent with Aβ .

2. Theories and Interpretations

In this section, we fix some basic concepts and notations. The reader is advised
to go over it lightly, returning just when a notation or notion is not clear.

We work with RE theories in one-sorted first order predicate logic of finite sig-
nature. These theories have officially a relational signature. Unofficially, we use
function symbols, but these can be eliminated using a well-known unwinding pro-
cedure. Every sort has identity.

Our most general notion of interpretation is piecewise, more-dimensional, rela-
tive interpretation with parameters, where identity is not necessarily translated as

1The result also holds if we restrict ourselves to one-dimensional interpretations and/or

parameter-free interpretations.
2We will explain piecewise in the paper.
3We will prove a number of related results where we vary the notion of interpretation used in

defining the degree structure.
4Cobham’s proof remains unpublished, but, using the clues provided in [Vau62], it is not hard

to find a proof.
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identity. We will first set up the machinery for the case of more-dimensional, rel-
ative interpretation with parameters, where identity is not necessarily translated as
identity. Then, we will extend the framework to piecewiseness. Even if the ba-
sic idea behind the various kinds of interpretation is rather obvious, some care is
needed to get the definitions right, mainly because some careful management of the
use of variables is necessary.

2.1. Translations. To define an interpretation, we first need the notion of trans-
lation. We first define the notion of many-dimensional translation with parameters.

Let Σ and Ξ be finite signatures for first-order predicate logic. We fix a sequence
containing all variables u0, u1, . . . for the signature Σ, and we fix three disjoint
sequences of variables v0, v1, . . ., and w0, w1, . . ., and z0, z1, . . . for the signature Ξ.

A relative translation τ : Σ → Ξ is given by a quintuple 〈n,m, π, δ, F 〉. Here
n and m are natural numbers. The number n is the dimension of the interpre-
tations and the number m gives us the number of parameters. The formula π
is Ξ-formula with free variables among w0, . . . , wm−1. This formula gives a con-
straint on the possible parameters. The formula δ is a Ξ-formula with bound
variables among the z0, z1, . . . and free variables among v0, . . . , vn−1, w0, . . . , wm−1.
It defines the domain of the interpretation. The mapping F associates to each
relation-symbol R of Σ a Ξ-formula F (R). Let the arity of R be k. We demand
that the bound variables of F (R) are among the zi, and that F (R) has at most
the variables v0, . . . , vkn−1, w0, . . . , wm−1 free. We will write ~vi for the block of
variables vni, . . . , vn(i+1)−1 and ~w for w0, . . . , wm−1. So, F (R) will have at most
~v0, . . . , ~vk−1, ~w free. We translate Σ-formulas to Ξ-formulas as follows:

• (R(uj0 , · · · , ujk−1))τ := F (R)(~vj0 , · · · , ~vjk−1 , ~w);
the formula F (R)(~vj0 , . . .) is the result of simultaneous substitution of
vnji+s for vni+s, where 0 ≤ i < k and 0 ≤ s < n;
• (·)τ commutes with the propositional connectives;
• (∀uk A)τ := ∀~vk(δ(~vk, ~w)→ Aτ );
• (∃uk A)τ := ∃~vk (δ(~vk, ~w) ∧Aτ ).

We have introduced translations with careful variable management, showing how
this can be done. In practice we want to be sloppy. We use e.g. x and xi as
metavariables ranging over the uj (and we will overload the use of e.g. z in the
same way). If x stands for ui, we write ~x for ~vi. If ~x stands for x0, . . . , , xk−1, we
will use ~~x for ~x0, . . . , ~xk−1. Etc.

Here are some convenient conventions and notations. Suppose τ is 〈n,m, π, δ, F 〉.
• We write δτ for δ, etc.
• We write Rτ for Fτ (R).
• We write ~~x : δ~w for: δ(~x0, ~w) ∧ . . . ∧ δ(~xk−1, ~w).
• We write ∀~~x:δ~w A for: ∀~x0 . . . ∀~xk−1 (~~x:δ~w → A). Similarly for the existen-

tial case.
We can define the identity translation and composition of translations in the obvious
way.

Consider τ = 〈n,m, π, δ, F 〉. The translation τ is one-dimensional if n = 1. In this
case we will write: τ = 〈m,π, δ, F 〉. The translation τ is parameter-free if m = 0
and π = >. In this case, we will write: τ = 〈n, δ, F 〉. If τ is one-dimensional and
parameter-free, we write: τ = 〈δ, F 〉.



4 ALBERT VISSER

2.2. Interpretations and Interpretability. A translation τ supports a relative
interpretation of a theory U in a theory V , if, V ` ∃~w πτ ~w and, for all sentences
A of the language of U , we have U ` A ⇒ V ` ∀~w (πτ → Aτ ). Note that
this automatically takes care of the theory of identity. Moreover, it follows that
V ` ∀~w (πτ ~w → ∃~v δτ~v ~w). Thus, an interpretation has the form: K = 〈U, τ, V 〉.
We can define the identity interpretation and composition of interpretations in the
obvious way.

Par abus de langage, we write ‘δK ’ for:
δτK

; ‘PK ’ for: PτK
; ‘AK ’ for: AτK , etc. We define:

• We write K : U � V or K : V � U , for:
K is an interpretation of the form 〈U, τ, V 〉.
• V � U :⇔ U � V :⇔ ∃K K : U � V .

We read U�V as: U is interpretable in V . We read V �U as: V interprets
U .

We say that a theory V locally interprets a theory U if, for any finite subtheory U0

of U , we have V � U0. We write V �loc U for: V locally interprets U . It is easily
see that both � and �loc are preorderings.

2.3. Piecewise Interpretability. The idea of piecewise interpretability is that
we can build up the domain from a number of pieces that may or may not be of
the same dimension and that may or may not overlap. The same object of the
interpreting theory may occur in different roles posing as different objects of the
interpreted theory.

A translation τ now has the form 〈`, ν,m, π, δ, F 〉, where:
• ` is a natural number that stands for the set of pieces 0, . . . , `− 1;
• ν is a function that assigns to each piece j a dimension νj ;
• m is again the number of parameters, and π a constraint on the parameters;
• δ is a function from pieces j to domains δj of dimension νj ;
• F is now a function that sends a pair P, f to an appropriate formula. Here
f assigns to each argument place of P a piece,

To make it all work smoothly we again enumerate the variables of Σ by u0, u1, . . .We
fix `+ 2 disjoint sequences of variables for the signature Ξ, to wit v0

0 , v
0
1 . . ., and . . .

and v`−1
0 , v`−1

1 , . . ., and w0, w1, . . . and z0, z1, . . . We write ~vji for vjνji, . . . , v
j
νj(i+1)−1

and ~w for w0, . . . , wm−1. We demand:

• δj has bound variables among the z0, z1, . . . and free variables among ~v j0 , ~w.
• Suppose P has arity k. F (P, f) has bound variables among z0, z1, . . . It has

free variables among ~v f0
0 , ~v f1

1 , . . . , ~v
f(k−1)
k−1 , ~w.

We translate Σ-formulas to Ξ-formulas as follows. The basic form of translation is
Aτ,g, where g is a function from the indices of the free variables of A to pieces.

• (R(uj0 , · · · , ujk−1))τ,g := F (R, f)(~v gj0j0
, · · · , ~v gjk−1

jk−1
, ~w), where fs := g(js);

the formula F (R, f)(~v gj0j0
, . . .) is the result of simultaneous substitution of

vfi
νfiji+s

for vfi
νfii+s

, where 0 ≤ i < k and 0 ≤ s ≤ νfi − 1.
• (A ∧B)τ,g := Aτ,g�fv(A) ∧Bτ,g�fv(B);

similarly for the other propositional connectives;
• (∀uk A)τ,g :=

∧
j<` ∀~v

j
k (δj(~v jk , ~w) → Aτ,g[k:j]), where g[k : j] is the result

of setting g at k to j;
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• (∃uk A)τ,g :=
∨
j<` ∃~v

j
k (δj(~v jk , ~w) ∧Aτ,g[k:j]).

A translation τ is called parameter-free if mτ = 0 and π = >, one-dimensional if
ντ j = 1, for all j < `τ , one-piece iff `τ = 1. Similarly, for interpretations.

The rest of the development is the same as before.

Example 2.1. We show that ↑0 := EQ, the theory of pure identity interprets
↑n := EQ + ∃u0, . . . , u`−1

∧
i<j<` ui 6= uj . We take τ with:

• `τ := `,
• ντ,j = 1,
• m = 0,
• πτ := >,
• δτ,j := (vj0 = vj0),
• Fτ (=, ij) := (vi0 = vi1), if i = j, and Fτ (=, ij) := ⊥, otherwise.

We can easily see that this construction does indeed yield the desired interpretation.
It follows that ↑0 �loc ↑∞.

If the target theory V proves that we have at least two elements, we can always
replace a piecewise interpretation by a more-dimensional one. Here is how this
works. Suppose there are ` pieces and that k is the maximum of the dimensions of
the pieces. Our new one-piece interpretation will be k+`-dimensional. We represent
an object vj0, . . . v

j
νj−1 of δj as v0, . . . vk+`−1. Here we demand that δj(v0, . . . , vνj−1).

The variables vνj , . . . , vm−1 are unconstrained: they serve as padding to get the
right length. The variables vm, . . . v`−1 satisfy vm = . . . = vm+νj−1 6= vm+νj

=
. . . = vk+`−1. They serve to keep the sequences from different pieces disjoint.
From each sequence we can read off from which piece it comes. To find out whether
v0, . . . , vk+`−1 is equal to vk+`, . . . , v2(k+`)−1, we first extract j0 and j1 from the end-
strings and then check whether F (=, j0j1)(v0, . . . , vνj0−1, vk+`, . . . , vk+`+νj1−1).

The treatment of the other predicates is similar.

3. Double Degree Structures

The double degree structure Dijk consists of the RE theories plus two partial
preorders � and �loc. Here the interpretations considered are (possibly) more-
dimensional if i = 1 and 1-dimensional if i = 0, (possibly) piecewise if j = 1 and
one-piece if j = 0, (possibly) with parameters if k = 1 and parameter-free if k = 0.
Note that � is a subordering of �loc.

The basic degree structures we work with are given as pairs of partial preorders.
However, when convenient, we will flexibly switch to talk about degrees where the
induced equivalence relations are divided out. Note that if we think of the degree
structures in this last way, there is a projection functor π mapping the degrees
of global interpretability to the degrees of local interpretablity that is part of the
double degree structure. We will use [T ] for the global degree of T and [T ]loc for
the local degree of T .

Let the lowest degree of global interpretability be ⊥⊥ and let the lowest degree of
local interpretability be ⊥⊥loc. So, ⊥⊥ = [EQ] and ⊥⊥ = [EQ]loc.

We provide a convenient characterization of ⊥⊥ and ⊥⊥loc in Dijk with j = 1. So
only the presence of piecewise interpretations is essential for the result. A theory T
is finitely satisfiable if T has a finite model. A theory T is locally finitely satisfiable
iff every finitely axiomatized subtheory of T has a finite model.
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Theorem 3.1. We work in Dijk with j = 1. (i) The RE theory T is in ⊥⊥ iff T is
finitely satisfiable. (ii) The RE theory T is in ⊥⊥loc iff T is locally finitely satisfiable.

Proof. Suppose T is in ⊥⊥. So, for some K, we have: K : EQ � T0. Let M be
any finite model of EQ. Clearly, the interpretation K gives a finite ‘internal’ model
K(M) of M.

Conversely, suppose T is finitely satisfiable. Let M be a finite model of T .
We may assume that the elements of M are 0, . . . ,m − 1. We now construct an
interpretation that ‘describes’ M as follows. We take τ with:

• ` := m,
• νj = 1,
• m = 0,
• π := >,
• δj := (vj0 = vj0),
• F (P, j0 . . . jk−1) := >, if PM(j0, . . . , jk−1), and F (P, j0 . . . jk−1) := ⊥, oth-

erwise.
Part (ii) is immediate form (i). 2

What happens when we do not have piecewise interpretations. Let us first consider
the cases of D100 and D101. We have the following theorem.

Theorem 3.2. Consider D100 or D101.
i. Both ⊥⊥ and ⊥⊥loc consist of precisely the theories that have a one-element model.

ii. The degree ⊥⊥ has a unique immediate successor ⊥⊥+, that consists of the finitely
satisfiable theories for which every model has at least two elements.

iii. The degree ⊥⊥loc has an a unique immediate successor ⊥⊥+
loc, that consists of

the locally finitely satisfiable theories, for which every model has at least two
elements.

Note that it follows that the (locally) finitely satisfiable theories can be characterized
in terms of the degree structure.

Proof. Let ↑1 := EQ and ↑2 := (EQ + ∃x, y x 6= y).

Ad (i): It is easy to see that the elements of ⊥⊥ are precisely those with a one-
element model. Consider any T such that EQ �loc T . It follows that every finite
subtheory of T has a one-element model. Since the signature is finite, there are only
finitely many such one-element models. So, there must be one model that satisfies
arbitrarily large finite subtheories of T and, hence, T itself.

Ad (ii): We take ⊥⊥+ := [↑2]. We clearly have ↑2 �6= ↑1.
Suppose T is finitely satisfiable and every model of T has at least two elements.

It is immediate that T ` ↑2, and hence T � ↑2. By the considerations at the end
of Subsection 2.3, we can simulate piecewise interpretations as soon as we have
two elements available in the interpreting theory. Thus, ↑2 � T . So if T is finitely
satisfiable, then T ≡ ↑2.

For the converse, suppose T ≡ ↑2. It is easy to see that T must be finitely
satisfiable. Moreover T � ↑2, implies T ` ↑2, hence every model of T has at least
two elements.

Finally consider any RE theory W . If W has a one-element model then W ≡ ↑1,
if not then W � ↑2.

Ad (iii): This is immediate from (ii). 2
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Finally, we consider D001. Thus we will leave the case of D000 open. We remind
the reader that, for n > 0, ↑n := (EQ + ∃x0, . . . , xn−1

∧
i<j<n xi 6= xj), and ↑∞ is

the union of the ↑n.

Theorem 3.3. In D001 the situation is as follows.
i. A theory T is finitely satisfiable iff T ≡(loc) ↑n, for some n. Here n is the

minimal size of a model satisfying T .
ii. ↑1 �6= (loc)

↑2 . . . �6= (loc)
↑∞.

iii. For any T , T ≡(loc) ↑n for some n, or T �(loc) ↑∞.
iv. A theory T is locally finitely satisfiable iff T �loc ↑∞.
v. T ≡loc ↑∞ iff T is locally finitely satisfiable and has only infinite models, i.o.w.

iff T is locally finitely satisfiable but not finitely satisfiable.
Note that the degrees [↑n], [↑∞], [↑n]loc and [↑∞]loc are all determined in terms of
the degree structure.

Proof. We skip the easy proof. Note that we need the parameters to ‘describe’ a
model of n or less than n elements in ↑n. 2

The theory R, due to Tarski, Mostowski and Robinson ([TMR53]) is locally finitely
satisfiable and not finitely satisfiable. The main result of our paper is that, for any
locally finitely satisfiable theory T is interpretable in R via a one-dimensional, one-
piece, parameter-free, identity preserving interpretation. As a direct consequence
of the above results, we find:

• In Dijk with j = 1, R is in the �-maximum of ⊥⊥loc,
• In D100 and D101, R is in the �-maximum of ⊥⊥+

loc.
• In D001, R is in the �-maximum of [↑∞]loc.

In all cases the degree [R] is first order definable in the double degree structure.

4. The Theories R, Q− and Q

In this section, we briefly introduce three theories of number theory R, Q− and
Q. The theories Q− and Q will each play a role in the proof of our main theorem.
We consider the signature with constant and function symbols 0, S, + and ·. We
define 0 := 0, n+ 1 := Sn, and x ≤ y :↔ ∃z z + x = y. We consider the following
axioms.
R1. ` Sn = n+ 1
R2. ` m+ n = m+ n
R3. ` m · n = m · n
R4. ` m 6= n, for m 6= n
R5. ` x ≤ n→

∨
i≤n x = i

R6. `` x ≤ n ∨ n ≤ x
R7. ` ≤ is a linear ordering
R8. ` x < y → Sx ≤ y
R9. ` x ≤ y → ∃z≤y z + x = y

The theory R0 is axiomatized by R1,2,3,4,5. The theory R is axiomatized by
R1,2,3,4,5,6.5 The theory R? is axiomatized by R1,2,3,4,5,7,8,9.

5The original version of R does not have S, but a constant 1. However it is definitionally

equivalent with our version: The original version can be recovered from ours by translating 1 to
S0. Our version can be recovered from the original one by translating Sx to x + 1.
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It was observed by Cobham that one still has an essentially undecidable theory
if one drops the axiom R6 (given below), obtaining the theory R0. See [Vau62]
and [JS83]. In fact R is interpretable in R0. In [Vis09a], it is shown that R? is
interpretable in R0, and hence in R.

Robinson’s Arithmetic Q was introduced in [TMR53]. Using Solovay’s method
of shortening cuts (see [Solle]), one can show that Q interprets seemingly much
stronger theories like I∆0 + Ω1. See [Nel86] and [HP91]. Here are the axioms of Q.
Q1. ` Sx = Sy → x = y
Q2. ` 0 6= Sx
Q3. ` x = 0 ∨ ∃y x = Sy
Q4. ` x+ 0 = x
Q5. ` x+ Sy = S(x+ y)
Q6. ` x× 0 = 0
Q7. ` x× Sy = x× y + x

The theory Q− is due to Andrzej Grzegorczyk. It is a prima facie weakening of Q
in which addition and multiplication are partial. Thus, in stead of + and × we
have ternary relation symbols A and M. We define ≤ by x ≤ y :↔ ∃z Azxy. The
theory is axiomatized as follows.
G1. ` Sx = Sy → x = y,
G2. ` 0 6= Sx,
G3. ` x = 0 ∨ ∃y x = Sy,
G4. ` (Axyz0 ∧ Axyz1)→ z0 = z1

G5. ` Ax0x
G6. ` Axyz → Ax(Sy)(Sz)
G7. ` (Mxyz0 ∧Mxyz1)→ z0 = z1

G8. ` Mx00
G9. ` (Mxyz ∧ Azxw)→ Mx(Sy)w
The theory Q is interpretable in Q− by a result of Vı́těslav Švejdar. See [Šve07].

5. R is Top

In this section, we prove our main result.

Theorem 5.1. For any locally finitely satisfiable RE theory T , we have R �T , via
a one-dimensional, one-piece, parameter-free interpretation.

The proof has the following structure. We construct a certain class of ‘numbers’
Good in R using a predicate α that describes the axiom set of T . Either Good
provides a certain uniquely determined element g? or not. If it does we can use g?

to uniquely specify an internally finite model z of a non-standardly finite part of T .
Satisfaction in this model provides the desired interpretation of T . If g? does not
exist, this shows that Good is so rich that we can construct an interpretation of Q−

in Good. Hence, by Švejdar’s result we have in interpretation of Q in Good. But
as soon as we have Q, we have a whole range of well known techniques available to
construct an interpretation of T . We will exhibit two such ways.

Suppose T is a locally finitely satisfiable RE theory. Let the axiom set of T be
given by the Σ0

1-formula α. We may assume that αy is of the form ∃x α0xy, where
α0 is ∆0. We can always arrange that α0mn implies m < n.
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We need to speak about finite models and satisfaction in the context of num-
ber theory. Here we sketch one way how to do it. We code finite structures for
the signature of T by numbers. We use the iterations of Cantor Pairing (·, ·)
to implement finite sequences (·, ·, . . .) of fixed standard length. We use Ack-
ermann coding to represent finite sets. This means that we define x ∈ y as
∃u, v≤y (y = u · 2x+1 + v ∧ 2x ≤ v < 2x+1). (Remember that the graph of ex-
ponentiation is ∆0-definable.) Suppose the signature of T is Σ := 〈P,Q, . . .〉. We
code a finite structure for Σ as a sequence n := 〈m, p, q, . . .〉, where m stands for
domain {0, . . . ,m − 1}, and where p codes, in Ackermann style, a finite set of se-
quences with length the arity of P , etc. Just to make the argument run smoothly
we stipulate that 0 is a code for the one-element model in which all atomic state-
ments made with predicate symbols from the signature are false. We also assume
that 0 is not a Gödel number of a formula.

We can find a Σ0
1-formula z, f |= a meaning: the model z and the assignment

f satisfy the formula a. For any formula A we let Ay be the result of bounding
all quantifiers in A by y. We define comm(u) as the conjunction of the following
statements.

i. For all models z < u, the assignments for z on sets of variables w, with w < u,
are closed under random reset for the domain of z. In other words, for a variable
w < u, and a < (z)0, f [w : a] exists and, for all w′, b < u, with w′ a variable
and b < (z)0, we have:

f [w : a](w′) = b↔ ((w′ 6= w ∧ fw′ = b) ∨ (w′ = w ∧ b = a).

ii. All formulas a < u, have a unique analysis into terms and formulas below u.
iii. We have the commutation conditions for formulas a and models z below u.

We find that, if n ≥ 22c·m2

, for a sufficiently large standard c, then commn(m).

Let good(x) be a predicate coding the conjunction of (a) and (b).

a. There is a largest y ≤ x, such that there is a minimal z ≤ x, such that
commx(max(z, y)), and, for any a ≤ y, if a ∈ αy, then z |=x a.

b. For all u, v, w ≤ x, we have: Su 6= 0, Su = Sv → u = v, u = 0 or ∃q≤x Sq = u,
u+ 0 = u, u+ Sv = S(u+ v), u× 0 = 0, u× Sv = u× v + u.

We work in R?. Let Good be the virtual class of all g such that, for all x ≤ g,
good(x). Clearly, for every standard n, we can show that n is in Good. We note
that Good is downwards closed w.r.t. ≤. Either Good is closed under successor or
it is not.

We consider first the case that Good is not closed under successor. Consider g and
g′ such that g, g′ ∈ Good, Sg 6∈ Good, Sg′ 6∈ Good. Suppose g < g′. Then by axiom
R8, Sg ≤ g′. So, by the downwards closure of Good, Sg ∈ Good. Quod non. So,
g 6< g′. Similarly, g′ 6< g. Since, by R7, ≤ is linear, we find g = g′. So there is a
unique element g? in Good, such that g? does not have a successor.

Since g? is good, we can find a largest y? ≤ g?, such that there is a minimal
z? ≤ g?, such that commg?

(max(z?, y?)), and, for any a ≤ y?, if a ∈ αy
?

, then
z? |=g?

a.
Since T , is locally finite, for every standard n, we can show that n < y?. It

follows that for any standard axiom A of T , we have z? |=g?

pAq.
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To simplify inessentially, let’s assume that T has just one binary predicate symbol
P . We define a (parameter-free, one-dimensional, one-piece, identity-preserving)
translation ν as follows:

• δν(v) :↔ v < (z?)0,
• Pν(v0, v1) :↔ z?, f |=g?

pP (v0, v1)q, where f codes the assignment on just
pv0q and pv1q such that fpv0q = v0 and fpv1q = v1. This assignment
exists since commg?

(max(z?, y?)). We need only two resets to obtain f .
We can now prove, by external induction, that for any standard A, z? |=g?

pAq
iff Aν , since we have the commutation conditions for |=g?

for formulas below y?.
Hence, for any axiom A of T , we have Aν .

Note that ν is parameter-free since the starred elements are definable. Also ν is
identity preserving. Thus, we have shown that R? plus ‘Good is not closed under
successor’ interprets T .

We turn to the case where Good is closed under successor. In other words, we work
in R? plus ‘Good is closed under successor’. Clearly 0 is in Good. Consider the fol-
lowing (parameter-free, one-dimensional, one-piece) translation γ for the language
of Q−.

• δγ(x) :↔ Good(x),
• 0γ := 0,
• Sγx := Sx,
• Aγxyz :↔ x, y, z ∈ Good ∧ x+ y = z,
• Mγxyz :↔ x, y, z ∈ Good ∧ x× y = z.

We evidently find (Q−)γ . Thus we have shown that R? plus ‘Good is closed under
successor’ interprets Q−. Vı́těslav Švejdar shows that Q− interprets Q. See [Šve07].
So, we have R? plus ‘Good is closed under successor’ interprets Q. It follows that it
is sufficient to show Q � T . If so, we have both R? plus ‘Good is not closed under
successor’ interprets T , and R? plus ‘Good is closed under successor’ interprets T .
Then, we can form a disjunctive interpretation to show that R? � T .

Finally, we prove that Q interprets T . There are two ways to do it. Here is the
first. We know that Q interprets a convenient theory like Buss’ S1

2 on a definable
cut. (See e.g. [HP91].) So it is sufficient to show that S1

2 interprets T . As before,
we can write down a satisfaction predicate for finite models. We can find definable
cut J (downwards closed w.r.t. ≤, closed under S, +, × and ω1, or equivalently
#.) such that S1

2 proves that we have the commutation conditions for formulas in
J . The crux here is that the witnesses for satisfaction need not be in J .6 Let’s
write α � y for the set of all axioms witnessed below y. Using this, we can find a
definable cut J?, such that:

S1
2 ` ∀y, z∈J? (z |= α � y → ∀p, a∈J? (proofα�y(p, a)→ z |= a))

From this it follows that, for every n, S1
2 ` conJ

?

(α � n). In more sloppy notation:
S1

2 ` conJ
?

(T � n). We can now use the Henkin-Feferman argument to build an
interpretation of T in S1

2. (See e.g. [Vis08].) In terms of that paper, we have shown:
Q � 0(T ).) This interpretation is one-dimensional, one-piece and parameter free.
Moreover, by [Vis09b], Corollary 6.1, we find that we can make the interpretation
identity-preserving.

6In fact, the argument is closely analogous with the construction of a Σ0
1-truth predicate that

works for formulas in a cut J .
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Remark 5.2. Since the axiomatization of R is reasonably simple, we can do more.
One can show that S1

2 ` conJ
?

(R).

We can use this insight to produce an example of a theory U that is not locally
finitely satisfiable but such that Q still interprets Q + con(U). Reason in S1

2. We
either have conJ

?

(Q) or inconJ
?

(Q). In the first case, we find, by Pudlák’s version
of the second incompleteness theorem, that conJ

?

(Q + incon(Q)). So, a fortiori, we
have conJ

?

(R + incon(Q)). In the second case, we have inconJ
?

(Q). We find, by
∃Σb

1-completeness, that conJ
?

(R + incon(Q)). So in both cases we have conJ
?

(R +
incon(Q)). We may conclude that Q interprets Q + con(R + incon(Q)). Evidently,
R + incon(Q) is not locally finitely satisfiable.

We turn to the second proof of the interpretability of T in Q. By a result of Wilkie,
we know that Q interprets I∆0+Ω1 on a definable cut. So, it is sufficient to show the
interpretability of T in I∆0 + Ω1. Let J be a definable cut such that we have I∆0 +
Ω1 ` ∀x∈J 22cx2

↓. As is well-known we have (I∆0 + Ω1)� (I∆0 + Ω1 + inconJ(Q)).
This interpretation uses the Henkin-Feferman construction and is one-dimensional,
one-piece and parameter-free. We can arrange it to be also identity-preserving. So
it is sufficient to show that W := I∆0 + Ω1 + inconJ(Q) interprets T .

We work in W . Let p? be the smallest proof of incon(Q). Let y? be the largest
number below p?, such that there is a model z below p? that satisfies all axioms
of α witnessed below y?. The number y? exists since we can bound the existential
quantifier in the satisfaction predicate by 22c(p?)2

. Now we take the smallest such
model z? for the given y?. Again we use the above bounding argument to show
that z? exists. We use z? to construct the desired interpretation of T in a way that
is completely analogous to our earlier construction of γ.

Since all interpretations we used along the way are one-dimensional, one-piece,
parameter-free and identity-preserving, their composition also has these desired
properties.
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