
Simulation of Graphene Mechanics

Sandeep Kumar Jain



Cover page: Front page-honeycomb graphene lattice, back page-buckled
graphene sheet with a Stone-Wales (a pair of pentagon and heptagon rings)
defect in red color.

Copyright c© 2017 by Sandeep Kumar Jain
PhD thesis, Utrecht University, the Netherlands, May 2017.
ISBN: 978-90-393-6751-3



Simulation of Graphene Mechanics

Simulatie van Grafeen Mechanica

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op
gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge
het besluit van het college van promoties in het openbaar te verdedigen

op maandag 1 mei 2017 des middags te 2.30 uur

door

Sandeep Kumar Jain

geboren op 30 augustus 1990 te Rajasthan, India



Promotor: Prof. dr. G.T. Barkema

This thesis was financially supported by FOM-SHELL-CSER pro-
gramme (12CSER049). This work is part of the research programme
of the Foundation for Fundamental Research on Matter (FOM),
which is part of The Netherlands Organisation for Scientific Re-
search (NWO).



List of Papers

I S. K. Jain, G. T. Barkema, N. Mousseau, C. Fang and M. A. van Huis,
"Strong long-range relaxations of structural defects in graphene simulated
using a new semiempirical potential", J. Phys. Chem. C, 119:9646, 2015.

II S. K. Jain, V. Juricic and G. T. Barkema, "Probing crystallinity of graphene
samples via the vibrational density of states", J. Phys. Chem. Lett., 6:3897,
2015.

III S. K. Jain, V. Juricic and G. T. Barkema, "Boundaries determine the
formation energies of lattice defects in two-dimensional buckled materials",
Phys. Rev. B, 94:020102(R), 2016.

IV S. K. Jain, V. Juricic and G. T. Barkema, "Structure of twisted and buckled
bilayer graphene", 2D Mater., 4:015018, 2016.

V S. K. Jain, V. Juricic and G. T. Barkema, "Probing the shape of a graphene
nanobubble", Phys. Chem. Chem. Phys., DOI:10.1039/C6CP08535K, 2017.

VI A. J. Pool, S. K. Jain and G. T. Barkema, "Structural characteriza-
tion of carbon nanotubes via the vibrational density of states", Carbon,
DOI:10.1016/j.carbon.2017.03.030, 2017.





Contents
1 Introduction 1

1.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Buckling and defects . . . . . . . . . . . . . . . . . . . . . 3

1.2 Bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Graphene bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Long-range relaxations of structural defects in graphene 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Empirical potential . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Obtaining the fitting parameters from DFT calculations . 12

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Stone-Wales defect . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Line defect: dislocations formed by a separated SW defect 18
2.3.3 Effect of substrate . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Grain boundaries (domains) in graphene . . . . . . . . . . 25

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Probing crystallinity of graphene samples via VDOS 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Pristine flat and buckled graphene sheets . . . . . . . . . 36
3.3.2 Point SW defects in flat and buckled graphene samples . 37
3.3.3 Signatures of the domains and the substrate in the VDOS 40

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Boundaries determine the formation energies of lattice defects in
two-dimensional buckled materials 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Effective (1+1)D and (2+1)D models . . . . . . . . . . . 45
4.3.2 Energetics of SW defect in graphene . . . . . . . . . . . . 48
4.3.3 Energetics of dislocations in graphene . . . . . . . . . . . 52

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



iv Contents

4.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 (1+1)D model . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 (2+1)D model . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Structure of twisted and buckled bilayer graphene 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Structure of twisted bilayer graphene . . . . . . . . . . . . 63
5.3.2 Buckling in twisted bilayer graphene . . . . . . . . . . . . 68

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Probing the shape of a graphene nanobubble 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Structure of graphene nanobubble . . . . . . . . . . . . . 78
6.3.2 VDOS of graphene nanobubble . . . . . . . . . . . . . . . 81
6.3.3 Elastic energy distribution in nanobubble . . . . . . . . . 83

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Summary 85

Samenvatting 87

Bibliography 91

Acknowledgements 105

About the author 107



1
Introduction

In this chapter we give a brief introduction about graphene and its importance
and applicability, various kinds of intrinsic defects in graphene, experimental
techniques used in characterization, bilayer graphene, graphene bubbles and an
overview of the chapters in the thesis.



2 1. Introduction

1.1 Graphene

Carbon is the prime material for life on earth and fundamental for all organic
and polymer chemistry. Various carbon structures are known because of the
flexibility in its bonding nature. Graphite is a three-dimensional (3D) allotrope
of carbon which is widely used in writing pencils.1 Graphite is made of stacks
of graphene layers which are weakly coupled by van der Waals forces. Graphene,
a honeycomb lattice, is a two-dimensional (2D) allotrope of carbon and is the
first 2D crystal ever isolated.2 A carbon nanotube is a one-dimensional (1D)
allotrope of carbon and can be obtained by rolling up the graphene layer along
a particular direction.3,4 Fullerenes are molecules where carbon atoms are
arranged spherically, and can be thought of as wrapped-up graphene by the
introduction of pentagons in the otherwise hexagonal lattice. Therefore from the
physical point of view fullerenes are considered as zero-dimensional (0D) carbon
objects.5 These carbon based structures are shown in Figure 1.1.

The theoretical and experimental study of graphene and other 2D materials
is an exceedingly growing field of today’s condensed matter research. Over
four hundred years after the invention of graphene, it was isolated in 2004 by
mechanical exfoliation of pyrolytic graphite using scotch tape.6 This research
was rewarded the Nobel Prize in Physics in 2010. Graphene is the first truly 2D
crystal ever observed in nature. The stability of 2D crystals has been doubted
in the past, namely due to the Mermin-Wagner theorem which states that a 2D
crystal looses its long-range order, and therefore melts, at any small non-zero
temperature due to thermal fluctuations.7,8

Graphene has emerged as one of the most remarkable new materials of the
last decade due to its extraordinary and unusual electronic, mechanical, optical
and thermal properties.2,6, 9–13 These peculiar properties of graphene have
provoked a revolution in nanotechnology and semi-conductor industry. The
carrier density in a graphene sheet can be controlled by simple application
of a gate voltage.6 This effect is a fundamental element for the design of
electronic devices. The miniaturization of electronic devices can be improved
significantly by using transistors made up of graphene strips. Graphene has
emerged as the strongest material ever found13 therefore suggesting its potential
applications as hierarchical structures and membranes in biological materials,
nanocomposites featuring superior stiffness, dry lubricants for macroscale metallic
sliding components and high-pressure contacts.14,15 The very high thermal
conductivity of graphene makes it useful in photovoltaics and energy storage
devices.
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(a) (b)

(c) (d)

Figure 1.1: Carbon based structures. (a) Graphene is a 2D honeycomb lattice. (b)
Graphite can be viewed as a stack of graphene layers. (c) Carbon nanotubes are 1D
allotrope of carbon and can be viewed as rolled-up graphene cylinders. (d) Fullerenes
are considered as wrapped graphene with pentagons.5

Graphene has a sp2 hybridized structure where each carbon atom is connected to
three nearby carbon atoms constructing a hexagonal lattice. The carbon-carbon
bond separation distance in graphene is 1.42 Å. Experimental fabrication of
graphene can be achieved by various techniques such as exfoliation of graphite,6
epitaxial growth on a SiC substrate,16 and chemical vapor deposition (CVD) on
germanium (Ge),17 ruthenium (Ru),18 and iridium (Ir).19

1.1.1 Buckling and defects

Graphene is a one atom thick two-dimensional system embedded in three dimen-
sional space. Hence, it is subjected to out-of-plane distortions due to thermal
fluctuations and interaction with a substrate; mainly referred as ripples and buck-
les.20,21 The purity of graphene samples is crucial for both their practical and
experimental use. The experimentally synthesized graphene samples are quite
generically polycrystalline and therefore contain structural lattice defects.22,23
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These defects generally play a role in many characteristics of graphene such as
the conductivity, mechanical strength and optical properties. In this regard, their
detection is of crucial importance. Intrinsic defects such as Stone-Wales (SW)
and similar defects made of polygons different than hexagons are frozen in during
the production of large graphene samples, as is experimentally observed.24–26

Based on dimensionality, various defects in graphene have been categorized.
Point defects, typically SW defects, vacancies or interstitial atoms, are zero-
dimensional defects. Separated dislocations and line defects are considered as
one-dimensional defects whereas network of grain boundaries or stacking faults
are two-dimensional defects.23 An SW defect consists of two pentagons and two
heptagons27 and can be considered as a dislocation dipole. The structures of
various defects in graphene are shown in Figure 1.2. Experimentally, SW defects
are formed via rapid quenching from high temperature or under irradiation.22
When four hexagons are converted into a pair of pentagons and heptagons in
order to create an SW defect, the change in bond angles and bond lengths is
significant, forcing buckling to decrease the induced strain. In Chapter 2, we
study the long-range structural relaxations due to the defects in graphene via
computer simulations.

Several experimental techniques have been used to study lattice defects in
graphene. Scanning tunneling microscopy (STM),28,29 transmission electron
microscopy (TEM),22,30 and atomic force microscopy (AFM)31,32 have been used
to obtain images of graphene with defects with atomic resolution. Apart from
these direct techniques the indirect ones, among which Raman spectroscopy,33–35
X-ray absorption spectroscopy,36–38 inelastic electron tunneling spectroscopy
(IETS),39–41 and neutron scattering42,43 are also widely used in characterization
of defects in graphene.

The production of high-quality graphene samples would benefit from a non-
intrusive way to monitor the quality, i.e. crystallinity, of the film. Candidate
experimental techniques include Raman scattering, IETS, infrared spectroscopy
(IR) and inelastic neutron scattering spectroscopy. For all these techniques,
an interpretation of the measurement data requires an understanding of the
vibrational density of states (VDOS). In Chapter 3, we study the vibrational
spectrum of graphene in order to characterize various defects.

Computer simulations are widely in use to study the buckling defects in various
2D materials. Georgii et al., for example, have reported three different out-
of-plane buckling modes because of an SW defect and their activation barrier
in carbon nanotubes (CNTs).44 The formation and activation energies of a
single SW defect in graphene have been calculated using various methods like
quantum molecular dynamics calculations,45 density functional theory (DFT)
calculations,46,47 and using the combination of a semiempirical ab initio method
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Figure 1.2: Structures of various defects in graphene. (a) Stone-Wales (SW) defect is
considered as a dislocation dipole. (b-d) various types of di-vacancy defects in graphene.
(e) Two carbon adatoms give rise to the structure of inverse Stone-Wales defect. (f)
Separated dislocations. (g) Grain boundaries (line of 5-7 rings) in graphene.

and an Amber force field.48 The main problem with various quantum chemical
methods such as DFT is that these calculations are limited in system size since
computationally they are very demanding. This problem can be overcome by the
development of an effective empirical potential which can describe the structural
properties of graphene quite accurately. In this way one has the flexibility to
study very large samples with far less computational requirements. This is
important to study the long range structural relaxations in the form of buckling
due to a defect, to capture the finite size effect of the defect formation energy,
and in the studies of vibrational properties.

Bond order empirical potentials such as the reactive empirical bond order
(REBO) potential,49 Brenner potential,50 Tersoff potential,51 and reactive force
field (Reaxff) potential52 are frequently used in the simulations of various carbon
materials. Harmonic potentials such as Kirkwood’s53 and Keating’s,54 represent
a cheap and surprisingly accurate approach to study elastic deformation in fully
connected covalent systems, even when fully disordered, with only a few fitted
parameters.55,56 These simple potentials also allow us to better understand the
origin of the various energy contributions. Therefore we develop in Chapter 2, a
semiempirical potential based on Kirkwood’s and Keating’s potentials to study
the structural properties of graphene.
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 (a) (b)

Figure 1.3: Atomic structures of two types of stackings in bilayer graphene. (a)
Atomic structure of a vortex region (AA stacking). (b) Atomic structure of a Bernal
stacked region (AB/BA stacking).

1.2 Bilayer graphene

Bilayer graphene (BLG) consists of two stacked graphene sheets with usually a
stacking of either AB (Bernal) or AA type as shown in Figure 1.3. However, two
graphene layers can also be placed on top of each other in other arrangements,
characterized in general by a mismatch angle θ. Such a structure is usually
referred to as twisted bilayer graphene (TBLG),57,58 and represents an example
of a Van der Waals heterostructure.59 Since TBLG is made of two stacked
misaligned lattices, a superlattice with a larger periodicity known as Moiré
pattern emerges in the structure.60–63

Recently, this form of BLG has attracted a lot of attention theoretically and
experimentally due to its exotic electronic64–72 and optical properties73–75 arising
due to the formation of the Moiré patterns. In particular, it has been theoretically
suggested that the twist in the BLG may lead to a renormalization of the Fermi
velocity,76 possible appearance of the flat electronic bands,77 neutrino-like
oscillation of Dirac fermions78 as well as localization of electrons.79 Moreover,
TBLG when placed in a magnetic field, exhibits a fractal spectrum of the
Landau levels.80 The theoretical interest has been motivated by the experimental
observation of TBLG with Moiré patterns in samples grown on SiC substrates,81
and using chemical vapour deposition.82,83 Furthermore, the mismatch angle has
a significant impact on the quantum Hall effect in TBLG, as has been recently
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reported;84 and breaking of the interlayer coherence for very small angles was
experimentally found as well.85 In Chapter 5, we study the structure of twisted
and buckled bilayer graphene with a combination of effective intralayer and
interlayer potentials.

1.3 Graphene bubbles

As mentioned before, graphene has emerged as a very strong material13 and N-
doped graphene has been recently reported as the stiffest material ever found.86
Its mechanical properties are also fundamentally and practically interesting
when it is in contact with other materials. An important physical and chemical
aspect of graphene is its ability to trap gas molecules under high pressure when
placed on different substrates, leading to a formation of bubbles with nanometer
to micrometer sizes. Such nanobubbles have been experimentally observed
in a graphene membrane placed on top of a SiO2/Si substrate,87,88 epitaxial
graphene grown on 4H-SiC,89 and in an irradiated graphene sample on Ir.90
Experimentally, it is observed that absorbed water and hydrocarbons between
graphene and substrates can also lead to sub-micron sized bubbles.91,92 The
bubbles have been used for Raman characterization of strained graphene93 and
have been reported to induce pseudo-magnetic fields greater than 300 T at
room temperature.94 The van der Waals (vdW) pressure inside the bubble has
an important role in determining the properties of the trapped materials.95,96
Pressure due to the confinement can modify the properties of a material, e.g.,
ice in graphene nanocapillaries at room temperature,97,98 nanocrystals and
biological molecules trapped in graphene liquid cells.99–101

Nanobubbles proved to be an effective tool for strain engineering which is used
to modify electronic and mechanical properties of graphene.102,103 Controllable
curvature of graphene bubbles can be used as optical lenses with variable focal
length.88 Gas molecules in graphene bubbles on patterned substrates have
shown remarkable impermeability104 therefore suggesting the applicability in
gas storage devices.87,105 Graphene nanobubbles are also used to measure
elastic properties and the adhesion energy between substrates.106 Very recently,
nanobubbles of different sizes, ranging from a few tens of nanometers to a
micrometer, and shapes, such as circular, trapezoidal, and triangular, have been
found in van der Waals heterostructures.107 In Chapter 6, with our computer
simulations we capture the universal scaling behavior in the shape of graphene
nanobubbles.
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1.4 Thesis outline

Here we briefly outline the rest of the thesis. In Chapter 2, we present our
newly developed semiempirical potential with an out-of-plane energy term fitted
with density functional theory (DFT) calculations. We use this potential in
the simulations of various defects such as SW defects, separated dislocations
and grain boundaries. In Chapter 3, we show that the crystallinity of graphene
samples can be determined via the VDOS. In Chapter 4, we present our study
on the boundary effect on the formation energy of lattice defects in 2D materials.
By using a combination of intralayer and interlayer potentials we study the
structure of twisted and buckled bilayer graphene which is discussed in Chapter
5. In Chapter 6, we discuss the shape of a gas bubble trapped between graphene
and a substrate.



2
Long-range relaxations

of structural defects in
graphene

Abstract: We present a new semiempirical potential for graphene, which
includes also an out-of-plane energy term. This novel potential is developed
from density functional theory (DFT) calculations for small numbers of atoms,
and can be used for configurations with millions of atoms. Our simulations show
that buckling caused by typical defects such as the Stone-Wales (SW) defect
extends to hundreds of nanometers. Surprisingly, this long-range relaxation
lowers the defect formation energy dramatically - by a factor of 2 or 3 - implying
that previously published DFT-calculated defect formation energies suffer from
large systematic errors. We also show the applicability of the novel potential to
other long-range defects including line dislocations and grain boundaries, all of
which exhibit pronounced out-of-plane relaxations. We show that the energy as a
function of dislocation separation diverges logarithmically for flat graphene, but
converges to a constant for free standing buckled graphene. A potential in which
the atoms are attracted to the 2D plane restores the logarithmic behavior of the
energy. Future simulations employing this potential will elucidate the influence
of the typical long-range buckling and rippling on the physical properties of
graphene.

This chapter is based on "Strong long-range relaxations of structural defects in graphene
simulated using a new semiempirical potential" by S. K. Jain, G. T. Barkema, N. Mousseau,
C. Fang and M. A. van Huis, J. Phys. Chem. C, 119:9646, 2015.
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2.1 Introduction

The unusual electronic and mechanical properties make graphene an important
component in the nanotechnology and semiconductor industry.24,108,109 For
these applications, however, defects need to be closely controlled since they can
significantly alter the physical and chemical properties of graphene.110,111 We
are interested here in pronounced out-of-plane deformations (buckling) that
arise naturally in the presence of defects in the two-dimensional (2D) structure
of graphene.20,112–114 These deformations occur already in the presence of
intrinsic defects, the simplest defects in graphene. We study zero-, one- and
two-dimensional defects. Specifically, we consider a Stone-Wales (SW) defect,
a dislocation line caused by the separation of two pairs of pentagon-heptagon
rings, and grain boundaries.

Since buckling depends on the defect rotation angle and shear force, defect
orientation is important.115,116 The most stable buckling mode for an SW defect
in graphene is the mode where one pentagon ring moves above the plane and the
other below the plane at the dislocation core.47,117 Moreover, and in agreement
with the Mermin-Wagner theorem that states that the energy should diverge
logarithmically and dislocations should attract each other in a two-dimensional
sheet,7,8 Samsonidze et al. have shown that the attraction potential increases
logarithmically as a function of the distance between dislocations.118

In this chapter, we further characterize this attraction potential in graphene’s
both flat and buckled modes. Experimental evidence shows that out-of-plane
buckling in the graphene due to the dislocation dipole is quite significant and
has a long-range effect that extends well beyond the size accessible to DFT
calculations.119–121 It is necessary, therefore, to turn to empirical potentials
to study this effect. While empirical potentials for carbon have already been
reported in the literature, such as the Tersoff-Brenner50,51 and the Stillinger-
Weber potentials,122 they have not been fitted directly to graphene. Here, we
turn to a simpler harmonic form based on the Keating potential54 and Kirkwood
potential53 to describe the covalent bonds. We add an out-of-plane energy
term, that is missing in all these empirical potentials, which allows us to better
reproduce experimental and ab initio results, and to better understand the effects
of intrinsic defects on the graphene sheet structure.

We first present the semi-empirical potential as fitted from DFT-calculations,
and show its good performance in predicting structural properties of graphene,
such as the elastic constants. Using this novel potential, we then study the effect
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of defects themselves on buckling. In particular, we look at a single SW defect
and at the buckling caused by the splitting of an SW defect into a dislocation
pair. We find that the elastic energy does not diverge logarithmically for buckled
structures and we propose a mechanism to restore this logarithmic behavior.
We further demonstrate the applicability of the potential by simulating grain
boundaries in graphene for both flat and buckled modes.

2.2 Method

In this section we describe the empirical potential with an out-of-plane energy
term and fitting of elastic parameters from DFT-calculations.

2.2.1 Empirical potential

Harmonic potentials such as Kirkwood’s53 and Keating’s,54 represent a cheap
and surprisingly accurate approach to study elastic deformation in fully con-
nected covalent systems, even when fully disordered, with only a few fitted
parameters.55,56 These simple potentials also allow us to better understand the
origin of the various energy contributions.

For semiconductors, these potentials typically include two energy terms —a
two-body bond-stretching and a three-body angular contribution— and offer
similar predictive quality, differing only in the details of implementation. While
the Keating potential is more commonly used for computational convenience,
Kirkwood’s representation has the advantage of providing a full separation
between bond-stretching and angular contributions.123 Because, with current
computing capabilities, cost difference between these representations is not an
issue, we retain the second form, for formal convenience.

For a two-dimensional hexagonal network, Kirkwood’s potential is written as

E0 = 3
16

α

d2

∑
i,j

(r2
ij − d2)2 + 3

8βd
2
∑
j,i,k

(θj,i,k −
2π
3 )2 (2.1)

where α and β are parameters fitted to the bulk and shear modulus, and the
2π/3 term enforces 120 degree angles between the bonds.
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To allow for deformation in the third dimension, here we introduce an additional
term that imposes a harmonic restoring force in addition to the fourth-order
energy correction that comes out from the bond-stretching pair term. The final
potential is therefore written as

E = 3
16

α

d2

∑
i,j

(r2
ij − d2)2 + 3

8βd
2
∑
j,i,k

(θj,i,k −
2π
3 )2 + γ

∑
i,jkl

r2
i,jkl (2.2)

with d = 1.420 Å, the ideal bond length for graphene, and the other parameters
being extracted from DFT calculations are: α = 26.060 eV/Å2, β = 5.511 eV/Å2

and γ = 0.517 eV/Å2. Here, ri,jkl is the distance between atom i and the plane
through the three atoms j, k and l connected to atom i.

2.2.2 Obtaining the fitting parameters from DFT calculations

Parameters for the empirical potential are fitted from DFT calculations using the
first-principles Vienna ab initio Simulation Package (VASP).124,125 To describe
buckling accurately, we used a van der Waals functional,126 which is shown
to work well for solids.127 The van der Waals functional was formulated by
Dion and co-workers.128 The cut-off energy of the wave functions was 400
eV. The cut-off energy of the augmentation functions was about 650 eV. The
electronic wave functions were sampled on a 6× 8× 1 grid with 24 k-points in
the irreducible Brillouin zone (BZ) of graphene using the Monkhorst and Pack
method.129 Structural optimizations were performed for both lattice parameters
and coordinates of atoms. Different k-meshes were tested for a primitive graphene
cell, and the cut-off energies for the wave functions and augmentation wave
functions were also tested in order to ensure good energy convergence (< 1
meV/atom).

The various parameters were fitted by imposing elastic deformation onto a
graphene sheet. The value of α was obtained by fitting the quadratic energy
evolution as a function of uniform deformations on a 50-atom monoclinic per-
fectly crystalline graphene sample as shown in Figure 2.1(a). Since this is a
homogeneous compression, with deformation constrained to the plane, only the
two-body term in the potential contributes to the energy. The obtained value,
α = 26.060 eV/Å2, is in good agreement with the reported experimental value
of 25.880 eV/Å2.38,130

To obtain β, we repeat the procedure, this time by shearing the box, i.e. changing
the angle between the periodicity vectors Lx and Ly. During the process of
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(a)

(b)

(c)

Figure 2.1: Fifty-atom samples in which different kinds of elastic modes are excited.
(a) Homogeneous compression of the box. (b) Shearing of the box at constant area. (c)
Sinusoidal displacement in the z-direction. These excitations are used to determine
the parameters α, β and γ in our potential eq. (2.2).
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shearing the box, the area is kept constant by scaling the box length in the
y-direction accordingly, as shown in Figure 2.1(b). The energy as a function of
shearing is also well fitted by a quadratic equation, leading to β = 5.511 eV/Å2.

Finally, γ is obtained through sinusoidal displacements in the z-direction given
as

zi = A sin
(

2πkxi
Lx

)
. (2.3)

The amplitude A of the displacement is varied from -0.1 to 0.1 Å as shown in
Figure 2.1(c). Deformed samples are allowed to relax laterally at the fitted value
of α and β.

The energy of these laterally relaxed samples is then fitted to

E = E0N + γlA2
(
k

Lx

)2
N. (2.4)

Here, N is the total number of the atoms in the sample and γl is a fitting
parameter. The energies of these samples were also computed by DFT, employing
the same boundary conditions and fitted to eq. (2.4). Whereas the value thus
found, γ = 0.517 eV/Å2, is almost 2 orders of magnitude smaller than α and
one order of magnitude smaller than β, it remains significant, demonstrating
the need to include such a harmonic term in the potential energy.

2.3 Results and discussion

To demonstrate the applicability of this novel potential, we study the deformation
caused by intrinsic defects in graphene. The effect of defects on the geometry
of a graphene sheet is examined in three parts. First, we look at the long-
range deformation associated with the creation of an SW defect, representing a
dislocation dipole. We then consider two types of line defects; split dislocation
pairs and grain boundaries.

2.3.1 Stone-Wales defect

A single SW defect (5-7-7-5 member rings)27 is created in a perfectly hexagonal
lattice via a bond-switching move as shown in Figure 2.2. After the bond trans-
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(a) (b) (c)

Figure 2.2: Creation of single Stones-Wales defect by bond transposition. (a) A
perfect hexagonal arrangement. (b) Bonds are rearranged to create the topology of a
defect. (c) The atomic positions are relaxed to generate a single SW defect.

position, the sample is relaxed with the novel potential, both when constraining
the atoms in the 2D plane and when allowing full 3D relaxation. Several samples
containing different numbers of atoms are generated to study the formation
energy of SW defect in both flat and buckled modes.

We first compare the SW-defect formation energy for the DFT and the semiem-
pirical description using a small 42-atom model with a fixed area, to maintain
a constant electronic density. Periodic boundary conditions apply in all cases.
For the 2D relaxation, we find a good agreement between formation energy of
7.95 eV as obtained from DFT calculations and the value of 7.50 eV obtained
when using the Kirkwood-like potential (Table 2.1). To trigger relaxation in the
third dimension, the symmetry is broken by the addition of a small out-of-plane
displacement (0.01Å) with alternating sign to the atoms participating to the
SW defect. This buckling initialization was adopted to avoid metastable config-
urations. This leads to a staggered configuration that is of lower energy with
atoms moving above and below the plane during the relaxation.44 As seen in
Table 2.1, the additional degree of freedom in the out-of-plane direction reduced
the strain by more than 2 eV in the small box.

We also study the energy convergence of the SW defect with system size, looking
at systems ranging from N = 42 to 69200 atoms. This time, we allow the box
size to relax, which also decreases the elastic energy by more than 2 eV (Table



16 2. Long-range relaxations of structural defects in graphene

Table 2.1: Formation energy of an SW defect calculated using DFT and using our
semi-empirical potential. These values are obtained for a 42-atom sample at fixed
crystalline density. The value E2d is obtained in a planar geometry, and the value E3d

is obtained with out-of-plane relaxation. ∆E is the energy difference between these
two configurations after relaxation.

Method E2d (eV) E3d (eV) ∆E (eV) = E2d - E3d
DFT 7.952 5.933 2.019

Semiempirical potential 7.496 5.274 2.222

Table 2.2: Formation energy of an SW defect calculated using our semi-empirical
potential. The value E2d is obtained in a planar geometry, and the value E3d is
obtained with out-of-plane relaxation. In contrast to Table 1, the density is not fixed
to its crystalline value but the box is allowed to relax (box lengths Lx and Ly as well
as the angle between them). ∆E represents the energy difference between the two
energy-minimized structures and ∆zmax, the buckling height, defined as the difference
between maximum and minimum z-direction coordinates.

Sample size E2d E3d ∆E (eV) ∆zmax
(Number of the atoms) (eV) (eV) = E2d - E3d (Å)

42 5.963 2.636 3.327 2.460
336 6.642 2.814 3.823 3.226
680 6.686 2.831 4.037 3.640
1008 6.700 2.840 3.860 3.939
1344 6.707 2.843 3.864 4.190
3344 6.721 2.852 3.869 5.215
6696 6.725 2.856 3.869 6.190
17200 6.728 2.861 3.867 7.790
34160 6.729 2.866 3.863 9.178
69200 6.729 2.868 3.861 10.855

2.2). Nevertheless, size convergence for both relaxation types is slow. In the 2D
case, the elastic energy associated with the SW defect is 5.96 eV for a 42-atom
structure, and converges to 6.73 eV for a system containing 6696 atoms. Overall,
the formation energy for the 2D SW defect is in very good agreement with
values reported in the literature calculated by DFT47 and using a combination of
semiempirical ab-initio method and an amber force field48 for small samples.

The energy (E3d) for the buckled samples is significantly lower (around 3.86 eV)
than for the 2D-constrained models. The resulting 3D relaxation leads to a local
minimum-energy structure for the SW defect, with one pentagon ring moving
above the plane while the other moves below the plane. The bond connecting



2.3. Results and discussion 17

(a) (b)

(c) (d)

Figure 2.3: Well-relaxed buckled graphene samples having a single SW defect. Periodic
boundary conditions apply. During the minimization process one pentagon ring goes
above the plane and another goes below the plane. These out-of-plane displacements
extend throughout the sample causing long-ranged buckling. (a) Sample with 336
atoms with x and y dimensions of ∼ 40 Å and bulging in z-direction up to ∼ 3 Å. (b)
Sample with 680 atoms with x and y dimensions of ∼ 50 Å and bulging in z-direction up
to ∼ 3.5 Å. (c) Sample with 1344 atoms with x and y dimensions of ∼ 60 Å and bulging
in z-direction up to ∼ 4 Å. (d) Sample with 69200 atoms with x and y dimensions of
∼ 500 Å and bulging in z-direction up to ∼ 11 Å.

both rings has the tendency to be at an angle of inclination of approximately
180 with respect to the plane. This relaxation is accompanied by significant
buckling — varying from 2.5 Å for the smallest box to almost 11 Å for the
largest system — that continues to grow with system size, a phenomenon that
cannot be captured with small DFT calculations (see Figure 2.3). Note that
the formation energy of the 3D SW defect for the largest system is 2.87 eV,
which is more than two times lower than the DFT-calculated value of 5.93 eV
for the small 42-atom sample. This clearly shows that long-range relaxation can
drastically reduce defect formation energies, and that these effects cannot be
studied using only DFT simulations.

Figure 2.4 shows ln
[
1− E

E(∞)

]
as a function of ln(N) with E2d(∞) and E3d(∞)

determined by extrapolation to be 6.729 eV and 2.869 eV, respectively. These
data points were fitted by a straight line. In the 2D case the straight line has a
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slope of −1.0 and intercept of 1.48. In the 3D case, we observe rather a slope of
−0.5 and an intercept of −1.07. Since

√
N is proportional to the sample size

(L) we can conclude that E3d has a finite size correction that scales as 1/L in
the energy, whereas E2d has a finite size correction of 1/L2 in the energy.

2.3.2 Line defect: dislocations formed by a separated SW defect

An SW defect represents a dislocation dipole. The dislocation pairs (pentagon-
heptagon rings) can then be separated by inserting hexagon rings in between
them, leading to the creation of a line defect as shown in Figure 2.5.

The energy as a function of dislocation separation ∆ is shown in Figure 2.6. In
the 2D case where atomic motion is constrained to the xy-plane, the energy
diverges logarithmically as a function of ∆; this is consistent with the Mermin-
Wagner theorem7,8 and the KTHNY Theory131–133 (see Figure 6(a)). This
energy evolution was fitted to the equation

E2d(∆) = a+ b ln
[

1
∆ + c

+ 1
P −∆ + c

]−1
(2.5)

where a, b and c, are the fitting parameters and P is the total number of the
hexagonal rings in the direction of ∆. For the 69200-atom sample, we consider
P=171 and ∆max=85.

As the symmetry is broken through the introduction of small perturbations
along the z-axis, relaxation is more effective and the energy as a function of
dislocation separation converges to a constant with corrections scaling as 1√

∆
for

large values of ∆. Lehtinen et al. have shown experimentally that the evolution
of dislocations in 2D systems is governed by long-range out-of-plane buckling.121
Our simulations also indicate that line defects in graphene (a dislocation pair)
can have significant impact on buckling.

For our 69200-atom sample, for example, buckling increases dramatically with
respect to dislocation separation. The buckling height increases from 10.9 Å for
∆ = 0 to 46.5 Å for ∆ = 85. Moreover, the interaction between dislocations,
in this case, is not monotonic: whereas in 2D interaction remains attractive
at all distances, the interaction changes sign when 3D relaxation is allowed
and becomes repulsive after some threshold distance as can be clearly seen in
Figure 2.6(b). These effects could not be observed numerically before due to
the small sample sizes used previously. The behavior of the elastic energy as a
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Figure 2.4: Effect of finite box size on SW formation energy, with and without buckling.
We expect the energy to scale as E(N) = E(∞)−CN−p. Hence, ln[1−E(N)/E(∞)] =
ln(C/E(∞))− p ln(N). The data fall on straight lines with our extrapolated energies
E2d(∞)=6.729 eV and E3d(∞)=2.869 eV, with slopes −1.0 and −0.5, respectively. This
suggests that finite-size corrections are ∼ 1/L2 and ∼ 1/L, respectively.
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(e) (f)

(b) (c)(a)

(d)

(g) (h) (i)

Figure 2.5: Structural changes induced by a pair of (5-7) dislocations after 3D
relaxation. (a,d,g) Samples with a single Stone-Wales defect at various viewing angles
(b,e,h) Dislocations separated by one hexagonal ring (∆ = 1). (c,f,i) Dislocations
separated by two hexagonal rings (∆ = 2).
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Figure 2.6: Energy (E(∆)) as a function of dislocation separation (∆) in a 69200-
atoms sample. (a) Without out-of-plane relaxation, the data points are well fitted by
eq. (2.5) (line). The inset shows the logarithmic increase of the energy with ∆, which
flattens once ∆ approaches half the box size; the straight line is drawn to guide the
eye. (b) Relationship found when out-of-plane relaxation is allowed, this time fitted by
eq. (2.7) (line).
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function of distance between two dislocations when 3D relaxation is allowed can
be described by

f(∆) = a+ c+ b
√

∆
d+ ∆ (2.6)

and
E3d(∆) = f(∆) + f(P −∆) (2.7)

where a, b, c and d are the fitting parameters and P is the system size defined
as total number of the six member rings in the direction of ∆. For large values
of ∆, the force acting between the dislocation pairs can be written together for
2D and 3D cases as

F (∆) ∝ 1
∆D/2 (2.8)

with D the dimensionality of the system.

2.3.3 Effect of substrate

To simulate the effect of substrate on the buckling of graphene, we add a
harmonic confining energy term in our potential. The logarithmic divergence
of the energy as a function of dislocation separation is again restored by this
harmonic confinement energy term that is given as:

Ec = K

N∑
i=1

z2
i . (2.9)

K is the prefactor for this harmonic term (eV Å−2), N is number of the atoms
present in the sample and zi is the normal-to-plane coordinate of the atom.
So, all the buckled graphene samples relaxed back to the 2D plane with the
confinement potential given in eq. (2.9) for different values of K. The energy as
a function of ∆ was calculated and plotted as shown in Figure 2.7. It is evident
from the plot that for any non-zero value of K the logarithmic behavior of the
energy again restores and at K = 5 eV Å−2 the energy plot overlaps with the
E = E2d plot. With this additional confining term Ec in the potential, samples
again have the tendency to become flat with some small z-direction fluctuations
at the core of the defect. It has been observed that for the case K = 0 eV
Å−2 (free standing buckled graphene), the z-direction displacement increases
with increasing dislocation separation (Table 2.3). However when a non-zero
harmonic confinement potential is applied, z-direction displacements become very
small and also very local near the dislocation core (Figure 2.8). These buckling
heights become smaller and smaller with strong harmonic confinement. Therefore,
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Figure 2.7: Energy (E(∆)) as a function of dislocation separation (∆) in a 69200-
atoms sample for different values of strengths K (eV Å−2) of the confining potential.
Note that K = 0 (see eq. (2.9)) is for free standing graphene, while K →∞ is the limit
to fully planar graphene. This figure shows that at any nonzero K, the energy diverges
logarithmically, whereas for K = 0 (free standing graphene), the energy converges to a
constant.

logarithmic behavior of the energy as a function of dislocation separation restores
again with harmonic confinement.

TheK value determines the lateral localization of the buckling. We have analyzed
the lateral extension of the buckling at different values of K. At K = 0.001 eV
Å−2, the lateral extension of buckling is around 40 Å, whereas this decreases to
20 Å for K = 0.01 eV Å−2 and 12 Å for K = 0.05 eV Å−2. Tison et al.26 have
shown that the buckling arising due to the grain boundaries extends to typically
5 to 20 Å on SiC substrate. So, we estimate that a value of K=0.001 to 0.01 eV
Å−2 is a reasonable estimate to simulate the presence of a substrate.
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K=0

K=0.001

K=0.01

K=0.05

K=0.1

K=0.5

K=1.0

K=5.0

Figure 2.8: Out-of-plane structure of an SW defect, as a function of the strength K
(eV Å−2) of the confining potential for a sample with 69200 atoms. Note that even a
very small value of K already localizes the out-of-plane effect. Values of z-direction
displacements are given in Table 2.3.
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Table 2.3: Values of buckling height ∆zmax in Å (difference between maximum and
minimum z-direction co-ordinates) for different values of K (eV Å−2) (see eq. (2.9)) at
different dislocation separation distances (∆) for a sample with 69200 atoms.

∆ K = 0 = 0.001 = 0.01 = 0.05 = 0.1 = 0.5 = 1.0 = 5.0
0 10.855 2.461 2.138 1.751 1.580 0.975 0.705 0.000
2 17.481 4.361 3.561 2.597 1.722 1.237 0.987 0.000
5 21.380 4.444 3.459 2.757 2.437 1.309 1.048 0.089
10 24.463 4.273 3.485 2.828 2.521 1.346 1.066 0.113
20 27.579 4.264 3.557 2.885 2.568 1.360 1.072 0.118
30 29.140 4.453 3.584 2.921 2.575 1.365 1.073 0.120
40 33.510 4.400 3.600 2.935 2.590 1.362 1.073 0.122
50 38.300 4.393 3.610 2.941 2.632 1.379 1.076 0.123
60 42.290 4.376 3.617 2.939 2.597 1.364 1.076 0.124
70 44.973 4.388 3.593 2.942 2.594 1.383 1.076 0.124
80 46.304 4.389 3.600 2.943 2.599 1.371 1.076 0.124
85 46.488 4.450 3.626 2.942 2.599 1.363 1.076 0.124

2.3.4 Grain boundaries (domains) in graphene

To demonstrate the broad applicability of our newly developed potential, we
also simulate grain boundaries in graphene. To generate a sample, we start
with a completely random 2D sample (all sites are 3-fold connected) and allow
it to evolve doing WWW bond transpositions55 with respect to time at room
temperature.

The initial connectivity is generated as follows. We first generate a Voronoi
diagram from the initial random configuration,134 whereby the boundaries
between each Voronoi point are defined by the crossing normals of the mid-point
connected each Voronoi point to their nearest neighbors. This allows us to
generate an unbiased isotropic 3-fold connected random network.

To generate a Voronoi network we start with N/2 random points in a square
box and place 8 copies of this box around it to implement periodic boundary
conditions. Then Voronoi vertices are identified and connected in order to make
bonds in between them. Hence, a random sample having N atoms is generated.

Next, we use the improved bond-switching WWW-algorithm to evolve the
system,56 using our empiricial potential to describe its energy. After each bond-
switch the system is fully relaxed and the configuration is accepted with a
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Metropolis probability given by

P = min
[
1, exp

(
Eb − Ef
kBT

)]
. (2.10)

Here Eb is the energy before the bond transposition and Ef is the energy after
the bond transposition.

To study the energy behavior in time of a sample with N = 1000 atom, we
stored the samples after every N bond transposition moves. For our study we
defined the unit of time as N bond transposition moves, that is one attempted
bond switching move per atom. The evolution of the grain boundaries in the
1000-atom sample is shown in Figure 2.9. These samples are completely flat.
However, when small out-of-plane fluctuations are given, they start to buckle.
Buckling caused by the grain boundaries has a long-range effect and the buckling
height is also very significant (11.5 Å) for the sample at t=100. Figure 2.10
shows the evolution of the domains in the free-floating buckled graphene.

We study the energy evolution of domains in time for both flat (2D) and buckled
modes (3D) in graphene. Our initial samples (t=0) are topologically the same for
both 2D and 3D cases. Figure 2.11 compares the configuration energy evolution
for the 2D and 3D cases (here energy data are averaged over five samples). In
comparison to the 2D flat case of domains, the energy converges much earlier in
the 3D buckled case. The initial (t=0) buckled sample has much lower energy
than the initially flat case but the energy evolution is more significant and
effective in 2D in comparison to 3D case. In the process of domain evolution,
domain growth becomes very slow once the system can be characterized as
crystalline domains separated by grain boundaries (GBs; chains/strings of 5-
and 7-fold rings). This is in agreement with experiments by Kurasch et al.135
and Rasool et al.25 They show that continuous lines of pentagons and heptagons
(GBs) are energetically stable. A review on the GBs in polycrystalline graphene
by Yazyev et al.24 is also in good agreement with our simulations (Figure 2.9).

The evolution of different kinds of rings during the domain growth is shown
in the form of ring statistics plots for both flat and buckled cases (see Figure
2.12 and Figure 2.13 respectively). During the domain evolution the number
of hexagonal rings increases whereas the number of pentagon, heptagon, and
octagon rings decreases in order to achieve an energetically stable structure.
Ring statistics is more or less the same for both the cases, but after 100 units
of time the number of 6-fold rings is higher in 2D (compared to 3D), which we
attribute to the fact that in 2D dislocations are attracting each other; hence,
they come together and are annealed during the evolution process. At the end
they form GBs which are energetically stable (which is also an experimental
observation). In 3D, however, dislocations repel each other, and hence they
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(a) (b)

(c) (d)

Figure 2.9: Structural evolution of a 1000-atom sample by bond transposition moves,
confined to strictly planar configurations. (a) The starting sample: a random periodic
Voronoi network which is unrelaxed. (b) Sample after minimization, and some minor
manipulation to remove structural anomalies (t=0). (c) Sample having early evolved
domains (t=25). (d) Sample having mature domains (t=100). The unit of time is N
bond transposition moves.



28 2. Long-range relaxations of structural defects in graphene

(a) (b)

(c) (d)

Figure 2.10: Structural evolution of a 1000-atom sample by bond transposition moves,
with out-of-plane relaxation. (a) Starting sample, equal to that in Figure 2.9(b), but
with random out-of-plane displacements (after which it is relaxed) (t=0). (b) Sample
having early evolved domains (t=5). (c) Sample having more mature domains (t=15).
(d) Sample with mature domains (t=100). Here, x and y dimensions are 50 × 50
Å2 with bulging in z-direction up to ± 6 Å. The unit of time is N bond transposition
moves.
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Figure 2.11: Energy as a function of evolution time for both the flat (planar) case
and the buckled case (with out-of-plane relaxation).

do not come together to form long grain boundaries. We have analyzed the
sample topology of the 3D relaxed sample after 100 units of time and found
many disclinations (single pentagon or heptagons rings) and dislocations present
in the sample.

To observe the effect of substrate on the domain evolution process we introduce
the confinement energy term (eq. (2.9)) in the potential and minimized the
buckled sample (t=100) for different values of K (eV Å−2). The buckling
height decreases from 11.5 Å for K = 0 eV Å−2 to 7.7 Å for K = 0.001 eV
Å−2, and it decreases further to 4.2 Å for K = 0.01 eV Å−2. In the recent
paper by Tison et al.,26 grain boundaries in graphene on a SiC substrate are
analyzed in high resolution in three dimensions by means of scanning tunneling
microscopy (STM). They find that maxima in height vary between 4 Å and 8
Å for different misorientation angles of GBs and that the buckling in lateral
dimensions extends to typically 5-20 Å. This experimentally determined height
of the grain boundaries is in excellent agreement with the height of the buckling
that we obtained at different values of K. Thus, we infer that reasonable values
of K are in the range of 0.001-0.01 eV Å−2.
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Figure 2.12: Ring statistics as a function of evolution time for the flat (planar) case.
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Figure 2.13: Ring statistics as a function of evolution time for the buckled case (with
out-of-plane relaxation).
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2.4 Conclusion

We have developed a novel potential which includes an out-of-plane buckling term
which is optimized by DFT calculations. This extra term in the semiempirical
potential is essential to simulate accurately buckling in graphene. This potential
uses an explicit list of the bonds between the atoms and is therefore very cheap
in terms of computational requirements. As this potential is an extension of
the Kirkwood potential, bending and stretching have been completely separated
without interference between them. The potential reproduces very well both
the structural properties and the energies of defect-free graphene, defective
graphene, and graphene containing well-defined point or reconstructed defects.
Considering the defect energies, we have revealed that calculations which do
not take long-range relaxations into account, which is typically the case in the
literature, suffer from large systematic errors, since these relaxations can lower
the formation energies even by a factor of 2 or 3. Although our potential cannot
deal with extrinsic (dopant) atoms, this limitation could be overcome by a
multi-method approach, where the local environment of dopant atoms is treated
with e.g. DFT, while the long-range relaxations outside of this local environment
are calculated using the novel semiempirical potential.
The current potential enables the accurate simulation of other defects as well,
including line dislocations and grain boundaries. The experimentally well-known
buckling and rippling of graphene is convincingly demonstrated for these defects.
Without the out-of-plane component of the potential, these phenomena could
not have been properly described. Furthermore, a long-standing paradox of the
divergence in energy of a separating Stone-Wales defect has been solved: the
out-of-plane energy contribution leads to stabilization of the energy at large
separations.

In the future, the current potential could be used in simulations whereby inter-
action with supports, such as Ir(111) surfaces with steps at edges at the surface,
can be simulated by hard interactions between the support and the graphene,
whereas the typical buckling and rippling of the graphene can be simulated
with the present potential. The current potential could also be modified for
simulation of free edges in graphene, since free edges play a significant role in
graphene or carbon nanotube morphologies.

Finally, we mention that the current approach can possibly be extended to the
development of new potentials for other two-dimensional atomic crystals59 such
as h-BN, MoS2, and WSe2, so that long-range structural defects can be reliably
simulated in these 2D materials as well.
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3
Probing crystallinity of

graphene samples via
VDOS

Abstract: The purity of graphene samples is of crucial importance for their
experimental and practical use. In this regard, the detection of the defects is of
direct relevance. Here, we show that structural defects in graphene samples give
rise to clear signals in the vibrational density of states (VDOS) at specific peaks
at high and low frequencies. These can be used as an independent probe of the
defect density. In particular, we consider grain boundaries made of pentagon-
heptagon pairs, and show that they lead to a shift of the characteristic vibrational
D-mode toward higher frequency; this distinguishes these line defects from Stone-
Wales point defects, which do not lead to such a shift. Our findings may be
instrumental for the detection of structural lattice defects using experimental
techniques that can directly measure VDOS, such as inelastic electron tunneling
and inelastic neutron spectroscopy.

This chapter is based on "Probing crystallinity of graphene samples via the vibrational
density of states" by S. K. Jain, V. Juricic G. T. Barkema, J. Phys. Chem. Lett., 6:3897,
2015.
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3.1 Introduction

The quality of the crystalline samples is very important for the observation of the
hallmark features of graphene, such as ballistic conductivity,136,137 as well as for
its mechanical and chemical properties, e.g., its permeability.138 Large graphene
samples produced, for instance, by chemical vapor-deposition (CVD), exfoliation
or epitaxial growth on metal and SiC substrates are typically polycrystalline and
thus contain intrinsic lattice defects, such as grain boundaries,24–26 dislocations
and Stone-Wales (SW) defects, as well as extrinsic defects, e.g., adatoms.139
Detection of the lattice defects is of both fundamental and practical relevance,
since they are inevitably present in the graphene samples and can significantly
alter the graphene’s chemical and physical properties.23 In fact, the defects
may not only be detrimental for the properties of graphene, but may also be
interesting in their own right, as they may lead to some new effects, not present
otherwise,140–142 and are also important for graphene nano-devices.143

Structural defects are especially prominent in this regard.23 In particular,
graphene is a unique two-dimensional crystalline membrane that hosts lattice
defects arising due to the flexibility of the carbon atoms in hybridization. As
a result, polygons different from hexagons can appear in the lattice structure.
Energetically favorable point-like defects of this type include the SW defect
obtained when four hexagons are transformed by a bond transposition of 90◦
into two pentagon-heptagon pairs, thereby conserving the number of the atoms.
They can be formed thermally in pristine graphene, but have a formation energy
of ∼ 5 eV, and thus pristine graphene may host only a few of them. On the
other hand, such defects and similar ones can be frozen in during the annealing
process and it is therefore not surprising that they have been experimentally
observed.22,144,145 Moreover, there have been proposals for their controllable
production in graphene.140

Techniques to characterize the crystal structure of graphene include direct lo-
cal ones, such as transmission electron microscopy (TEM), scanning tunneling
microscopy (STM)29 and atomic force microscopy (AFM),31,32 as well as the
indirect ones, among which Raman spectroscopy,33–35 X-ray absorption spec-
troscopy,36–38 inelastic electron tunneling spectroscopy (IETS),39–41 and neutron
scattering.42,43 Although widely used, Raman spectroscopy is limited by selec-
tion rules to only a certain number of Raman-active vibrational modes, which
include the so-called G and 2D peaks located at 1580 cm−1 and 2680 cm−1,
respectively,146 originating from the G and D phonon modes.147 In the presence
of disorder, due to the breaking of the lattice symmetry, the D mode at 1340
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cm−1, Raman inactive in pristine graphene, becomes active. Little is known
about the specific experimentally observable signatures of the structural defects,
such as point and line defects, in the vibrational spectrum. This is an impor-
tant problem especially in light of the recent mapping of the entire vibrational
spectrum of graphene by IETS,148 and reported signature vibrational bands in
CVD graphene with defects.35

In this chapter, we show that the nature and density of structural point and
line defects in graphene samples can be characterized by the specific and dis-
tinct features in the vibrational density of states (VDOS). These features are
directly detectable in IETS and neutron scattering, which are not limited by
selection rules, as opposed to the Raman spectroscopy, and can thus probe the
entire vibrational spectrum.148 Specifically, using a recently developed effective
semiempirical elastic potential149 we show that the presence of the point-like
SW defects in pristine flat graphene gives rise to a simultaneous decrease in the
VDOS of the peaks corresponding to high-frequency D and F modes (Figures
3.1(a) and 3.2(a)). More importantly, the graphene membrane has a natural
tendency to buckle, and as a result new low-energy vibrational states appear,
with particularly pronounced L and L’ peaks (Figure 3.1(a)). When the SW de-
fects are introduced, the intensities of these characteristic modes simultaneously
decrease, and the peak positions shift toward higher values of frequency (blue
shift), see Figure 3.3(b). On the other hand, we find that line defects give rise to
a blue shift of the D peak in conjunction with the decrease of its intensity. The
substrate plays an important role in the production of graphene samples,150,151
and we therefore show that the decrease in the VDOS of low-frequency modes
without any shift signals its presence.

3.2 Method

To calculate the vibrational spectrum of graphene, we use a potential described
in Chapter 2, eq. (2.2).149 Additionally, the effect of the substrate to the buckled
graphene sample is described by an extra harmonic term given in Chapter 2,
eq. (2.9).149 The VDOS represents the number of modes at a certain frequency,
and the total area under the VDOS gives the total number of vibrational modes,
which is 2N for a flat and 3N for a buckled graphene sheet, with N the total
number of atoms in the sample. In our plots, the VDOS is convoluted with a
gaussian function with a width of σ = 14 cm−1, and N = 680; this is much
larger than system sizes in previous ab initio studies of pristine graphene and
graphene with defects.47,117,152,153 Furthermore, we have computed the relative
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decrease of the number of modes corresponding to the characteristic bands as a
function of the defect density. We have performed this computation by counting
the number of modes with a VDOS greater than a certain fixed value selected
by the symmetry of the characteristic peak, see Figures 3.2(d) and 3.3(e).

3.3 Results and discussion

Here, we firstly present the reference VDOS for flat and buckled graphene
and discuss the various prominent peaks and their corresponding displacement
profiles. Later on we systematically present the effect of defects (both point and
line-defects) on the positions of peaks in VDOS. We also discuss the effect of
substrate on VDOS of graphene.

3.3.1 Pristine flat and buckled graphene sheets

We first calculate the VDOS for a flat pristine graphene sample, which serves
as the reference spectrum in the following. The plot displayed in Figure 3.1(a)
shows the characteristic peaks that correspond to D and G vibrational bands,
of which only the latter is Raman active.147 The corresponding modes, shown
in Figure 3.1(b) and 3.1(c) transform under E2g and A1g representations of the
graphene’s D6h point group symmetry, respectively.154 Notice that the hallmark
feature of the monolayer graphene, the Raman-active G mode, which is at the
maximum frequency in the vibrational spectrum, see Figure 3.1(a), is positioned
at fG ' 2080 cm−1, and therefore offset by about 25% as compared to the
experimentally measured value of ∼ 1580 cm−1. The D mode at fD ' 1660
cm−1 is also shifted by about 25% compared to the experimentally measured 1340
cm−1. Deviations of this magnitude are expected since the parameters of the
effective potential are obtained from DFT149 with similar deviations. However,
the form of the displacements of these modes, shown in Figures 3.1(b) and 3.1(c),
allows us to identify them as G and D modes, respectively. Furthermore, the
vibrational spectrum of graphene features the F mode, shown in Figure 3.1(d),
at fF ' 1280 cm−1. A flat graphene sheet has a natural tendency to buckle,
and this leads to the appearance of additional soft out-of-plane phonon modes
in the range of frequencies approximately up to f3D ∼ 300 cm−1, which is of
the order of the energy scale corresponding to the parameter γ describing the
buckling in the effective potential (2.2), fγ ∼ (1/2πc)

√
γ/mC ' 150 cm−1, with
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Figure 3.1: VDOS and the profile of the displacements of the prominent modes
in pristine graphene. (a) VDOS of both flat and buckled pristine graphene. (b)
Vibrational mode corresponding to Raman active G mode at 2080 cm−1. (c) D mode
at 1660 cm−1. (d) F mode at 1280 cm−1. (e) Out-of-plane L mode at 210 cm−1:
displacements in the flat graphene’s (x− y) plane (top) and in the side y − z plane
(bottom).

mC ' 2 × 10−26 kg as the atomic mass of carbon, and c = 3 × 108 m/s the
velocity of light. The L and L’ modes, the former being a B2g mode (Figure
3.1(e)), at frequency fL ' 210 cm−1 and fL′ ' 100 cm−1, respectively, are
especially prominent and, as we show, can be used to probe the point defects in
the buckled graphene samples.

3.3.2 Point SW defects in flat and buckled graphene samples

We now study the VDOS in flat graphene with point-like SW defects, see Figure
3.2(b). The obtained VDOS is displayed in Figure 3.2(a). We first observe
that significant changes in the VDOS occur in the high-frequency region, at
frequencies above 500 cm−1. As the density of the defects increases, the VDOS at
the peaks decreases. On the other hand, the VDOS at the minima increases, as
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Figure 3.2: Structure of a flat graphene sample having multiple point SW defects
and corresponding VDOS. (a) VDOS of flat graphene samples with different densities
of SW defects nSW (×10−3). (b) The flat graphene sample with five SW defects. (c)
Relative decrease in the intensity of D and F peaks at different defect densities. (d)
Relative decrease in the number of modes of D and F bands at different defect densities
in the range of frequencies in which VDOS is greater than 1.5/cm−1 and 1.0/cm−1,
respectively.

a consequence of the conservation of the total number of the vibrational modes.
Notice in particular that the height of both D and F peaks simultaneously
decreases as more and more defects are added to the sample, see Figure 3.2(c).
Particularly, for the highest defect concentration considered, nSW ' 0.7%, the
VDOS decreases by about 12% and 15% for the D and F modes, respectively.
This simultaneous decrease of the two peaks in the VDOS represents a hallmark
feature of the presence of point defects in the flat graphene sheet, and is certainly
experimentally observable. Furthermore, we have found a relative decrease in
the number of modes for D and F band of ∼ 10% and ∼ 25%, respectively, see
Figure 3.2(d).

The SW defects in the buckled graphene sheet (Figure 3.3(a)) have a drastic
effect on the low-frequency L and L’ vibrational bands. Their presence gives rise
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Figure 3.3: Structure of a buckled graphene sample having multiple point SW defects
and corresponding VDOS. (a) The lattice structure of a buckled graphene sample with
five SW defects. (b) VDOS of buckled graphene samples with different densities of SW
defects nSW (×10−3). Inset: Low-frequency peaks in VDOS zoomed in. (c) Relative
decrease in the intensity of L and L’ modes at different nSW . (d) Relative increase
(blue shift) in the frequency of L and L’ modes at different nSW . (e) Relative decrease
in the number of modes of L and L’ bands at different defect densities in the range of
frequencies in which VDOS is greater than 1.9/cm−1 and 1.5/cm−1, respectively.

to the simultaneous decrease of the corresponding peaks in the VDOS, together
with the increase of the mode corresponding to the minimum between the two
maxima in the VDOS, as shown in Figure 3.3(b). The decrease in the VDOS
of the two peaks is proportional to the defect concentration (Figure 3.3(c)),
and it appears to be significant. For instance, for the defect concentration of
nSW ' 0.7% it is of the order of 30%. Furthermore, this decrease occurs in
conjunction with a systematic blue shift of the maximum of the two modes as
the density of the defects increases, see Figure 3.3(d). In particular, for the
defect density nSW ∼ 0.7 %, it is of the order of 25% and 15% for L’ and L
mode, respectively. Finally, we find a significant relative decrease in the number
of modes as a function of the defect density, which is ∼ 40% and ∼ 30% for the
L and L’ bands, respectively, see Figure 3.3(e).
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3.3.3 Signatures of the domains and the substrate in the VDOS

We now turn to the effects of the grain boundary (Figure 3.4(a)) to the vibrational
modes in flat graphene. As can be seen in Figure 3.4(b), the most prominent
features in the VDOS are visible in the high-frequency region. In particular, the
intensity of both the F and D bands decreases by approximately 35%, followed
by the simultaneous blue shift of both bands by about 2%. These effects should
be contrasted to the behavior of the VDOS in the presence of the point-like SW
defects, where no such a shift occurs either in confined two-dimensional geometry
or in buckled samples. This blue shift may be attributed to the fact that due to
the presence of the defects, the atomic bonds become shorter and therefore stiffer
at the position of the defects. The corresponding modes thus become shifted to
higher frequencies as compared to the defect-free sample. Notice that this effect is
negligible in the case of the confined graphene sample because the relative change
of the parameter α in the effective potential (2.2) is very small, less than 1%. In
a buckled sample, on the other hand, due to the fact that the out-of-plane modes
are soft, this change is much larger, ∼ 20%, and therefore leads to the obtained
more pronounced effect, see the inset of Figure 3.3(b). Finally, we consider
the effect of the substrate described by the term (2.9) in the effective potential.
We plot the VDOS for several values of the parameter K in Figure 3.4(c), and
observe that the intensity of the low-frequency L and L’ peaks decreases by
about 5% (see inset of Figure 3.4(c)), without any shift in the position, which is
yet different from point defects where such a decrease is followed by the blue
shift of the peaks. Notice that this suppression of the intensity of the L and
L’ peaks due to the confinement by the substrate is in qualitative agreement
with the experimentally observed low-intensity out-of-plane phonon modes in
backgated graphene samples placed on a substrate.148 Although the harmonic
confinement potential (2.9) is certainly a crude description of the real interaction,
it may be improved to also accurately capture the quantitative features of the
experimentally observed VDOS spectrum.

3.4 Conclusion

To conclude, we have shown that the VDOS can be used as a tool to detect
the presence of point and line defects in graphene sheets. The confined two-
dimensional graphene sample in the presence of the defects shows clear features
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Figure 3.4: Signature of the line defect and substrate in the VDOS. (a) A graphene
sample with two differently oriented domains, with angular mismatch of 30o separated
by straight lines of alternating pentagon and heptagon rings. (b) Comparison of the
VDOS of pristine graphene and graphene with grain boundaries. (c) VDOS of a
graphene sample having one SW defect interfaced by a substrate, with the confining
potential given by eq. (2.9), and with the parameter K in eV/Å2. Inset: Low-frequency
part of VDOS with the prominent L and L’ peaks.
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in the high-frequency VDOS, while the most pronounced effects of the buckling
appear at low frequencies. Given the recent measurement of the entire vibrational
spectrum of backgated graphene placed on a substrate using IETS,148 we hope
that our findings will stimulate further experiments to probe the structural defects
in this material. Our results can also be used to calculate the corresponding
Raman response using different models.155,156 We would like to point out that
our findings may also be applicable to other two-dimensional materials that could
be described by a semiempirical potential of the form (2.2), such as nanoporous
carbon.157,158 We hope that these results will stimulate further studies of
vibrational properties of other carbon-based nanomaterials such as carbon-
nanotubes,159,160 graphene nano-ribbons,161 and functionalized graphene.162
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lattice defects in

two-dimensional buckled
materials

Abstract: Lattice defects are inevitably present in two-dimensional materials,
with direct implications on their physical and chemical properties. We show that
the formation energy of a lattice defect in buckled two-dimensional crystals is not
uniquely defined as it takes different values for different boundary conditions even
in the thermodynamic limit, as opposed to their perfectly planar counterparts.
Also, the approach to the thermodynamic limit follows a different scaling:
inversely proportional to the logarithm of the system size for buckled materials,
rather than the usual power-law approach. In graphene samples of ∼ 1000
atoms, different boundary conditions can cause differences exceeding 10 eV.
Besides presenting numerical evidence in simulations, we show that the universal
features in this behavior can be understood with simple bead-spring models.
Fundamentally, our findings imply that it is necessary to specify the boundary
conditions for the energy of the lattice defects in the buckled two-dimensional
crystals to be uniquely defined, and this may explain the lack of agreement in
the reported values of formation energies in graphene. We argue that boundary
conditions may also have an impact on other physical observables such as the
melting temperature.

This chapter is based on "Boundaries determine the formation energies of lattice defects in
two-dimensional buckled materials" by S. K. Jain, V. Juricic G. T. Barkema, Phys. Rev.
B, 94:020102(R), 2016.
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4.1 Introduction

Lattice irregularities in the form of defects, such as dislocations and grain
boundaries, are quite generically present in crystalline lattices. Usually, defects
have a direct impact on the various properties of the material; for instance, in
graphene they reduce the mobility,163 change Young’s modulus164,165 and the
fracture behavior.166 A fundamental property characterizing a lattice defect is
its formation energy, with the crucial importance for their behavior, e.g. the
defects’ migration and healing.167 On the other hand, two-dimensional crystals
have a natural tendency to buckle out of the crystalline plane to relieve the
stress.20,23,114 For perfectly confined two-dimensional materials, the formation
energy of a lattice defect does not depend on the boundary conditions, but
only on the type of the defect, and in that sense is uniquely defined. However,
the question arises whether this fundamentally important feature of the lattice
defects changes in buckled crystals, and in particular whether the boundaries
affect the defects’ energy.

In this chapter, we show that this is indeed the case by studying the formation
energy of the defects in both simple, analytically tractable buckled one- and
two-dimensional bead-spring models, as well as in numerical simulations of
graphene, a paradigmatic representative of a two-dimensional buckled crystal.
In particular, we find that unlike two-, and three- dimensional materials where
the formation energy of a lattice defect, such as an SW defect, is well defined,
in buckled two-dimensional materials different boundary conditions give rise
to different values of the formation energy of the defect in the thermodynamic
limit. Moreover, while the finite-size correction in the energy scales as inversely
proportional to the system size for one-, two-, and three-dimensional materials,
we show that this scaling for buckled sheet-type materials is given by the inverse
of logarithm of the system size.

4.2 Method

To calculate the formation energies of defects in graphene, we use a recently
developed semiempirical potential described in Chapter 2, eq. (2.2).149

To prepare the graphene samples, first a supercell with periodicity vectors ~Lx and
~Ly is created, in which N carbon atoms are placed according to the crystalline
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graphene structure. The defects are then introduced in this crystalline sample,
after which the atomic positions are relaxed, i.e. the energy is minimized with
the effective potential (2.2). In the case of deformation free (DF) boundary
conditions, the periodicity vectors are kept fixed, while in the case of force
free (FF) boundaries, these vectors are allowed to adjust (their lengths as well
as the angle between them) in order to minimize the total energy. Allowing
the periodicity vectors to relax (FF-boundary conditions) lowers the energy.
Therefore, the formation energy with FF boundaries will always be lower than
with DF boundaries.

4.3 Results and discussion

Here, we firstly present (1+1)-dimensional [(1+1)D] and (2+1)-dimensional
[(2+1)D] bead-spring models. We systematically demonstrate the behavior of
the formation energy of a lattice defect for two different boundary conditions
both by numerically and analytically. Furthermore, we describe the scaling
behavior of the formation energy of defects (SW and dislocations) in both flat
and buckled graphene for both DF and FF boundary conditions.

4.3.1 Effective (1+1)D and (2+1)D models

To describe the boundary effect on the formation energy of the defects in buckled
crystals, we first consider a simple model of a string of N atoms with length
L = N , connected with elastic springs and a defect created at the center of the
string by making the bond angle with the y-axis equal to θ 6= 0, Figure 4.1(a).
This string is embedded in two-dimensional space and in this way we allow
for the buckling in the model. In this (1+1)D model, the energy of the defect
configuration is minimized for the two most commonly used boundary conditions:
force-free boundaries which relax the global planar stress, and deformation-free
boundaries which fix the density of the atoms to the crystalline density, Figure
4.1(a). We use the Hamiltonian

H = Ecore + λ
∑
i

(ri − 1)2 + κ
∑
i

(φi+1 − φi)2 − f

(∑
i

ri cos(φi)− L
)
,

(4.1)
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Figure 4.1: Illustration of force-free (FF) and deformation-free (DF) boundaries and
calculated defect energy as a function of the system size for both (1+1)D and (2+1)D
models. (a) Sketch of the elastic string model that accounts for the boundary effects on
the formation energy of the defects. In the case of DF boundaries, the introduction of
the defect does not change the total length (L) since a force is acting on the boundaries
to keep the sample at constant density. In the case of FF boundaries, the density of
the sample does change through the change of the length. (b) Finite-size correction
to the energy and force for both the FF and DF boundaries in the (1+1)D model.
The numerical data points are fitted well by the analytically predicted scaling of the
energy for DF (blue line) and FF (red line) boundaries and force (brown line). (c)
Finite-size correction to the energy and force for both the FF and DF boundaries in the
(2+1)D model. The numerical data points are fitted well by the analytically predicted
scaling of the energy for DF (blue line) and FF (red line) boundaries and square of the
force (brown line). Here, we use the values of the parameters in the Hamiltonian (4.1),
λ = κ = 1.
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where ri is the bond length between two neighboring atoms i− 1 and i, and φi is
the angle of this bond with respect to the x-axis. For simplicity, we set the core
energy of defect Ecore = 0. The elastic constants in the Hamiltonian are defined
as follows: λ is the bond stretching constant, κ is the bond bending constant,
and f is the force acting on the boundaries. At the FF boundary condition
the energy is minimized for ri = 1 and φi = φ0(−1 + i

N ), which leads to the
finite-size energy scaling of ∼ 1/N . In Figure 4.1(b) numerical values of FF
energy calculations are shown (points) and are in a very good agreement with the
analytical solution (fitted with line). Furthermore, DF boundary conditions yield
a minimum energy for ri = 1+f/(2λ) and φi = φ0 exp (−αi) with α =

√
fri/2κ.

These solutions in turn yield forces with finite-size scaling of the form f ∼ N−2/3

while the energy scales as E ∼ N−1/3. We have also performed the numerical
simulations for DF boundary conditions, and these results are in agreement with
the analytical ones (Figure 4.1(b)). More importantly, this very simple model
already yields a different scaling of the energy with the system size for different
boundaries, a feature also prominent in the (2+1)D model, which we consider
next.

To obtain the defect formation energy and its dependence on the system size in
two-dimensional space, we extended the one-dimensional model in two dimensions
in a rotationally-symmetric manner. We analytically solve the (2+1)D model, as
shown in the Appendix-(2+1)D model, and find that for FF boundary conditions
the energy scales as ∼ 1/ log(N) with system size. Furthermore, at DF boundary
conditions, the force scales as f ∼ 1/

√
log(N) whereas the energy scales as

E ∼ 1/ log(N) with a constant offset, which is the formation energy of the defect
in the thermodynamic limit. In Figure 4.1(c), we show the numerical calculations
of both the energy and force within this simple model. The data points are fitted
with analytical predictions, and show very good agreement. The most striking
result here is that both boundary conditions yield finite-size corrections of the
form 1/ log(N), on top of a constant offset. In the limit of infinite system size,
FF and DF boundaries therefore yield different formation energies. This very
simple model captures an essential feature of the formation energy of a lattice
defect in a buckled two-dimensional crystal, which is its dependence on the
boundary conditions. Furthermore, the same model also produces the finite-size
scaling of the energy as found in our computer simulations on graphene, which
we present next.
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Figure 4.2: Top view of a buckled 1344-atom graphene sample with a single SW
defect, minimized with DF (blue) and FF (red) boundary conditions.

4.3.2 Energetics of SW defect in graphene

The structural differences between DF and FF boundaries are shown in Figure 4.2
for a 1344-atom sample with a single Stone-Wales defect. To further demonstrate
the effect of boundaries, we numerically study the formation energy of a single
SW defect, made of a pair of pentagon-heptagon rings obtained when four
hexagons are transformed by a bond transposition of 90◦, in a graphene sheet
buckled in the out-of-plane direction, as shown in Figure 4.3. We consider FF
and DF boundary conditions, both of which are periodic as commonly used in
simulations. Our results show that with DF boundaries the formation energy
for the SW defects is always significantly higher than with FF boundaries, and
such boundaries therefore strongly favor defect-free configurations of buckled
graphene samples. Contrary to the natural intuition, the energy difference
persists in the thermodynamic (infinite size) limit, as shown in Figure 4.4, even
though all individual atomic positions become indistinguishable between the
two types of boundaries. Finite-size effects remain even in very large samples,
since the finite-size corrections in the energy decrease inversely proportional
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(a)

(d)(c)

(b)

Figure 4.3: Structure of the graphene sample with a single SW defect. The two
different orientations of the defect are shown: (a) 0◦ and (b) 60◦. Two different
buckling modes represent (c) sine-type buckling and (d) cosine-type buckling. The two
configurations are shown from different viewing angles.

to the logarithm of the system size. In contrast, if all atoms are confined to a
purely two-dimensional plane, both FF and DF boundaries quickly converge to
the same formation energy which is much higher than in the buckled samples.
Finite-size corrections in this case decrease much faster, inversely proportional
to the system size. Apparently, buckling introduces strong finite-size effects,
with boundary effects that do not vanish in the thermodynamic limit. Our
results therefore imply that both the formation energy of the lattice defects
and its dependence on the size of the buckled graphene samples are not well
defined without specifying the boundary conditions, counter to the conventional
wisdom.167

Eight different geometries were used in our simulations to study the formation
energy of an SW defect in graphene. They differ in the orientation of the SW
defect relative to the boundaries (0◦ and 60◦), the buckling modes (sine and
cosine), and the types of boundaries (DF and FF). The two inequivalent initial
bonds give rise to the two SW defects oriented by 60◦ relative to each other
(Figure 4.3(a) and (b)). The system is then relaxed and to relieve the stress it
buckles perpendicularly to the flat graphene plane with the two possible buckling
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Figure 4.4: Formation energy as a function of the graphene sample size with a single
SW defect for both buckled (sine and cosine) and flat configurations, with different
boundaries (DF and FF) and defect orientations (0◦ and 60◦). (a) In buckled graphene,
the formation energy of the SW defect converges to four different values, determined
by the boundary condition and buckling mode; different orientations do not influence
the formation energy in the thermodynamic limit. Finite-size corrections scale as
1/ log(N), with different prefactors for different boundaries, buckling modes, and defect
orientations. (b) In flat graphene, the formation energy of the SW defect converges
to the same value (6.73 eV) irrespective of the orientation or the boundary condition,
with finite-size corrections scaling as 1/N .
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Defect and boundary type E0 (eV) F(N)
FF, sin SW, 60 deg 2.87 1/

√
N *

DF, sin SW, 60 deg 3.05 1/log(N)
FF, sin SW, 0 deg 2.87 1/

√
N *

DF, sin SW, 0 deg 3.05 1/log(N)
FF, cos SW, 60 deg 3.02 1/

√
N *

DF, cos SW, 60 deg 3.15 1/log(N)
FF, cos SW, 0 deg 3.02 1/

√
N *

DF, cos SW, 0 deg 3.15 1/log(N)

Table 4.1: Formation energy E0 of an SW defect in graphene in the thermodynamic
limit, and form of the corresponding leading finite-size corrections for different orienta-
tions, (0◦ or 60◦ with respect to the periodic directions, see Figure 4.3(a),(b)), different
buckling (sine or cosine, see Figure 4.3(c),(d)), and different boundaries (FF or DF).
Note that E0 does not depend on defect orientation, but does depend on the buckling
mode as well as on the type of boundary conditions. The leading finite-size correction in
the formation energy scales as 1/log(N), with varying amplitude. The lowest formation
energy (2.87 eV) is for the configuration with FF boundaries and sine-type buckling,
whereas the highest (3.15 eV) is for the DF boundaries with cosine-type buckling.
Most importantly, the formation energies in the thermodynamic limit for DF and FF
boundaries differ by 0.18 eV for sine-type buckling.
* In the case of FF boundaries, finite-size corrections for sample sizes studied here (up
to 137616 atoms) are dominated by the scaling factor of 1/

√
N ,149 but a correction

∼ 1/log(N) with a small prefactor cannot be excluded.

configurations, sine and cosine, Figure 4.3(c) and (d), while the density of carbon
atoms is kept fixed (DF) and relaxed (FF) [only FF shown in Figure 4.3].

The calculated formation energies of a single SW defect in a buckled graphene
sheet for different system sizes are shown in Figure 4.4. Its scaling with the
system size is given by

ESW(N) = E0 + F (N), (4.2)

where E0 is the energy contribution of the defect in an infinite (square) system,
and F (N) describes finite size corrections, with lateral sample size L and a
number of carbon atoms N ∼ L2. We first observe for the eight structures
that extrapolation to the infinite system size produces four different values for
the formation energy E0 of the defect; the dependence on the orientation of
the defect vanishes, in agreement with the intuitive expectation based on the
equivalence of the sp2 carbon bonds. On the other hand, the defect energy
depends on both the buckling configuration, and most notably, on the type of
the boundary of the sample. In particular, the DF boundaries, in which the
density of the carbon atoms is fixed to the crystalline value, always give a higher
formation energy of the defect than FF boundaries, (see Table 4.1). Therefore,
boundary conditions play a crucial role in determining the formation energy of
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Figure 4.5: Separation of the dislocations (pentagon-hexagon pairs) by the introduc-
tion of ∆ hexagon rings in between them. (a)-(c) Dislocation separation varies from
∆= 0 to 2.

the defects.

This effect is especially pronounced when taking into account the finite size of
the graphene samples. As shown in Figure 4.4(a), there is a notable difference
in the formation energy of the SW defects of up to 30% between the samples
with DF and FF boundaries at the size of N ∼ 104 atoms. More importantly,
the finite-size correction to the defect energy, F (N), scales as 1/ logN for DF
boundaries. Therefore, DF boundaries besides giving higher formation energy
of the defects in the thermodynamic limit, also give rise to its slow decrease
with the system size. On the other hand, as shown in Figure 4.4(b), when the
buckling is completely suppressed, the energy of the defect in the thermodynamic
limit converges to a common value independently of the type of boundaries,
with finite size correction F (N) = C/N in which the prefactor C differs for
both types of boundaries and the defect orientations. Notice also that in the
flat graphene sheet, the DF boundaries give the largest energy for the defect
formation in finite-size samples.

4.3.3 Energetics of dislocations in graphene

An SW defect can be considered as a dislocation dipole,27 in which a single
dislocation is a pentagon-heptagon pair. Two dislocations can be separated
by introducing hexagonal rings in between them as shown in Figure 4.5. We
calculated the energy as a function of dislocation separation, measured as the



4.3. Results and discussion 53

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  10  20  30  40  50  60  70  80  90

E
 (

eV
)

Dislocation Separation (∆)

FF,69200
DF,69200
FF,34160
DF,34160
FF,17200
DF,17200

Figure 4.6: The energy of a dislocation pair as a function of the dislocation separation
∆ for three different system sizes, 17200, 34160 and 69200 carbon atoms, at two
different boundary conditions - FF and DF. Note that the formation energy difference
between FF and DF boudaries is more than 10 eV for the largest sample at large
dislocation separations.

number ∆ of introduced hexagonal rings for two different boundaries (FF and
DF) in the samples of three different sizes (17200, 34160 and 69200 atoms).

The effects of the boundaries are even more pronounced when considering this
type of defects as shown in Figure 4.6. The size of the energy difference between
the FF and DF boundaries for a dislocation pair can be of the order of 10 eV.
Moreover, the form of the potential between the dislocations depends heavily on
the type of boundaries, implying a strong dependence of the melting temperature
of graphene168,169 on the boundary conditions. For FF boundary conditions the
energy of a dislocation pair as a function of separation in a buckled graphene
membrane quickly becomes constant as predicted by Seung and Nelson in the
inextensional limit.170 The strain field around the core of a dislocation becomes
short-ranged when buckling is allowed and therefore the energy converges to a
finite value. On the other hand, for DF boundary conditions the energy of a
dislocation pair in the buckled crystal increases with separation and this behavior
is consistent with the results obtained from a different elastic potential.168,171
The increase in the energy in this case is lower than logarithmic, as predicted by
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Seung and Nelson. The strain field around the core of a dislocation does not
become localized in the case of DF boundaries since a constant stretching force is
applied at the boundaries in order to keep the atom density fixed and this could
be the origin of the boundary effects. Furthermore, the force at the boundaries
decreases with increasing system size, but at the same time the length of the
boundary increases, and the combined effect on the defect’s energy apparently
is a constant offset as shown by our (2+1)D analytical model and numerical
simulations on graphene.

Another qualitative way to understand our results, which at first glance seem
surprising, is that a defect such as SW and dislocations, locally deforms the
membrane thereby reducing the "footprint" in the 2D plane. With FF boundary
conditions, the system can simply shrink to the reduced footprint, but with DF
boundary conditions it cannot, resulting in significant stress. The latter raises
the energy, even in the thermodynamic limit.

4.4 Conclusion

Our work demonstrates the crucial importance of boundaries for determining
the formation energy of the lattice defects. Boundary effects may also be partly
responsible for the large variation of the reported formation energies of defects
in numerical simulations on the graphene lattice.167,172 Simple models for an
elastic string and a membrane embedded in a higher-dimensional space suggest
their independence of the lattice geometry and the model, and in that sense
they may represent a universal feature of the low-dimensional buckled crystals.
Our findings may be relevant to graphene samples where SW defects22,30,173
and grain boundaries have been observed.24,174,175 Finally, our study opens
up a route to investigate this boundary effect on the defects’ energy in other
two-dimensional crystalline materials, such as Mo2C,176 as well as in recently
synthesized silicene,177,178 germanene,179 and stanene.180
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4.6 Appendices

As discussed in the chapter, effective models are developed to understand the
effect of boundary conditions on the formation energy of defects in (1+1) and
(2+1) dimensions.

4.6.1 (1+1)D model

In the (1+1)D model, a linear string of atoms is bonded by harmonic springs
with unit ideal length, and neighboring bonds prefer to be aligned. The system
has periodic boundary conditions, with a periodic length L. The ground state is
thus a straight linear, periodic set of atoms in which atom i = 1 . . . N has the
coordinates ~ri = (i, 0); and the periodic length is L = N as shown in Figure
4.1(a).

The Hamiltonian is

H = Ecore + λ
∑
i

(ri − 1)2 + κ
∑
i

(φi+1 − φi)2 − f

(∑
i

ri cos(φi)− L
)
.

(4.3)

The parameters of the Hamiltonian are defined below eq. (4.1) in the chapter.

In this system, a defect is introduced as a single atom with its bonds that
prefer to make an angle ∆φ 6= 0. Below, we present an analytic solution of the
energy-minimized positions of the atoms, and in case of FF boundary conditions
the periodic length.

FF boundary solution (at relaxed boundaries): With an FF boundary, the net
force on the boundary is zero and the energy is minimized for

∂E

∂ri
= 2λ(ri − 1) = 0, (4.4)

∂E

∂φi
= −2κ(φi+1 − φi) + 2κ(φi − φi−1) = 0. (4.5)
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Going to the continuum limit (lattice spacing tends to zero), with i → ρ, the
last equation becomes

2κ∂
2φ(ρ)
∂ρ2 = 0, (4.6)

and the solutions read

r(ρ) = 1, (4.7)

φ(ρ) = φ0(−1 + ρ

N
). (4.8)

Using these solutions, we obtain a finite-size correction of the energy E ∼ N−1.
We verified this analytical result with numerical simulation data as shown in
Figure 4.1(b). The periodic length in this case is

L = N

(
1− φ2

0
6

)
. (4.9)

DF solution (at fixed boundaries): With a DF boundary, a net force is acting
on the ends of the string to keep the density of atoms fixed. Therefore, the
energy is minimized for

∂E

∂ri
= 2λ(ri − 1)− f cos(φi) = 0, (4.10)

∂E

∂φi
= −2κ(φi+1 − φi) + 2κ(φi − φi−1) + fri sin(φi) = 0. (4.11)

For small values of φi, we use sin(φi) ≈ φi, to obtain

∂E

∂φi
= 2κ(2φi − φi+1 − φi−1) + friφi = 0. (4.12)

This equation in the continuum limit(i→ ρ) then reads

2κ∂
2φ(ρ)
∂ρ2 − fr(ρ)φ(ρ) = 0. (4.13)

For small values of φi, cos(φi) ≈ 1 and in continuum limit i→ ρ, the solutions
of eqs. (4.10) and (4.13) read

r(ρ) = 1 + f

2λ (4.14)
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φ(ρ) = φ0e
−αρ, (4.15)

with

α =
√
fr(ρ)

2κ . (4.16)

The force required to make the atomic density equal to crystalline density is
obtained from the condition of the constant length of the string∑

i

ri cos(φi) = xN − x0 = N. (4.17)

In the continuum limit, i→ ρ∫ N

0
dρ r(ρ) cosφ(ρ) = N. (4.18)

After substituting the solutions for r(ρ) and φ(ρ) and using that for φ << 1,
cosφ ≈ 1− φ2

2 , we obtain

(1 + f

2λ )
∫ N

0
dρ

(
1− φ2

0
2 e−2αρ

)
= N, (4.19)

which after performing the integral yields

fN

2λ − (1 + f

2λ )φ
2
0

4α = 0. (4.20)

Substituting α =
√

f r(ρ)
2κ and r(ρ) = 1 + f

2λ ≈ 1, we obtain

f ∼ N−2/3. (4.21)

Using this result, the finite-size energy for the given solutions scales as E ∼ N−1/3.
We verified this analytical result with numerical simulation data as shown in
Figure 4.1(b).

4.6.2 (2+1)D model

The (1+1)D model is then generalized to (2+1)D by imposing rotational symme-
try, and constraining the model such that the structure is flat at its perimeter.
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The corresponding Hamiltonian reads

H = Ecore + λ
∑
i

i(ri − 1)2 + κ
∑
i

i(φi+1 − φi)2 − f

(∑
i

ri cos(φi)− L
)
.

(4.22)

FF boundary solution (no pulling on the perimeter): At the FF boundary, the
net force on the boundary is zero and the energy is minimized for

∂E

∂ri
= 2iλ(ri − 1) = 0, (4.23)

∂E

∂φi
= −2iκ(φi+1 − φi) + 2(i− 1)κ(φi − φi−1) = 0, (4.24)

which in the continuum limit reads

2ρκ∂
2φ(ρ)
∂ρ2 + 2κ∂φ(ρ)

∂ρ
= 0. (4.25)

The solutions of the above equations read

r(ρ) = 1, (4.26)

φ(ρ) = φ0

(
1− log(2ρ+ 1)

log(2N + 1)

)
. (4.27)

The energy corresponding to the above solutions of r(ρ) and φ(ρ) scales with
the system size as E ∼ 1

log(N) . This analytical result is in very good agreement
with numerical simulation data as shown in Figure 4.1(c). The periodic length
in this case is

L = N − φ2
0

2

[
−1

2 −
1

log(2N + 1) + 2N
log(2N + 1)2

]
. (4.28)

DF solution (at fixed boundaries): At the DF boundary, a net force is acting
on the ends of the string to keep the density of atoms fixed. Hamiltonian (4.22)
then yields

∂E

∂ri
= 2iλ(ri − 1)− f cos(φi) = 0 (4.29)
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∂E

∂φi
= −2iκ(φi+1 − φi) + 2(i− 1)κ(φi − φi−1) + fri sin(φi) = 0. (4.30)

In the continuum limit, for small φ� 1, the last equation becomes

2ρκ∂
2φ(ρ)
∂ρ2 + 2κ∂φρ

∂ρ
− fr(ρ)φ(ρ) = 0. (4.31)

The corresponding solutions in the continuum limit read

r(ρ) = 1 + f

2ρλ, (4.32)

φ(ρ) = K0

(√
2fρ
κ

)
, (4.33)

where K0(x) is the modified Bessel function of the second kind.

To calculate the force we used the same equation as in (1+1)D model, since the
(2+1)D model is rotationally symmetric. In this case, using that

∫ ∞
0

dρ

[
K0

(√
2fρ
κ

)]2

= κ

2f , (4.34)

we obtain that force scales as f ∼ 1√
log(N)

whereas energy scales as E ∼ 1
log(N)

with a constant offset. This simple (2+1)D model gives the offset in energy
for two different boundaries in the thermodynamic limit which is also shown in
graphene samples with defects via computer simulations.





5
Structure of twisted and
buckled bilayer graphene

Abstract: We study the atomic structure of twisted bilayer graphene, with
very small mismatch angles (θ ∼ 0.280), a topic of intense recent interest.
We use simulations, in which we combine a recently presented semi-empirical
potential for single-layer graphene, with a new term for out-of-plane deformations,
[Jain et al., J. Phys. Chem. C, 119:9646, 2015] and an often-used interlayer
potential [Kolmogorov et al., Phys. Rev. B, 71:235415, 2005]. This combination
of potentials is computationally cheap but accurate and precise at the same
time, allowing us to study very large samples, which is necessary to reach
very small mismatch angles in periodic samples. By performing large scale
atomistic simulations, we show that the vortices appearing in the Moiré pattern
in the twisted bilayer graphene samples converge to a constant size in the
thermodynamic limit. Furthermore, the well known sinusoidal behavior of
energy no longer persists once the misorientation angle becomes very small
(θ < 10). We also show that there is a significant buckling after the relaxation
in the samples, with the buckling height proportional to the system size. These
structural properties have direct consequences on the electronic and optical
properties of bilayer graphene.

This chapter is based on "Structure of twisted and buckled bilayer graphene" by S. K. Jain,
V. Juricic G. T. Barkema, 2D Mater., 4:015018, 2016.
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5.1 Introduction

Recently, Van der Waals heterostructutes made up of two stacked two dimensional
materials have drawn lot of attention in materials science and condensed-matter
communities because of their peculiar electronic, mechanical and optical prop-
erties.59 Out-of-plane buckling has a long-range effect in monolayer graphene
and has significant impact on its structural properties and defect mechan-
ics.20,47,112,149,181 The resulting nanometer sized ripples have been studied
experimentally by transmission electron microscopy (TEM)182 and scanning
probe microscopy.183–186 Out-of-plane ripples in bilayer graphene have been
detected and investigated via TEM187,188 and the combination of dark-field TEM
with scanning transmission electron microscopy (STEM).189 The buckling effect
in bilayer graphene has also been studied using computer simulations.190–192

From the point of view of its electronic and structural properties, twisted
bilayer graphene (TBLG) is most interesting when the mismatch angle is small.
To theoretically obtain the structure of the TBLG with periodic boundary
conditions and such small mismatch angles, it is necessary to consider samples
with a large size. An approach based on an effective elastic potential is quite
appealing in this regard since it allows to treat systems containing millions of
atoms. Since we do not restrict ourselves to completely flat graphene layers
but allow for some buckling, we use a combination of potentials, based on
the recently developed semi-empirical potential for the monolayer graphene149
with a new term describing out-of-plane deformations, and the more standard
registry-dependent interlayer graphitic potential193 to simulate relaxed large
bilayer graphene structures with very small mismatch angle (θ ≈ 0.28◦). This
combination of potentials is computationally cheap and accurate.

In energy-minimized (relaxed) samples, vortices arise in the atomic displacement
field, due to the energy differences between different kinds of stacking, in
agreement with previous studies.190,192,194 We show that after relaxation the size
of these vortices approaches a constant in the thermodynamic limit. Furthermore,
we study out-of-plane buckling in bilayer graphene and find that the buckling
height increases linearly with system size. We show that the buckling in the
pristine bilayer graphene is significant (∼ 3 Å) and forms a Moiré pattern
analogous to the in-plane displacement without any singularities and with long
range structural effects.
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5.2 Method

We use a new combination of intralayer and interlayer potentials to simulate
bilayer graphene. For the interactions within the same layer, we use the recently
developed semi-empirical potential for single-layer graphene by Jain et al.,149
which has a new out-of-plane deformation term. The interlayer interactions are
defined by the registry-dependent Kolmogorov-Crespi potential without the local
normals.193 This combination of empirical potentials is precise and accurate
enough to capture the physical and structural changes in the system without
any heavy computational requirements. These properties of the potential gives
us freedom to study very large samples, which is required for having very small
mismatch angles under periodic boundary conditions. In all samples studied,
the energy is locally minimized, starting from well-informed choices for the
initial configurations: insight obtained from many simulations of small systems
is exploited to start the energy minimization of large samples from already
well-relaxed samples. In our samples, we define a local energy per atom as
follows: contributions due to two-body interactions are equally divided over
the two interacting atoms, and contributions due to the three-body (angular)
interactions are attributed to the central atom. Thus, the sum of the local
energy over all atoms equals the total energy. This definition of local energy
helps us to visualize the local degree of mechanical relaxation in the sample.

5.3 Results and discussion

Here we show the Moiré patterns in the twisted bilayer graphene. Furthermore,
we present the structure and scaling behavior of vortices and line mismatch
in TBLG samples. We also describe the out-of-plane buckling behavior as a
function of twist angle.

5.3.1 Structure of twisted bilayer graphene

We start with a sample having 1524 atoms in both layers with a mismatch angle
of θ = 5.09◦ between the layers as shown in Figure 5.1(a). The Moiré patterns
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(a) (b) (c)

Figure 5.1: Bilayer graphene sample with 1524 atoms and with mismatch angle
θ = 5.09◦. (a) Sample before relaxation. (b) Effect of relaxation in the bottom layer
where atoms rotate counterclockwise near the vortex to minimize the total energy. (c)
Effect of relaxation in the top layer where atoms rotate clockwise near the vortex in
order to minimize the total energy. For visibility, the displacement arrows are enlarged
by a factor of 20.

are clearly visible in the sample along the diagonal. This sample is relaxed with
the above described combination of potentials, and its effect on atomic relaxation
in bottom and top layers is shown in Figure 5.1(b) and Figure 5.1(c), respectively.
The arrows in the figure describe the relative atomic displacement after the
relaxation with respect to the unrelaxed positions (i.e. the positions in top and
bottom layer in the crystalline state of the individual graphene layers). Atoms
near the center of AA stacking rotate to minimize the total energy and show
a Moiré pattern of displacement vectors with respect to their initial positions
in the form of vortices. In this case atoms in the bottom layer rotate in the
counterclockwise direction whereas atoms in top layer rotate clockwise, since the
center of mass of the system is unaltered. During the process of relaxation the
AA-stacked area becomes smaller while AB-stacked area grows, since the energy
of AB-stacking is lower compared to AA-stacking. This result is in agreement
with previous studies on TBLG.190,194 Relaxed bilayers have the intrinsic ripples
in the structure and the equilibrium separation between the layers is 3.46 Å .

To study the effect of relaxation qualitatively, we generate a sample having
15132 atoms with a mismatch angle of 1.61◦. The local energy profile of the
sample before and after the relaxation is shown in Figure 5.2(a) and Figure
5.2(b), respectively. The binding energy of AA and AB stacking after the
minimization is 11.8 meV/atom and 17.5 meV/atom respectively which is in
very good agreement with reported values by Mostaani et al. calculated using
quantum Monte Carlo technique.195 The energy along the diagonal principal
axis PQ behaves as a sinusoidal function before and after the relaxation for large
values of the mismatch angle, as shown in Figure 5.2. However, this sinusoidal
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Figure 5.2: Local energy profile of a sample having 15132 atoms with θ = 1.61◦. (a)
Before the relaxation. (b) After the relaxation. The bottom panel depicts the local
energy along the main diagonal axis PQ which shows sinusoidal behavior in this case.
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Figure 5.3: Local energy profile of a sample having 321,492 atoms with θ = 0.35◦.
(a) Before the relaxation. (b) After the relaxation. The bottom panels depict the local
energy along the two principal axes of the vortex lattice, horizontal PR and diagonal
PQ. This shows that sinusoidal behavior is not present at smaller θ along the PQ
direction.



66 5. Structure of twisted and buckled bilayer graphene

 0

 50

 100

 150

 200

 250

 300

 0 1 2  3  4

W
bv

 (Å
)

W
 (Å

)

W
av

 /W
al

2

1.5

1
1.19

(a) (b)

 10

 20

 30

 40

 50

 0  1  2  3

Wav
Wal

1/θ (deg-1) 1/θ(deg-1)

Figure 5.4: Scaling behavior of peak widths corresponding to the size of the vortices
as a function of inverse of the mismatch angle (1/θ). We simulate the system sizes from
964 atoms (θ = 6.40◦) to 511,228 atoms (θ = 0.28◦). (a) Wbv (width of vortices peak
at half its height, before relaxation) as a function of inverse of the mismatch angle. We
observe a linear scaling with 1/θ. Since θ scales as inverse of L, Wbv scales linearly
with system size. (b) Wav (width of vortices peak at half its height, after relaxation)
and Wal (width of line peak at half its height, after relaxation) as a function of inverse
of the mismatch angle. At large system’s sizes and small mismatch angle (θ < 0.6◦)
the ratio between these two peak widths becomes constant (inset).

behavior of energy is no longer present for small mismatch angles (θ < 1◦), as
shown in Figure 5.3. The elastic energy becomes rather concentrated at the
well-defined vortices in the displacement field. The local energy profile of the
sample having 321,492 atoms with mismatch angle of 0.35◦, before and after
the relaxation is shown in Figure 5.3(a) and Figure 5.3(b), respectively. Our
simulations show that before relaxation the size of the vortex around AA stacking
increases linearly with system size L ∼

√
N ∼ 1/θ, with N as the number of

atoms. The width of the peak at half maximum height along the diagonal PQ
before the relaxation is given as Wbv and plotted as a function of 1/θ in Figure
5.4(a). Here, the subscript b stands for ‘before relaxation’, and the subscript
v for ‘vortex’. Further on in this manuscript, we will also use subscripts a and
l, which stand for ‘after relaxation’ and ‘line’, respectively. We calculate the
peak width along the diagonal PQ after the minimization (Wav) and plot it as a
function of 1/θ as shown in Figure 5.4(b). For large system size Wav appears to
approach a constant value of ∼ 50 Å. We also calculate the peak width after
the minimization along the line PR, represented as Wal. In the local energy
profile of relaxed samples, vortices are connected via a line which denotes a
configuration with the structure in-between AA and AB stacking as shown in
Figure 5.5(b). The binding energy of this kind of stacking is 14.8 meV. We plot
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Wal as a function of 1/θ and find that at small mismatch angles (large system
sizes) it also approaches a constant value of ∼ 42 Å. The ratio between Wav and
Wal becomes constant for all the systems with mismatch angle below 0.6◦ as
shown in inset of Figure 5.4(b). We find that the value for the constant ratio is
1.19 in the thermodynamic limit.

The Bernal stacking in BLG has been investigated experimentally via STEM,
where it has been shown that regions of AB and BA stacking are separated by
nanometer wide rippled boundaries.187,189 In our simulations this is also the
case as shown in Figure 5.3 where lines connecting the vortices are separating
AB and BA stackings. We present the detailed structures of these vortices,
lines and Bernal stackings with displacement fields in Figure 5.5. Recent stud-
ies by Dai et. al. determining the size of the lines and vortices using the
Peierls-Nabarro model191,192 are in very good agreement (within 10%) with our
estimate of constant size in the thermodynamic limit. Alden et. al. use the
Frenkel-Kontorava model196 and report a size which is significantly larger than
experimental observation.187

With very small mismatch angles and thus very large Moiré patterns, most
of the additional energy, ∆E, due to the Moiré pattern comes from the lines
connecting the vortices, as these lines grow with decreasing angle, while the
vortices do not. The additional energy due to the Moiré pattern is a combination
of intralayer and interlayer energy terms. The intralayer energy contribution
decreases inversely proportional to the line width wal, while the interlayer energy
contribution increases linearly with line width

∆E = awalL+ b
L

wal
, (5.1)

where the parameter a is determined by the energy difference between the
different stackings, and b is determined by the bulk modulus of a graphene
layer.

In classical elastic bead spring models with a fixed extension, the extension per
spring in the system decreases linearly with the number of the springs. With
harmonic springs, the energy per spring scales quadratically with extension, and
the total energy thus decreases linearly with the number of springs. Here in eq.
(5.1), wal is analogous to the number of the springs. Therefore, the intralayer
energy contribution decreases inversely proportional to the line width wal. The
interlayer energy simply depends on the mismatched area in the sample and
therefore scales linearly with wal.

Minimizing ∆E with respect to the line width results in an L−independent wal
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given as
wal =

√
b/a. (5.2)

Therefore, in the large samples where the size of vortices becomes constant, the
width of the line connecting the vortices also becomes constant since it only
depends on the bulk modulus of graphene and the type of stacking between
two layers. In our numerical simulations we find the trend which is consistent
with this analytical argument. We have calculated the value of interlayer energy
constant as a = 0.0018 eV/Å2 and intralayer energy constant as b = 3.1750 eV
by fitting our numerical energy data to eq. (5.1). The value of wal obtained by
solving eq. (5.2) for these values of constants is in excellent agreement with the
value predicted (∼ 42 Å) in Figure 5.4(b).

We minimize the samples in all directions for two different boundary conditions:
deformation-free (DF) boundary conditions where the periodic box is determined
by the crystalline structure of single undeformed graphene layers, and force-free
(FF) boundary conditions where changes in the simulation box are allowed:197
the length of each of the periodicity vectors as well as the angle between them is
determined by the constraint of minimal total energy. Our results on energetics
of TBLG (Figures 5.2-5.5) are based on DF boundary conditions since structures
with DF boundaries allow us to compare atomic coordinates before and after
relaxation without complications due to differences in box size. Moreover, we
verified that the shrinkage in the box size and the differences in the energies
between two different boundary conditions are very small (< 0.08%) and do not
alter the results and predictions presented in the paper. But this small decrease
in the box size has very significant consequences on the buckling height, which
we discuss next.

5.3.2 Buckling in twisted bilayer graphene

We now consider out-of-plane deformations in the TBLG samples. Our samples
before the relaxation have completely flat layers separated by 3.4 Å in the z-
direction. The minimized structures have out-of-plane deformations characterized
by the type of stacking between the layers. In Figure 5.6(a) we show the structure
of ripples in a sample with N = 15132 atoms after the complete relaxation. The
equilibrium average separation distance is 3.44 Å in between the layers. The
profile of out-of-plane deformations in the top layer is shown in Figure 5.6(b).
The buckling height in the individual layer is 0.51 Å for DF boundaries. For FF
boundaries the buckling height is more significant and reaches a value of 1.12
Å. The out-of-plane deformations along the diagonal PQ direction are plotted



5.3. Results and discussion 69

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Detailed structures and displacement fields around a vortex, line and
Bernal stacked (AB/BA) region. (a-c) Atomic structures of a vortex, line and Bernal
stacked (AB/BA) region, respectively. Here blue color is used for bottom layer and
magenta color is used for top layer. (d-f) Displacement fields around a vortex, line
and Bernel stacked (AB/BA) region in bottom layer with respect to their unrelaxed
positions, respectively. The area for which the displacement fields are shown is 40Å ×
40Å. For visibility, the displacement arrows are enlarged by a factor of 8.

in both top and bottom layer, as shown in Figure 5.6(d). The behavior along
the PQ direction is sinusoidal and the separation around AA stacking is 3.62
Å, in good agreement with previously reported values in literature calculated
using density functional theory (DFT) calculations.194,198 Most importantly, we
observe a Moiré pattern-like feature in the buckling height, see Figures 5.6(b)
and 5.7(b).

We now discuss in more detail features of the spatial pattern in the buckling
height. As we already pointed out, with increasing system size the vortex in the
in-plane displacement around AA stacking shrinks after the minimization and
appears to become constant for θ < 0.6◦. This feature yielding a characteristic
length scale can also be seen in the buckling of a sample having 321,492 atoms
(θ = 0.35◦), as shown in Figure 5.7. Namely, the characteristic length scale in
this case is the equilibrium average separation distance, and its size relative to
the system size decreases with increasing system size, since the AB stacked area
grows and AA stacked area does not. In this case it has the value of 3.38 Å . The
sinusoidal behavior in the buckling, as shown in Figure 5.6(d), disappears for
small mismatch angles as shown in Figure 5.7(d). Finally, the buckling height
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Figure 5.6: Buckling behavior in a sample with 15132 atoms (θ = 1.61◦). (a) Ripples
in both top and bottom layer. The equilibrium separation between both layers is 3.44Å.
(b) Buckling profile of the top layer for DF boundary conditions. The buckling height
is 0.51Å. (c) Buckling along the line PR in both the layers. Around the AB stacked
area the separation between the layers is 3.36Å. (d) Buckling along the diagonal PQ
in both the layers. Around the AA stacked area the separation between the layers is
3.62Å.
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Figure 5.7: Buckling behavior in a sample with 321,492 atoms (θ = 0.35◦). (a) Ripples
in both top and bottom layer. The equilibrium separation between both layers is 3.38Å.
(b) Buckling profile of the top layer. The buckling height is 1.74Å. (c) Buckling along
the line PR in both the layers. Around the AB stacked area the separation between
the layers is 3.36Å. (d) Buckling along the diagonal PQ in both the layers. Around
the AA stacked area the separation between the layers is 3.62Å.
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Figure 5.8: Buckling height as a function of inverse of the mismatch angle (1/θ) for
both DF and FF boundary conditions. For large system sizes (small θ), the scaling
of the buckling height is linear with the system size. Intrinsic ripples are significant
and have the values of height 2.3Å and 3.8Å for DF and FF boundary conditions,
respectively, in a sample with N = 511, 228 atoms with θ = 0.28◦.

increases linearly with system size for both DF and FF boundary conditions, as
shown in Figure 5.8. The buckling height for the largest sample (N = 511, 228
atoms with θ = 0.28◦) studied by our simulations for FF boundary conditions is
quite significant as the value is 3.78 Å.

For the smallest twist angle under periodic boundary conditions (θ ∼ 1/L
∼ 1/

√
N), each “mismatch line” seems to induce a small, constant buckling

angle, which causes a buckling height that increases linearly with system size L.
Without periodic boundaries, the twist angle is not discretized and can approach
zero at any fixed system size; but we only simulated periodic boundaries. It is
however clear that if at fixed L the twist angle approaches zero, the buckling
height has to approach zero as well, as the system then gradually approaches
the perfectly aligned crystal, which is flat.
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5.4 Conclusion

Our work demonstrates the crucial importance of having large, well-relaxed
samples of twisted bilayer graphene, to study its structural properties. The new
combination of intralayer and interlayer potentials uses explicit lists of bonds and
is therefore computationally very cheap. This allows us to accurately simulate
very large TBLG samples with very small mismatch angles. The simulation
results are in very good agreement with reported in the literature. There are
sinusoidal modulations in the energy and buckling height for large misorientation
angles but this behavior no longer persists at small misorientation angles. We
have shown with large scale atomistic simulations that the size of the vortices in
the displacement field approaches a constant in the thermodynamic limit. There
are significant out-of-plane deformations which increase with increasing system
size. The characteristic average separation between the layers also becomes
constant in the thermodynamic limit. These structural properties should have
direct effect on electronic and optical properties of twisted bilayer graphene. In
future work, the same combination of potentials can be modified with different
structural parameters to investigate other misaligned two-dimensional materials
such as h-BN, MoS2 and WSe2.
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Probing the shape of a

graphene nanobubble
Abstract: Gas molecules trapped between graphene and various substrates in
the form of bubbles are observed experimentally. The study of these bubbles
is useful in determining the elastic and mechanical properties of graphene,
adhesion energy between graphene and substrate, and manipulating the electronic
properties via strain engineering. In our numerical simulations, we use a simple
description of elastic potential and adhesion energy to show that for small gas
bubbles (∼ 10 nm) the van der Waals pressure is in the order of 1 GPa. These
bubbles show universal shape behavior irrespective of their size, as observed in
recent experiments. With our results the shape and volume of the trapped gas can
be determined via the vibrational density of states (VDOS) using experimental
techniques such as inelastic electron tunneling and inelastic neutron scattering.
The elastic energy distribution in the graphene layer which traps the nanobubble
is homogeneous apart from its edge, but the strain depends on the bubble
size thus variation in bubble size allows control of the electronic and optical
properties.

This chapter is based on "Probing the shape of a graphene nanobubble" by S. K. Jain, V.
Juricic G. T. Barkema, Phys. Chem. Chem. Phys., DOI:10.1039/C6CP08535K, 2017.
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6.1 Introduction

Due to remarkable and unusual electronic and mechanical properties,2,199
graphene has recently attracted a great deal of attention.138,200–202 This is
so because graphene has emerged as a very strong material.13 Its mechanical
properties are also fundamentally and practically interesting when it is in con-
tact with other materials. For instance, due to a strong van der Waals (vdW)
force, graphene can build bilayer, twisted bilayer, trilayer and other heterostruc-
tures.59 These van der Waals heterostructures are useful in nanotechnology and
semiconductor industry because of the flexibility to tailor their properties.

Yet another important physical and chemical aspect of graphene is its ability
to trap gas molecules under high pressure when placed on different substrates,
leading to a formation of bubbles with nanometer to micrometer sizes. Such
nanobubbles have been experimentally observed in a graphene membrane placed
on top of a SiO2/Si substrate,87,88 epitaxial graphene grown on 4H-SiC,89 and
in an irradiated graphene sample on Ir.90

The vdW pressure inside the bubble has significant impact on the physical and
chemical properties of these nanobubbles and thus also on the performance of the
devices made up by them. Therefore, there is ample employ for simulations which
can accurately predict the structural changes in the samples. Very recently,
nanobubbles of different sizes, ranging from a few tens of nanometers to a
micrometer, and shapes, such as circular, trapezoidal, and triangular, have been
found in van der Waals heterostructures.107 Importantly, circular bubbles show
universal scaling behavior which can be captured by elastic continuum theory.107
However, it is not known whether this universal behavior extrapolates to the
bubbles of smaller sizes down to ∼ 10 nm.

In this chapter, we numerically simulate graphene nanobubbles of various sizes,
starting with the ones with a radius (R) of ∼ 10 nm. We use a computationally
cheap and accurate semi-empirical potential to simulate the graphene sheet.
The adhesion is modeled by a simple potential that produces essential elastic
properties of the bubble, such as universal scaling of the aspect ratio h/R, with
h as its height, observed in large circular bubbles. Furthermore, we find that
the pressure of trapped ideal gas for the smallest bubbles of size ∼ 10 nm shows
scaling with the aspect ratio as the elastic continuum theory predicts. The van
der Waals pressure for these bubbles is in the order of 1 GPa. We find that
the vibrational density of states (VDOS) can be used as an independent tool to
detect the volume of gas trapped inside the bubble. It is interesting to notice
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that many soft vibrational modes appear in the VDOS because of the formation
of bubbles. Finally, we map out the profile of elastic energy, as this can be used
to extract the strain distribution of the bubble.

6.2 Method

To simulate the monolayer graphene, we use a recently developed effective
semiempirical elastic potential described in Chapter 2, eq. (2.2).149 Additionally,
the interaction between substrate and graphene layer is described by an extra
harmonic term

ES = K
∑
i

z2
i

1 + (zi/z0)2 , (6.1)

where K is the effective elastic constant for the graphene-substrate interaction
which determines the strength of the adhesion of graphene to the substrate, z0 is
a constant which sets the range of the harmonic regime of the energy term, and
zi is the distance of carbon atom i from the graphene plane. The theoretical
prediction of adhesion energy for various substrates is ∼ 0.01 − 0.02 eV/Å2,
203,204 and therefore in our numerical simulations we use the values of elastic
constant K = 0.01 eV/Å2 and z0 = 2 Å to capture the effects of various
substrates.

In our numerical simulations, a cone shaped initial void is created by pulling
some carbon atoms out of the graphene plane and a fixed number of ideal
gas molecules (N) are placed in the void. The whole system is then relaxed
by the potential (eq. (2.2)) combined with the substrate potential (ES) (eq.
(6.1)) and the ideal gas law. We use deformation free (DF) periodic boundary
conditions in our simulations.197 The resulting structure has the well relaxed
round shaped bubble filled with gas molecules as shown in Figure 6.1. The
vibrational spectrum is obtained by diagonalising the hessian matrix generated
from above potential.205 In our plot, the VDOS is convoluted with a Gaussian
function with a width of σ = 14 cm−1.

6.3 Results and discussion

We have studied the small ∼ 10 nm and big ∼ 100 nm graphene gas bubbles.
These bubbles have shown universal shape behavior and the vdW pressure inside
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Figure 6.1: Shape and profile of a gas bubble at the interface between graphene and
a substrate. (a) Side view of a bubble trapped in a graphene layer with 10184 carbon
atoms. The height (h) of the bubble is 7.77Å . For better visibility the height scale
is increased. (b) Top view of the same bubble with its lateral dimensions. (c) Height
profile of the same bubble. (d) 2D profile of the bubbles with varying number of the
ideal gas molecules (N) trapped under a graphene layer with 34160 carbon atoms.
The radius (R) of the bubble is measured at half of the bubble’s maximum height.
(d) Measured aspect ratios (h/R) as a function of volume show the constant behavior
implying the universal shape of the bubble.

the small bubble is in the order of 1 GPa. Furthermore, we calculate the VDOS
of a gas nanobubble. We also map out the local energy distribution in a graphene
nanobubble.

6.3.1 Structure of graphene nanobubble

The graphene bubble we obtain using numerical simulations is shown in Figures
6.1(a) (side view) and 6.1(b) (top view). The round-like shape of the bubble
results from the competition of the forces arising from pressure exerted by the
ideal gas on the membrane and the elastic forces of graphene and substrate
encoded in the semiempirical potential eq. (2.2) in our simulations. The height
of the bubble, shown in Figure 6.1(c), varies with the radius of the bubble, see
Figure 6.1(d). The aspect ratio h/R ' 0.204 remains constant as the volume of
the bubble changes with the number of the trapped molecules of the ideal gas,
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Figure 6.2: Profile of a large graphene bubble. (a) A gas bubble trapped between a
graphene sheet with 441504 carbon atoms and a substrate. (b) The excellent collapse
of the data of bubble’s profile with varying sizes shows the universal shape of the
bubble.

as shown in Figure 6.1(e). This ratio only depends on the elastic properties of
graphene and van der Waals attraction between graphene and substrate, and is
therefore independent of the properties of the trapped substance. This result is
in excellent agreement with the prediction from the elastic continuum theory107
and continuum membrane plate theory.206,207 Furthermore, it demonstrates
that the elastic continuum can be used for the description of bubbles of much
smaller sizes than the ones experimentally studied by Khestanova et. al.107 On
the other hand, this implies that the deviations from this universal ratio are
caused by external effects (i.e., residual strains in the samples, experimental
conditions), which provides a possible route for the control of the shape of the
bubble. We also study the universal shape behavior in much bigger gas bubbles
trapped in a graphene sheet in simulations with 441504 carbon atoms as shown
in Figure 6.2.

To further theoretically demonstrate the predicted universal properties of the
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Figure 6.3: Log-log plot between aspect ratio h/R and the intensity K of the substrate
potential in eq. (6.1). The numerical data points (blue) are fitted with a straight line
with a slope of 0.25. This shows that the aspect ratio scales as h/R ∼ K1/4.

graphene bubble, we study the dependence of the aspect ratio on the strength
of the substrate potential, K, which in our simulations plays the role of the
adhesion energy in the experiments. Here, we vary the strength of this potential,
which is not possible in experiments without changing substrates, and allow the
bubble to relax. We observe the scaling of the aspect ratio with the strength of
the substrate potential, h/R ∼ K1/4, as shown in Figure 6.3, and in agreement
with theoretically prediction by Khestanova et. al.107 The obtained scaling in
fact independently confirms the mechanism of the bubble formation through the
interplay between the vdW and elastic forces. On the other hand, it shows that
this rather simple effective substrate potential (ES) can be used to effectively
describe the adhesion at the interface between a graphene sheet and a substrate.

Ideal gas is trapped inside the graphene bubble and in Figure 6.4(a) we show its
equation of state corresponding to temperature T ' 300 K. From continuum
elastic theory the pressure of the trapped ideal gas is predicted to scale as
P ∼ V −1/3. This behavior is indeed observed in our numerical calculations, as
shown in Figure 6.4(b), which further corroborates the validity of this relatively
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Figure 6.4: Behavior of pressure (P ) and volume (V ) of the ideal gas trapped inside
the bubble. (a) PV versus number of gas molecules N . According to the ideal gas
law PV = NKBT ; at room temperature the slope of the line is KBT = 0.0257 eV. (b)
Plot of P versus V −1/3. Data points (blue) are fitted with a straight line, showing
P ∼ V −1/3.

simple theoretical approach for addressing the problem. The vdW pressure
inside the bubble is of the order of 1 GPa and therefore has direct experimental
consequences on the properties of the trapped materials.97–101

6.3.2 VDOS of graphene nanobubble

We now study an independent method for probing a graphene bubble via
its characteristic "drumming" modes. More precisely, we here calculate the
vibrational density of states (VDOS) of characteristic phonon modes of the
graphene bubble. Out of all possible vibrational modes, most prominent are
the out-of-plane L and L′ modes,205 shown in Figure 6.5(a). The presence of
the bubble gives rise to a systematic shift in the position of the peaks in the
VDOS corresponding to these two modes. As we can observe in Figure 6.5(b),
as volume of the bubble increases (pressure inside the bubble decreases) the
frequency of both L and L′ modes shifts towards higher values (blue shift). At
the same time, this shift is correlated with a decrease of the intensity of these
modes, as shown in Figures 6.5(c) and 6.5(d). For a relative increase of the
volume of the bubble by ∼ 50%, the relative decrease in the intensity of both
modes is ∼ 5%, while the frequency of the L mode increases by ∼ 5% and that
of L′ by ∼ 10%. These changes in the intensity and the frequency of these
characteristic modes are therefore significant, and may be used as independent
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Figure 6.6: Behavior of the elastic energy of a graphene layer with a trapped gas
bubble. (a) Local energy plot of a sample with gas bubble (N = 18000). (b) Profile of
the energy distribution in the graphene layer as a function of the distance from the
center of the bubble for different number of gas molecules trapped inside it. The center
is determined by projecting the point of the maximum height onto the flat graphene
plane. (c) Behavior of different elastic energy terms in eq. (2.2) as a function of the
bubble’s volume: bond stretching (E2), bond bending (E3) and out-of-plane (E4).

probes to measure shape and gas volume trapped in the nanobubbles in the
inelastic electron tunneling and inelastic neutron spectroscopy.

6.3.3 Elastic energy distribution in nanobubble

We next study the elastic energy distribution of the graphene bubble. Elastic
energy is directly related to strain, which is in turn important for strain en-
gineering. We compute the elastic energy per atom using the combination of
semi-empirical elastic potential eq. (2.2) and adhesion energy (ES) in eq. (6.1).
In our samples we define a local energy per atom as follows: contributions due
to two-body interactions are equally divided over the two interacting atoms,
and contributions due to the three-body (angular) interactions are attributed to
the central atom.208 Thus, the sum of the local energy over all atoms equals
the total energy. This definition of local energy helps us to visualize the local
degree of mechanical relaxation in the sample. The obtained profile of the local
energy is shown in Figure 6.6(a). Most of the elastic energy is concentrated on
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top of the bubble, and the energy is gradually decreasing as the edge of the
bubble is approached. The shape of the energy profile in the radial direction
does not completely follow the form of the bubble, as shown in Figure 6.6(b),
which may be important when engineering the strain-induced pseudo-magnetic
fields.94 In particular, the energy and therefore strain at the top of the bubble
remains rather constant when the number of trapped molecules increases from
N = 9× 103 to N = 20× 103. On the other hand, the distribution of the strain
becomes more homogeneous as the number of trapped molecules increases, which
results in less homogeneous pseudo-magnetic fields. In Figure 6.6(c) we observe
that as the volume of the bubble increases, the bond stretching terms contribute
most to the total elastic energy of the bubble, and the strain arising from this
type of elastic deformation is therefore dominant. Actually, when estimating the
strain, the contribution coming from shearing and out-of-plane deformation can
be, in a very good approximation, neglected, which should therefore simplify
the calculations related to the pseudo-magnetic fields.

6.4 Conclusion

In conclusion, we have shown that a simple elastic semi-empirical potential com-
bined with an effective substrate potential can accurately predict the universal
shape of a gas bubble trapped between graphene and a substrate. With the help
of numerical simulations we have shown that this universal behavior holds in
small sized bubbles (∼ 10 nm) with the van der Waals pressure ∼ 1 GPa. We
find that the ratio of height and radius of a bubble scales as power law of the
adhesion energy (∼ K1/4). Furthermore, we have argued that the vibrational
spectrum can be used as an independent probe of the shape of a trapped gas
bubble. The obtained elastic energy distribution in the bubble shows that by
manipulating the bond stretching and shearing, one can control strain engineer-
ing of the bubbles which is important for manipulating graphene’s electronic,
mechanical, adhesive and optical properties. The confinement pressure (vdW)
and its effect should be taken into account in studies of various van der Waals
heterostructures and can also be used to manipulate and modify the properties
of trapped materials at the interfaces. In future, this computational approach
can be useful to simulate other van der Waals heterostructures such as h-BN,
Mo2S, and WSe2.



Summary
The discovery of graphene has provoked a revolution in nanotechnology, as the
structural, thermal, and electronic properties of graphene make it a very useful
component for a large variety of devices. Structural defects in graphene can
have a significant impact on the physical properties of graphene. Defects cause
effects that have a long range, therefore, there was a need for an empirical
potential which can accurately predict the long-range structural relaxations in
graphene that originate from different kinds of intrinsic defects. With the help
of numerical simulations we study the long-range buckling effect in graphene
and bilayer graphene.

In Chapter 2, we discuss a new semiempirical potential for graphene that allows
out-of-plane relaxations. We have fitted the parameters to density functional
theory (DFT) calculations performed on simulation cells with a small number
of atoms, but the semiempirical potential can be used for configurations with
millions of atoms. Using this potential, we analyze the effect of different kinds of
defects (SW defect, line dislocations, and grain boundaries) on the out-of-plane
buckling in graphene. When out-of-plane relaxation is allowed, there is an
effective long-range structural relaxation which drastically decreases the defect
formation energies i.e by a factor of 2 or 3. Another important result concerns a
long-standing paradox of the divergence in the energy of a separating SW defect.
A separating pair of dislocations costs an energy which increases logarithmically
with distance, as theoretically expected, but only if the sample is constrained to
two dimensions. When relaxation in the third dimension is allowed, the energy
does not diverge logarithmically. Moreover, in the 2D confined case a separating
pair of dislocations feels an attractive interaction, while in the free-floating
graphene with relaxation in the out-of-plane direction, the interaction becomes
repulsive.

In Chapter 3, we show using computer simulations how the crystallinity of
the graphene samples can be characterized by their vibrational spectrum. In
particular, we find that the density of vibrational modes can be used to identify
the presence of the structural lattice defects, both point and line defects, in both
2D and buckled samples. We show that these defects in flat graphene give rise
to distinct features in the VDOS at high-frequencies, whereas the VDOS in the
defected buckled graphene shows prominent features in the low-frequency region.
Specifically, for grain boundaries made of pentagon-heptagon pairs, we show
that they lead to a shift of the characteristic vibrational D mode towards higher
frequency; this distinguishes these line defects from the point SW defects, which
do not lead to such a shift.
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Lattice defects are inevitably present in two-dimensional crystalline materials
with direct implications on their physical and chemical properties. The main
characteristic of the lattice defects is their formation energy and in Chapter 4,
we show that contrary to the standard belief, different boundary conditions yield
different formation energies for lattice defects in buckled 2D materials. On top
of an energetic difference in the thermodynamic limit, buckled 2D materials also
have finite-size corrections which scale inversely proportional to the logarithm
of system size, instead of the common power-law corrections in ordinary 1D, 2D
and 3D materials. We show this unusual behavior first in simple, analytically
tractable string and membrane models embedded in a higher-dimensional space.
We further demonstrate this effect by numerically studying buckled graphene.

In Chapter 5, we present an effective combination of elastic potentials to study
large bilayer graphene samples. We combine a recently developed semiempirical
potential for single-layer graphene with a new out-of-plane deformation term
and an often-used registry-dependent interlayer graphitic Kolmogorov-Crespi
potential to simulate twisted bilayer graphene (TBLG) samples with very small
mismatch angles. This novel combination of potentials is computationally very
cheap but accurate and precise at the same time, allowing us to study very large
samples, which is necessary to reach very small mismatch angles in periodic
samples. These large samples show properties different from smaller ones. Our
study shows that vortices appearing in the Moiré patterns in the TBLG samples
converge to a constant size in the thermodynamic limit. Furthermore, the
well-known sinusoidal behavior of energy and buckling no longer persists once
the misorientation angle becomes very small. We also show that there is a
significant buckling after the relaxation in the samples, with the buckling height
proportional to the system size. The characteristic average separation between
the layers also becomes constant in the thermodynamic limit.

In Chapter 6, we use our semiempirical potential for single-layer graphene com-
bined with a relatively simple and effective model to simulate adhesion between
graphene and substrate. This novel combination of potentials is accurate and
precise to study small nanobubbles (∼ 10 nm). With our numerical simulations,
we show that the graphene nanobubbles exhibit a universal shape behavior
irrespective of their sizes. In small sized bubbles (∼ 10 nm) the vdW pressure
is in the order of 1 GPa which can have direct consequence on the properties
of trapped materials. We find that the ratio of height and radius of a bubble
scales as a power-law of the adhesion energy. Furthermore, we show that the
vibrational spectrum can be used as an independent probe of the volume and
shape of the trapped gas bubble. We also show that variations of the volume of
the trapped gas lead to variations in the bond stretching, shearing, and adhesion;
one can thus control strain engineering of the bubbles which is very important
for manipulating graphene’s mechanical and electronic properties.



Samenvatting
De ontdekking van grafeen heeft een revolutie in de nanotechnologie veroorza-
akt, doordat de structurele, thermische en elektronische eigenschappen van
grafeen het een zeer geschikt materiaal maken voor een grote verscheidenheid
aan toepassingen. Structurele defecten in grafeen kunnen een grote invloed op
de fysische eigenschappen hebben, en zijn daarom een belangrijk onderzoek-
sonderwerp. Omdat de effecten van structurele defecten van lange dracht zijn,
zijn grote simulatiecellen nodig om ze te bestuderen. Voor deze simulaties
is er behoefte aan een empirische potentiaal die nauwkeurig de grootschalige
structurele relaxatie van grafeen met defecten kan voorspellen. In deze scriptie
ontwikkelen we een dergelijke potentiaal en gebruiken we hem om met behulp
van numerieke simulaties de grootschalige kromming in enkel- en dubbel-laags
grafeen te bestuderen.

In Hoofdstuk 2 presenteren we een nieuwe semi-empirische potentiaal die geschikt
is voor de simulatie van grafeen met kromming. De parameters in deze poten-
tiaal zijn afkomstig van dichtheidsfunctionaaltheorie (DFT) berekeningen aan
simulatiecellen met een klein aantal atomen, maar de semi-empirische potentiaal
kan worden gebruikt voor simulaties met miljoenen atomen. Met behulp van
deze potentiaal analyseren we de kromming die verschillende soorten defecten
(Stone-Wales (SW) defecten, lijndislocaties en domeingrenzen) veroorzaken in
grafeen. Door de relaxatie uit het platte vlak is er een effectieve lange-afstands
structurele relaxatie die de formatie-energie vermindert met maar liefst een
factor 2 tot 3. Een ander belangrijk resultaat betreft de aloude paradox van de
divergentie in de energie behorend bij het opbreken van een SW defect in twee
dislocaties. Deze scheiding kost een energie die logaritmisch toeneemt met de
afstand, zoals theoretisch verwacht, maar alleen als het grafeen ingebed is in het
tweedimensionale (2D) platte vlak. Bij relaxatie in de derde dimensie, dus als
kromming toegestaan is, divergeert de energie niet langer logaritmisch. Sterker
nog, waar in het 2D geval een paar scheidende dislocaties een aantrekkende
interactie voelt, is deze interactie afstotend in vrij-zwevend grafeen met relaxatie
uit het vlak.

In Hoofdstuk 3 tonen wij met computersimulaties aan hoe de kristalliniteit van
stukjes grafeen kan worden bepaald uit het vibratiespectrum (VDOS). In het
bijzonder vinden we dat de dichtheid van trillingsmodes kan worden gebruikt
om de aanwezigheid van punt- en lijndefecten te identificeren, zowel in 2D als in
gekromde monsters. We laten zien dat deze defecten in plat grafeen aanleiding
geven tot verschillende eigenschappen in de VDOS in het hoogfrequente gebied,
terwijl de VDOS in het kromgetrokken grafeen opvallende kenmerken toont in
het laagfrequente gebied. Specifiek voor domeingrenzen van pentagon-heptagon
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paren laten we zien dat deze leiden tot een verschuiving van de karakteristieke
vibrationele D-mode in de richting van een hogere frequentie; dit onderscheidt
deze lijndefecten van puntdefecten (SW), die niet leiden tot een dergelijke
verschuiving.

Roosterdefecten zijn onvermijdelijk aanwezig in tweedimensionale kristallijne
materialen, en hebben directe gevolgen voor de fysische en chemische eigenschap-
pen. Het belangrijkste kenmerk van roosterdefecten is hun formatie-energie. In
Hoofdstuk 4 laten we zien dat, in tegenstelling tot de standaard aanname, in
gekromde 2D materialen verschillende randvoorwaarden leiden tot verschillende
formatie-energieën van roosterdefecten. Bovenop dit energetische verschil in
de thermodynamische limiet, verschillen de gekromde 2D materialen ook in
de correcties voor eindige afmetingen, die omgekeerd evenredig zijn met de
logaritme van de systeemgrootte, in tegenstelling tot de gebruikelijke machtswet-
correcties in 1D, 2D en 3D materialen. We tonen dit ongewoon gedrag eerst aan
in eenvoudige, analytisch behandelbare snaar- en membraan-modellen ingebed
in een hoger dimensionale ruimte. Vervolgens demonstreren we dit effect in
numerieke simulaties van grafeen.

In Hoofdstuk 5 presenteren wij een effectieve combinatie van elastische poten-
tialen om grote dubbel-laags grafeen configuraties met zeer kleine onderlinge
verdraaingshoek (TBLG) te bestuderen. Hiervoor combineren een recent on-
twikkelde semi-empirische potentiaal voor enkel-laags grafeen met een nieuwe
term voor kromming, en met een veelgebruikte potentiaal voor de interactie
tussen de grafeenlagen ontwikkeld door Kolmogorov en Crespi. Deze nieuwe com-
binatie van potentialen is tegelijkertijd nauwkeurig en zeer efficiënt, waardoor we
zeer grote simulatiecellen met periodieke randvoorwaarden kunnen bestuderen,
die noodzakelijk zijn voor zeer kleine draaiingshoeken. Deze grote simulatiecellen
blijken andere eigenschappen te tonen dan kleinere. Onze studie toont aan dat
er wervels te zien zijn in de Moiré patronen in de TBLG monsters, en dat deze
wervels convergeren naar een constante grootte in de thermodynamische limiet.
Bovendien houdt het bekende sinusoïdale gedrag van energie en kromming niet
langer stand bij zeer kleine draaiingshoeken. We laten ook zien dat er een
aanzienlijke kromtrekking is na relaxatie, met een krommingsamplitude die
evenredig is met de systeemgrootte. De kenmerkende gemiddelde afstand tussen
de lagen wordt constant in de thermodynamische limiet.

In Hoofdstuk 6 gebruiken wij de semi-empirische potentiaal voor enkel-laags
grafeen in een relatief eenvoudig en effectief model om de interactie tussen
substraat en grafeen te simuleren. Hiermee bestuderen wij nanobubbels, kleine
gasbelletjes ingevangen tussen grafeen en substraat (∼ 10 nm). Met onze
numerieke simulaties wordt aangetoond dat deze nanobubbels een universele
vorm aannemen, ongeacht hun grootte. In kleine bubbels (∼ 10 nm) is de
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gasdruk in de orde van 1 GPa, wat grote gevolgen heeft voor de eigenschappen
van de ingevangen gassen. We zien dat de verhouding van lengte en straal van
een bubbel schaalt als een machtswet van de bindingsenergie. Verder laten
we zien dat het vibratiespectrum kan worden gebruikt om de omvang van het
ingevangen gasbelletje te bepalen. Ook leiden variaties van het volume van
het ingesloten gas tot variaties in de uitrekking van koolstofbindingen, en in
lokale afschuiving ("shear"); men kan dus door variatie in de gasbelletjes de
mechanische en elektronische eigenschappen van het grafeen manipuleren.
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