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1 Introduction

This Thesis is concerned with magnons, phonons, and electrons, and how
their mutual interaction gives rise to novel transport phenomena. In this
introduction we give a brief motivation and provide the necessary basics to
understand the remaining part of this Thesis.

1.1 Magnons, phonons, and electrons.

A magnon, or semiclassically, a spin wave, is a collective excitation of the
spin or magnetization direction in magnetically-ordered materials. Taking
as an example the ground state of the simplest magnetically-ordered mate-
rial, i.e., a ferromagnet, where all the spins are spontaneously aligned, one
could naively think that the lowest energy excitation is created by flipping a
single spin. Instead, due to the strong interactions between spins in a mag-
net, the most energetically favorable excitation is a collective one, which
can be though as a wave of neighboring spins precessing at the same fre-
quency but with a di�erent phase, as shown in Fig. 1.1(a). Each magnon
carries energy and linear momentum, and the total number of magnons
populating a system can be interpreted as a measure for the deviation from
a perfectly saturated magnetic state order.

Both in metallic and insulating materials, magnons stem from the spin
degrees of freedom of electrons. As these spins are embedded in their
respective lattice sites and interact with each other, one can intuitively
see that a collective lattice vibration (phonon) might a�ect their mutual
interaction as it shortens or lengthens the distance between neighbouring
spins [see Fig. 1.1(b)]. Quantum mechanically, this e�ect can be described
in terms of magnon-phonon coupling. Understanding the latter appears
to be essential especially for magnetic insulating systems as magnetic and
elastic excitations fully determine, due to the lack of charge degrees of
freedom, their thermal and spin transport properties.
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Figure 1.1: (a) In the ground state of a ferromagnet, all the spins point in
the same direction. The lowest energy excitation is a spin wave, i.e., a collective
precession of the magnetic moments around their equilibrium orientation. (b)
Cartoon of magnon-phonon and magnon-electron interactions in a ferromagnetic
metal.

In metals, the itinerant electrons engendering charge transport interact
as well with the localized magnetic moments, as depicted in Fig. 1.1(b). The
interactions between magnons and conduction electrons a�ect the transport
of charge current, giving rise to phenomena such as magnon drag [1,2]. As
heat flows are known to induce the di�usive motion of both electrons and
magnons, understanding and harnessing their interaction could open up
new prospects for improving existing thermoelectric devices. While some
progress has been made in this direction, a complete theoretical framework
is still lacking.

In the majority of magnetic insulating materials, magnons have been
observed as incoherent thermal fluctuations of the underlying magnetiza-
tion. Nonetheless, the bosonic nature of magnons suggests the possibility
of achieving a magnon Bose-Einstein condensate (BEC), i.e, a coherent
state surviving even at room temperature. Due to the lack of charge de-
grees of freedom, magnetic insulating systems are an ideal testing ground
for studying such phenomena. The first observation of a magnon Bose-
Einstein condensate in YIG was reported by Demokritov et al. [3]. In this
experiment, the high density of magnons needed for the condensate to form
was achieved via external pumping; this is in principle a non-equilibrium
phenomenon, and the resulting state is a quasi-equilibrium magnon BEC
with a finite lifetime. There are, however, magnetic systems in which a
magnon BEC can emerge as a true equilibrium ordered state, such as easy-
plane magnets [4, 5], which will be discussed in detail in the next section.
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1.2 Easy-plane magnetic systems
In this section we calculate the ground states of an idealized easy-plane
magnetic system. Specifically, we show that a BEC of magnons can be
induced by sweeping the magnetic field, and that the hydrodynamic de-
scription of the spin currents carried by the magnon BEC mimics the one
of neutral superfluids, thereby introducing the state dubbed as spin super-
fluid. Finally, we derive the equilibrium phase diagram of the magnetic
system.

1.2.1 Ground states
The free-energy functional of an ideal easy-plane magnet subject to a mag-
netic field B = Bẑ can be written as

F [s] =
⁄

dV

3
≠ A

2s
s · Ò2s + Bsz + K

2s
s2

z

4
, (1.1)

where s = sn is the (three-component) spin density (in units of ~), with s
being the saturation spin density and n the spin-density orientation. The
energy cost of a non-collinear arrangement of the spins, which emerges as a
consequence of Pauli exclusion principle, is parametrized by the exchange
sti�ness A. When A > 0 (A < 0), the spins are aligned parallel (antipar-
allel) to each other and the system is ferromagnetic (antiferromagnetic).
Here we consider A > 0. The magnetic anisotropy K stems from the un-
derlying crystal structure and spin-orbit coupling, and here is taken as well
to be positive, i.e., K > 0. For K > 0, Eq. (1.1) shows that the system
can gain energy by having its magnetization lying within the xy plane,
but that there is no preferred direction in this plane. The classical ground
state of Eq. (1.1) has uniform spin density, which minimizes the free energy
cost of spin density non-uniformity Ã A. Minimizing the energy (1.1) for a
uniform spin density yields, for positive B < K,

nz = ≠ B

K
. (1.2)

Equation (1.2) shows that the z-component of the spin density orientation
is determined by the interplay between the magnetic field and the planar
anisotropy. Namely, when B < K, the competition between the anisotropy
and the magnetic field gives rise to a tilt of the spin density orientation away
from the z direction, as shown in Fig. 1.2(a). Note that, for our purposes,
here we consider a small tilt in the z-projection of the spin density, i.e.,
K ƒ B. On the other hand, when B Ø K, the spin density orientation is
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Figure 1.2: Ground states of an easy-plane ferromagnet. (a) For B < K, the
interplay between the magnetic field and the anisotropy leads to a tilt of the spin
density orientation n, which can be parametrized by the reduction ”n̄ of its z-
projection and the azimuthal angle Ï. (b) For B Ø K, the unit vector n is aligned
along ≠z.

given by nz = ≠1 [see Fig. 1.2(b)]. The small excitations above the ground
states ng1

and ng2

that exist for B Ø K and B < K, respectively, can be
parametrized as

ng1

=

Q

ca
”nx

”ny

≠1

R

db , ng2

=

Q

ca
cos Ï
sin Ï

≠1 + ”n̄

R

db , (1.3)

where Ï and ”nx,y are the azimuthal angle and transverse fluctuations of the
spin density orientation, respectively, and ”n̄ parametrizes the reduction of
z-projection of the spin-density orientation.

Generally, the dynamics of the spin density obeys the Landau-Lifshitz-
Gilbert equation [6]

ˆn
ˆt

= n ◊
3

≠1
~

”F [n]
”n

4
≠ –n ◊ ˆn

ˆt
, (1.4)

where the Gilbert damping parameter – is a dimensionless number ac-
counting for spin relaxation [7]. Plugging Eq. (1.1) into Eq. (1.4) leads
to

ˆn
ˆt

= A

~ n ◊ Ò2n ≠ K

~ n ◊ nz ẑ ≠ B

~ n ◊ z ≠ –n ◊ ˆn
ˆt

. (1.5)
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Up to linear order in the transverse fluctuations, i.e., |”nx|, |”ny| π 1, the
transverse spin dynamics of ng1

can be determined from Eq. (1.5) as

~ˆ”nx

ˆt
= +AÒ2”ny + (K ≠ B)”ny ≠ –~ˆ”ny

ˆt
, (1.6)

~ˆ”ny

ˆt
= ≠AÒ2”nx ≠ (K ≠ B)”nx + –~ˆ”nx

ˆt
. (1.7)

Taking the second order time derivative of ”nx and making use of Eqs. (1.6)
and (1.7) leads to the quadratic dispersion of the ferromagnetic ground state
(for – æ 0):

~Êk = Ak2 + ~� , (1.8)

where ~� = B ≠ K is the magnon gap.
We proceed by computing the dynamics of the fluctuations around the
tilted ground state ng2

which, up to linear order in ”n̄ and ˆxÏ, leads to

~d”n̄

dt
= AÒ2Ï , (1.9)

~d„

dt
= B ≠ K + K”n̄ ≠ AÒ2”n̄ . (1.10)

By plugging Eq. (1.9) into the second-order time derivative of Eq. (1.10),
and Fourier transforming the resulting equation, we obtain, for the low
momentum regime, the following linear spin-wave dispersion

~Êk = ~ck , (1.11)

where we have defined the spin-wave velocity c =
Ô

AK/~. According
to Landau’s criterion [8], the observation of such linear dispersion at low
momentum regime is an indication of superfluidity. This dispersion indeed
shows that the ground state behaves as a superfluid, meaning that if an
object is moved in the condensate at a velocity smaller than c, it will not
be energetically favorable to produce excitations and the object will move
without dissipation.

Here, the superfluidity arises from the spontaneous symmetry breaking
of the global U (1) symmetry of the free energy (1.1). For B < K, the
possible ground states of the theory are given by a tilted spin with an
azimuthal angle Ï, which is the same at every lattice point, but may itself
take any value. The phase of the ground state breaks the global U (1)
symmetry of the theory, giving rise to a Goldstone mode with dispersion
described by Eq. (1.11).
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1.2.2 Magnon BEC and superfluid dynamics

Superfluidity and BEC are intimately related. Indeed, the analogy between
the supercurrent of electric charge in superconductors and the mass super-
flow in helium relies on the common origin of these phenomena, i.e., the
spontaneous breaking of the U (1) symmetry underlying Bose-Einstein con-
densation (of either atoms or Cooper pairs) and the associated macroscopic
quantum coherence. This suggests that spin superfluidity arising in mag-
netic system might be interpreted in terms of Bose-Einstein condensation
of magnons.

To view the tilted ground state ng2

of an easy-plane ferromagnet as a
BEC of magnons, we need to introduce the Holstein-Primako� transforma-
tion [9]:

ŝ
+

=
Ò

2s ≠ �̂†�̂�̂ , (1.12)

ŝ≠ = �̂†
Ò

2s ≠ �̂†�̂ , (1.13)
ŝz = �̂†�̂ ≠ s , (1.14)

with ŝ± = ŝx ± iŝy being the spin raising (lowering) operator. Equa-
tions (1.12), (1.13) and (1.14) map the spin density operators into the
bosonic canonical operators �̂† and �̂, which create and annihilate a magnon
respectively. The expectation value of the spin operator (1.14) for the tilted
ground state of Eq. (1.1) can be written as

ÈŝzÍ = nc ≠ s , (1.15)

where nc = È�̂†�̂Í = s(1 ≠ B/K) is the density of magnons in the ground
state. The uniformity of the spin orientation ng2

implies a finite density
of magnons at each point in space, which translates into a macroscopic
occupation of the ground state by bosonic quasi-particles, in other words
Bose-Einstein condensation.
This state can be described in the dilute approximation, nc/s π 1, by
the Gross-Pitaevskii (GP) theory at zero temperature [10]. In the dilute
regime, Eqs. (1.12) and (1.13) can be expanded as

ŝ
+

ƒ Ô
2s�̂ , (1.16)

ŝ≠ ƒ Ô
2s�̂† . (1.17)

We now introduce the BEC macroscopic wavefunction as � © È�̂Í, where
the expectation value È..Í is taken over the coherent ground state. Consid-
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Figure 1.3: (a) A uniform spin density orientation n with azimuthal angle Ï
across the entire system. This configuration corresponds to a vanishing superfluid
velocity v

c

. (b) A gradient in the azimuthal angle of the spin density orientation
results in a finite superfluid velocity v

c

Ã ≠ÒÏ.

ering the Hamiltonian corresponding to Eq. (1.1), i.e.,

H =
⁄

dV

3
≠ A

2s
ŝ · Ò2ŝ + Bŝz + K

2s
ŝ2

z

4
. (1.18)

and substituting Eqs. (1.14), (1.16) and (1.17) into Eq. (1.18), we derive
the equation of motion for �, taking the Gilbert damping to be zero, as

i~ˆ�
ˆt

=
5
~� + K

s
|�|2

6
� ≠ AÒ2� . (1.19)

which is the time-dependent GP equation. Expressing the BEC order
parameter as a complex scalar function of position and time, i.e., � =Ô

nc(r, t)e≠iÏ(r,t), where nc and Ï are the density and (minus) the phase
of the condensate respectively, the time dependent GP equation can be
rewritten as coupled equations for the condensate density nc and frequency
Ê = ˆtÏ :

~Ê =
5
~� + Knc

s

6
+ A

C
Ò2nc

2nc
≠ (Ònc)2

4n2

c

D

≠ A(ÒÏ)2 , (1.20)

ˆnc

ˆt
=2A

~ Ònc · ÒÏ + 2A

~ Ò2Ï . (1.21)

The second equation has the form of a continuity equation if we define the
superfluid current jc and velocity vc as

jc = ncvc , with vc = ≠2A

~ ÒÏ . (1.22)
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Equation (1.22) shows that the spin superfluid current arises from the gra-
dient of the azimuthal angle of the spin density in the xy plane, as schemat-
ically shown in Figs. 1.3(a) and (b). Substituting Eq. (1.22) into Eq. (1.21)
yields

ˆnc

ˆt
= ≠Ò · jc . (1.23)

The continuity equation (1.23) is a direct consequence of the conservation
of the z-component of the spin density in an ideal easy-plane ferromagnet1

The motion of the spin superfluid corresponds to that of an irrotational
flow, since the velocity is proportional to the gradient of a scalar quantity.
Indeed, we can immediately see from Eq. (1.22) that the motion of the
condensate is irrotational:

Ò ◊ vc = ≠2A

~ Ò ◊ ÒÏ = 0 . (1.24)

1.2.3 Finite temperature
Finite temperature gives rise to quasi-particle excitations occupying higher-
energy states. The coexistence of a cloud of thermal magnons with the con-
densate can be captured within the Gross-Pitaevskii theory by introducing
the noncondensate field operator Â̂ as [10,11]

�̂ = � + Â̂ , (1.25)

with ÈÂ̂Í = 0. We define fp(r, t) as the Wigner transform of the field
ÈÂ̂†(rÕ, t)Â̂(rÕÕ, t)Í such that

nx(r, t) =
⁄

d3pfp(r, t)/(2fi~)3 , (1.26)

is the noncondensate density. According to the Hamiltonian (1.18), the
thermal cloud experiences the Hartree-Fock mean-field potential U = ~�+
(K/s)(2nc+2nx). At high temperatures, T ∫ U (setting kB © 1, while still
assuming that T π Tc, the Curie temperature), the thermal cloud can be
described by a quantum kinetic equation for the single-particle distribution
function fp(r, t)

ˆtf+p · ˆrf/m ≠ ˆrU · ˆpf = (fp ≠ f)/·– + (f̄ ≠ f)/· + Ccx + Cxx ,
(1.27)

1One can convince himself(herself) that the z-component of the spin density is con-
served by noticing that the Hamiltonian (1.18) is invariant under rotations around the
z-axis.
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with f̄ being the p-space angular average of fp(r, t) (above abbreviated
as f) and fp is the phonon (Bose-Einstein) distribution function. The
relaxation time ·– = ~/2–(p2/2m + U) describes the Gilbert damping (as-
sociated with the phonon bath), while the strength of spin-preserving mo-
mentum scattering of magnons is parametrized by an energy-dependent
time scale · . The scattering interactions with the condensate and among
the thermal magnons are respectively described by the collision integrals
Ccx and Cxx [10]. The latter process, which is governed by the exchange
interactions, is expected to be fast at high temperatures [12], forcing the
cloud towards a local Bose-Einstein profile with well-defined temperature
T and chemical potential µ. Hence, at thermal equilibrium, the ther-
mal cloud is described then by the Bose-Einstein distribution function
fB[(p2/2m + U ≠ µ)/T ], with f

B

(x) © (ex ≠ 1)≠1, and T and µ being
the magnon temperature and chemical potential respectively. While the
magnons in the thermal cloud are assumed to be in equilibrium among
themselves, the condensate and thermal cloud components may not be in
di�usive local equilibrium with each other, which leads to a generally non-
vanishing condensate - thermal cloud scattering rate, i.e.,

�cx =
⁄

d3p Ccx/(2fi~)3. (1.28)

Note that, while the scattering processes encoded by Ccx locally change
the relative number of condensate and thermal magnons, they conserve the
total magnon number. From the Zaremba–Nikuni–Gri�n (ZNG) approxi-
mation [10], we have

�cx Ã µ ≠ ~Ê . (1.29)

At finite temperatures, Eq. (1.20) becomes

~Ê =
5
~� + K

nc + 2nx

s

6
+ A

C
Ò2nc

2nc
≠ (Ònc)2

4n2

c

D

≠ A(ÒÏ)2 . (1.30)

In a bulk equilibrium, all the quantities are spatially uniform. We can then
rewrite Eq. (1.29) as

�cx Ã µ ≠ ~� ≠ K(nc + 2nx)/s . (1.31)

In static thermal equilibrium between the thermal cloud and the conden-
sate, Eq. (1.29) vanishes, leading to

µ = ~� + K(nc + 2nx)/s . (1.32)
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spontaneously breaks U (1) symmetry around the z axis, as manifested by a static
canting of the magnetization, whose deviation from its normal-state equilibrium
value along the z axis is parametrized by the condensate density n

c

. In the absence
of an applied field B, the ferromagnet is a planar xy magnet.

Hence the thermal magnon equilibrium density reads as

nx =
⁄

d3p

(2fi~)3

1

e
p

2
/2m+Kn

c

/s

T ≠ 1

= 1
2

53
1 ≠ B

K

4
s ≠ nc

6
. (1.33)

This provides the mean-field self-consistency relation for nc and allows to
determine the transition temperature T (as a function of the external field
B < K), where nc æ 0:

T

Tc
æ 1

�
3/2

’
3/2

3
1 ≠ B

K

4
2/3

. (1.34)

Here Tc © s2/3A, and � and ’ are respectively gamma and Riemann zeta
functions. Figure 1.4 shows the equilibrium phase diagram of the easy-plane
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condensate corresponding to Eq. (1.34).

1.3 Electron- and phonon-magnon interactions
In this section we discuss the interactions arising between magnons and
electrons, and magnons and phonons respectively. The coupling between
electrons and magnons occurs in the bulk of magnetic metals and at the
interface between metals and magnetic insulators. These cases are exempli-
fied in Section 1.3.1 and 1.3.2 respectively. At finite temperatures, magnons
and phonons interact in both metallic and insulating systems. We introduce
the magnetoelastic coupling in Section 1.3.3 while considering for simplicity
insulating systems.

1.3.1 Bulk electron-magnon interactions

Spin-dependent transport phenomena emerging in ferromagnetic metals can
be understood within a simple model of ferromagnetism, i.e., the so-called
sd model. The sd model distinguishes electrons into two di�erent kinds
according to their dynamics: itinerant s electrons, which engender charge
current and stem from the Fermi surface, and d electrons, which are local-
ized at the lattice sites and arise from the entire Fermi sea.

This picture is motivated by the specific band-structure of certain ferro-
magnets, with d electrons possessing quite flat bands that constrains their
mobility due to a large e�ective mass. Due to the strong exchange interac-
tions within d electrons, the collective dynamics of the (d electrons) spins
S is slow respect to the dynamics of the s electrons spins. Hence, the local
moments S can be described by a Zeeman-like field ÈSÍ felt by the itinerant
electrons, with directional unit vector n(r, t) defined as

ÈSÍ = Sn(r, t) , (1.35)

where S is the net spin. The interaction strength between s and d electrons
depends on the overlap integral between the s and d orbitals. In the simplest
case, we can approximate the overlap integral with a constant and write
the sd Hamiltonian as

Hsd = ≠�
2 ‡ · Sn(r, t) , (1.36)

where � is the exchange field and ‡ is the vector of Pauli matrices. The
interaction (1.36) is responsible for the transfer of spin angular momentum
between the itinerant electron spins and the localized moments, and it
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underlies the e�ects on which we focus in this section, namely the spin
transfer torque and the spin motive force. Spin transfer torque stands for
the torque exerted by a spin current on a non collinear spin texture [13,14],
while the reciprocal e�ect, i.e., the force experienced by itinerant electrons
due to a dynamical spin texture, is dubbed as spin motive force [1, 2, 15].

We consider a charge current j traveling in a metallic ferromagnet
through a magnetization texture as the one depicted in Fig. (1.5). We
assume that the spin orientation of the itinerant electrons follows the un-
derlying magnetic landscape adiabatically while flowing through the ferro-
magnet. Then, the electron flow gives rise to a net spin current js,i (for
the spin-i component) given by

js,i = ~P

2e
jni , (1.37)

where e is the carrier charge (here negative for electrons), P = (‡ø ≠
‡¿)/‡ is the conducting spin polarization, ‡ø and ‡¿ are the majority and
minority electron conductivities, and ‡ = ‡ø + ‡¿ is the total electrical
conductivity. When the spin current starts flowing through a sample with
inhomogeneous spin density, the electrons spins orient themselves along the
magnetization direction of the first domain they encounter. Then, while
keeping flowing, their orientation will be altered by the spin density which
exerts a torque Ã ≠�J in order to reorient them along the new local spin
density direction. Assuming that the angular momentum is conserved, the
conduction electrons exert an opposite torque Ã �J on the spin density
(see Fig. 1.39). The change in the spin density dynamics resulting from
this torque reads as

ˆn
ˆt

= ≠ ~P

2es
0

(jiÒi)n , (1.38)

where s
0

is the equilibrium spin density. Equation (1.38) accounts for the
adiabatic contribution to the spin-transfer torque.

However, if we include processes such as spin-flip relaxation, the elec-
tron spin density acquires a component which is transverse to the local
magnetization gradient. Moreover, as the exchange field � in Eq. (1.36)
is not infinite, there is generally a finite misalignment between the elec-
trons spins and the magnetization. These e�ects give rise to a dissipative
contribution to the spin-transfer torque, which acts perpendicular to the
adiabatic torque. The change in the magnetization dynamics due to the
dissipative spin-transfer torque can be written as

ˆn
ˆt

= —n ◊
3

≠ ~P

2es
0

jiÒi

4
n , (1.39)
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Figure 1.5: Schematics of the adiabatic spin transfer torque. A conduction-
electron spin and the spin density orientation n are represented by red and blue
arrows, respectively. While flowing, the electron spin follows adiabatically the
spin density texture n. When the electron spin realigns along the spin density, the
electron loses spin angular momentum, which is transferred to the spin texture.
This can be described in terms of a torque �J exerted by the electrons on the
spin density, or, assuming conservation of spin angular momentum, by a torque
≠�J endeavored by the spin density on the electrons.

where we have introduced the dimensionless parameter —. The latter de-
pends on the relaxation mechanisms of the transverse electron spin density
and it is sensitive to microscopic details [1, 2].

The spin motive force is the inverse e�ect to the spin transfer torque.
Hence, the charge current density induced by spin dynamics of the local
moments can be derived from Eqs. (1.38) and (1.39) via Onsager reciprocity
as [16]

ji = ~P‡

2e
[n · (ˆtn ◊ Òin) ≠ —(ˆtn · Òin)] . (1.40)

Equation (1.40) leads ultimately to identify the spin motive force on the
conduction electrons (which is opposite for opposite spins)

Fi = ~
2 [n · (ˆtn ◊ Òin) ≠ —(ˆtn · Òin)] , (1.41)

for spins up along n. Equation (1.38), (1.39) and (1.41) show that two
ingredients are essential for the spin-transfer torque and its Onsager re-
ciprocal: the presence of a non-collinear magnetization texture and a non-
equilibrium state, i.e., a charge current flow (spin transfer torque) or a
dynamical magnetization (spin motive force).
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1.3.2 Interface electron-magnon interactions
Magnon-electron interactions at the interfaces between magnetic insulator
and non-magnetic metallic materials can be described in terms of interfacial
spin transfer torque and spin pumping, the latter of which is the counterpart
of the spin motive force near an interface. The interfacial spin transfer
torque accounts for the excitation of a magnetization dynamics by spin
currents generated in an adjacent nonmagnetic material. Spin pumping is
the emission of spin current in a nonmagnetic material by the magnetization
dynamics of an adjacent magnetic system. Essential to these processes is
a coupling between the magnetic and nonmagnetic layers, which, taken to
be isotropic, reads as

V̂int =
⁄

dxdxÕV (x, xÕ)n̂(x) · ŝ(xÕ) , (1.42)

where n̂(x) and ŝ(x) correspond to the orientation of the spin density of
the localized spins in the insulator and of the electrons in the metal, re-
spectively. The latter can be written as

ŝ(x) = 1
2

ÿ

‡,‡Õ
=ø,¿

Â̂†
‡(x)‡‡‡ÕÂ̂‡Õ(x) , (1.43)

where ‡ is a vector of the Pauli matrices, and ck‡ and

Â̂‡(r) = 1ÔV
ÿ

k
ĉk,‡eikr , (1.44)

are the electron field operators (with V being nonmagnetic system volume,
here equal to the magnetic one), which obey the following fermionic com-
mutation relations

{ĉk,‡, ĉ†
kÕ,‡Õ} = ”kkÕ”‡‡Õ , {Â̂‡(r), Â̂†

‡Õ(rÕ)} = ”(r ≠ rÕ)”‡‡Õ . (1.45)

Using Eqs. (1.12), (1.13), (1.14) and (1.43), Eq. (1.42) can be rewritten as

V̂int = 1
2
Ô

2S

ÿ

qkkÕ

Ë
V̂qkkÕ�̂qĉ†

kÕ,øĉk,¿ + H.c.
È

, (1.46)

Note that we have neglected spin-preserving terms such as ĉ†
k,‡ ĉkÕ,‡�̂†

Ÿ�̂q,
since such processes do not involve transfer of the z-component of spin
angular momentum across the interface, and therefore do not contribute to
the spin pumping or spin transfer torque. The first term in Eq. (1.46) allows
us to visualize spin pumping as a process involving a magnon (carrying
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spin up ~) annihilating in the insulator to create a spin-down hole/spin-up
electron pair in the adjacent metal. The Hermitian conjugate corresponds
to a reverse electron spin-flip scattering at the interface creating a magnon
in the insulator, which contributes to the interfacial spin transfer torque
(see Fig. 1.6).

Electronic Pumping of Quasiequilibrium Bose-Einstein Condensed Magnons

Scott A. Bender,1 Rembert A. Duine,2 and Yaroslav Tserkovnyak1

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2Institute for Theoretical Physics, Utrecht University,

Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Dated: September 4, 2013)

We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein
condensed magnons in an insulator in direct contact with a conductor. While charge transfer is
prohibited across the interface, spin transport arises from the exchange coupling between insulator
and conductor spins. In normal insulator phase, spin transport is governed solely by the presence of
thermal and spin-di�usive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile,
gives rise to a temperature-independent condensate spin current. Depending on the thermodynamic
bias of the system, spin may flow in either direction across the interface, engendering the possibility
of a dynamical phase transition of magnons. We discuss experimental feasibility of observing a
BEC steady state (fomented by a spin Seebeck e�ect), which is contrasted to the more familiar
spin-transfer induced classical instabilities.

PACS numbers: 72.25.Mk,72.20.Pa,75.30.Ds,03.75.Kk

Bose-Einstein condensation (BEC) has been observed
in a growing number of physical systems including
trapped ultracold atoms and molecules [1], semiconduc-
tor exciton polaritons [2], and microcavity photons [3]. In
magnetic insulators, a quasiequilibrated BEC of magnons
was created at room temperature by parametric pumping
[4], which is especially intriguing as it represents the pos-
sibility of phase transitions in spintronic devices. In the
case of short-lived bosonic excitations such as polaritons,
photons, and magnons, the system needs to be optically
pumped to exhibit spontaneous condensation [5].

In magnetic systems, Gilbert damping of magnons is
known to increase upon the introduction of an adjacent
conductor [6]: If the magnet is made to precess, conduc-
tion electrons may carry away spin upon colliding with
the interface separating conductor and insulator, tilting
the insulator’s magnetization toward its axis of preces-
sion. Known as spin pumping, this magnetic relaxation
process is reciprocal to spin-transfer torque [7, 8], by
which the angular momentum and energy can be pumped
back into the magnetic region [9]. We consider here the
consequences of these reciprocal interactions on an in-
sulator with inhomogeneous spatial fluctuations in the
magnetization, in particular a system of Bose-condensed
magnons similar to that mentioned above. In this Letter,
we construct rate equations for spin transfer between a
magnetic insulator and adjacent normal metal, and solve
for the time-dependent spin accumulation in the metal
and the phase behavior of the insulator. The main text
is supplemented with a discussion of the thermodynam-
ics of spin transfer in our system and proposal of possi-
ble methods by which to detect the predicted dynamical
phase transition.

Let us consider the insulating ferromagnet subjected
to a magnetic field B in the positive z direction and at-
tached to a metallic conductor, as sketched in Fig. 1.
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FIG. 1. The magnetic moments of insulator (left) atoms are
coupled to the itinerant electrons of an adjacent conductor
(right); an electron scatters inelastically o� the interface, flip-
ping its spin and creating or annihilating a magnon in the
insulator. While coupling across the interface requires some
degree of overlap between electrons in the conductor and lo-
calized electron orbitals in the insulator, a net electron tun-
neling between the two subsystems is prohibited, so that only
spin density is transferred. The magnetic field in the insula-
tor, and hence static magnetization, point in the positive z di-
rection; for a negative gyromagnetic ratio the static spin den-
sity is therefore oriented in the �z direction, so that magnons
carry spin +~.

Electrons in the ferromagnetic insulator are localized
(typically in deep d or f orbitals) near atomics sites, pre-
cluding charge transport. The corresponding magnetic
moments constitute individual degrees of freedom, which
give rise to collective spin-wave excitations. Meanwhile,
(s-character) electrons in the metal are considered com-
pletely delocalized and noninteracting. We shall hence-
forth denote the ferromagnetic subsystem as “left” or L,
and the metallic conductor subsystem as “right” or R. As
a starting point, we treat them as uncoupled so that the
electronic state of the entire system is |m� = |mL��|mR�.
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Figure 1.6: Cartoon depicting electron-magnon interactions at the interface be-
tween a magnetic insulator and a normal metal. Assuming negative gyromagnetic
ratio, the spin density in the insulator is oriented along ≠z (antiparallel to the
applied field), and, hence, a magnon carries a positive angular momentum +~.
At the metallic side of the interface, a spin-up electron scatters into a spin-down
hole, emitting a magnon which tunnels into the insulator. Reversely, a magnon
can be absorbed at the interface, giving rise a spin current in the metal. Taken
from Ref. [12].

Let us consider a metal with spin accumulation µÕ, which points in
the direction of the local magnetization, here taken along z, and whose
magnitude is equal to the di�erence of the electrochemical potential of
both electron spin species, i.e., µÕ = µø ≠ µ¿. The spin accumulation is
established via the Spin Hall e�ect, which will be discussed in detail in
section 1.4.1. The temperature of the metallic system is set at Te, while
the magnetic insulator is equilibrated at temperature Tm. Moreover, we
introduce the magnon chemical potential µm, which parametrizes a long-
living nonequilibrium state in the magnetic insulator that arises upon, e.g.,
spin injection from a normal metal. The z-component of the spin current
flowing from the interface into the NM is given by [18,19]

jint
s = ≠ gø¿

4fi
n ◊ dn

dt

----
z

. (1.47)

Here, we have introduced the spin-mixing conductance gø¿, which can be
computed using perturbation theory in the coupling V (x, xÕ). However, the
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value for gø¿ is usually assessed experimentally. Using the parametrization
n = (”nx, ”ny, ≠1) and Eqs. (1.12), (1.13) and (1.14), we can write

jint
s = gø¿

fi~s

1
V

ÿ

k
~Êknk , (1.48)

where ~Êk is the magnon dispersion and

nk = È�̂†
k�̂kÍ = fBE

3~Êk ≠ µm

kBTm

4
, (1.49)

is the magnon number at wavevector k. Note that an additional factor 2
in Eq. (1.48) stems from the constructive interference between magnons at
the interface [12]. In equilibrium, the current passing across the interface
is zero. The equilibrium condition can be imposed by rewriting

fBE

3~Êk ≠ µm

kBTm

4
æ fBE

3~Êk ≠ µm

kBTm

4
≠ fBE

3~Êk ≠ µÕ

kBTe

4
, (1.50)

where the second contribution corresponds to the e�ect reciprocal to spin
pumping, i.e., the spin transfer torque. Using Eq. (1.50), one can rewrite
Eq. (1.47) as an integral over the energy, i.e.,

jint
s = ≠ gø¿

fi~s

⁄
d‘D(‘)(‘ ≠ µÕ)

5
fBE

3~Êk ≠ µm

kBTm

4
≠ fBE

3~Êk ≠ µÕ

kBTe

46
,

(1.51)

where D(‘) is the magnon density of states. Equation (1.51) has been also
derived rigorously from a Fermi’s Golden Rule treatment of the interface
coupling in Ref. [12].
Let us now focus once more on easy-plane ferromagnets. In the normal
state, Eq. (1.51) represents the only contribution to the interfacial cur-
rent. In the BEC phase, the condensate magnons contribute as well. At
finite temperature and up to linear order in ˆxÏ, Eq. (1.20) becomes, for a
homogeneous spin density,

~Ê =~� + K(nc + 2nx)
s

. (1.52)

Then, Eq. (4.34) can be rewritten as

µeq = ~Ê, (1.53)

which corresponds to the condition of static thermal equilibrium between
condensate and thermal magnons. Equation (1.53) shows that ~Ê plays the
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role of a condensate chemical potential µc. On the other side, Eq. (1.48)
for the ground state, i.e., k = 0, reads as

jint
s,c = gø¿nc

2fi~s
µc . (1.54)

Substituting µc æ µc ≠ µÕ to account for the spin accumulation µÕ in the
metallic lead, the condensate contribution to the interfacial spin current
is [17]

jint
s,c = gø¿nc

2fi~s
(µc ≠ µÕ) . (1.55)

When imposing boundary conditions for an easy-plane magnet in the BEC
phase, both Eqs. (1.51) and (1.55) have to be taken into account, as we will
see in Chapter 2 of this Thesis.

1.3.3 Magnetoelastic coupling

It is common to assume that, within a good approximation, the lattice
vibrations are una�ected by the behavior of the magnetic moments as-
sociated with the atoms or ions in a crystal. On the other hand, when
focusing on magnetic excitations, the ions or atoms from which the mag-
netic moments stem are treated as they are frozen in their positions. For
materials in which the coupling between elastic and magnetic is not neg-
ligible, this non-interacting approximation has to be abandoned. Indeed,
while the lattice vibrates, the position of the spins varies, and hence the
interactions among them are altered [see Fig. 4.17(a)], as well as the re-
sulting spin transport properties. To account for the magneto-elastic cou-
pling, the Hamitonian describing the isolated magnetic and elastic systems
needs to be supplemented by an interaction Hamiltonian involving both
the displacement of an atomic (or ionic) positions and the spin orienta-
tions. The eigenmodes of such Hamiltonian are magnetoelastic waves, or,
in the second-quantized language, magnon-polarons, i.e., coupled magnon
and phonon modes [21–24]. As shown in Fig. 4.17(b), far away from the
intersection point between the uncoupled elastic and magnetic dispersion,
the magnon-polaron modes behave as magnon- or phonon-like quasipar-
ticles. In proximity of the intersection points instead, the phonon and
magnon modes are strongly hybridized and the resulting dispersion of the
magnon-polaron modes is neither magnon- or phonon-like.

Focusing on spin properties, it is reasonable to expect that they might
be altered when magnons hybridize with phonons. The portion of mo-
mentum space over which the behavior of magnon- polaron modes di�ers
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Figure 1.7: (a) The displacement of an atom or ion (green dot), i.e., an elastic
excitation, alters the orientation of the spin (red arrow) at the corresponding lattice
site. (b) Magnon, phonon, and magnon-polarons (blue and red lines) dispersions
Ê(k). The magnon and phonon branches intersect at k0.

from the one of the uncoupled modes turns out to be maximized when the
magnon dispersion is tangent to the phonon branch. This condition can be
achieved by tuning the magnetic field.

Recent spin transport measurements detected anomalies at the field at
which magnon and phonon branches are tangent to each other [20]. The
latter suggests that the origin of these anomalies is rooted in the magneto-
elastic coupling, and calls for a theoretical framework accounting for the
spin transport properties of composite quasi-excitations such as magnon-
polarons. This is developed in Chapter 4 of this Thesis.

1.4 Generation of spin currents
There are only few mechanisms which can be used to generate pure spin
currents. Specifically, we focus on spin Hall e�ect (SHE), spin pumping, and
spin Seebeck e�ect (SSE), where a spin current is generated as the result
of, respectively, a charge current, magnetization dynamics, and thermal
bias. In the following, we review the origin of these mechanisms and their
experimental status.

1.4.1 Spin Hall and inverse Spin Hall e�ect

When an electrical current jc flows in a nonmagnetic conductor, the elec-
trons of opposite spins are deflected to opposite transverse directions by
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Figure 1.8: Schematics of SHE (a) and ISHE (b). In the SHE, a longitudinal
charge current in a nonmagnetic metal with strong spin-orbit coupling is converted
into a transverse pure spin current. For a pure spin current, the spin-orbit interac-
tion gives rise to a transverse charge flow. This mechanism is known as the inverse
spin Hall e�ect. Adapted from Ref. [27]

spin-orbit interactions, as shown in Fig. 1.8(a). The deflection gives rise to
a transverse pure spin current js with a spin polarization ‡ perpendicular
to the charge and spin current [25, 26]. The resulting spin current js can
be written (in units of electric current) as

js = ◊SHjc ◊ ‡ , (1.56)

where ◊SH is the Spin Hall angle, which is of the order of 10≠2 for metals
with strong-orbit coupling. In the reciprocal e�ect, i.e., the inverse spin
Hall e�ect, a pure spin current in a metal with strong SOC generates a
charge current and charge accumulation in the transverse direction [see
Fig. 1.8(b)]. The resulting charge current reads as

jc = ◊SH‡ ◊ js . (1.57)

The spin Hall and the inverse spin Hall e�ect are the most widely used
methods for, respectively, generating and detecting a pure spin current. In
synergy with the interfacial spin transfer torque and spin pumping, these
e�ects are deployed to manipulate and detect the magnetization dynamics.

As we saw in the previous section, the magnetization dynamics imping-
ing on a normal metal|magnetic insulator interface triggers a pure spin
current in the conductor (spin pumping). Via the inverse Spin Hall ef-
fect, the spin current is then converted into a measurable electrical volt-
age. These mechanisms have been experimentally verified by Kajiwara et
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Transmission of electrical signals by spin-wave
interconversion in a magnetic insulator
Y. Kajiwara1,2, K. Harii1, S. Takahashi1,3, J. Ohe1,3, K. Uchida1, M. Mizuguchi1, H. Umezawa5, H. Kawai5, K. Ando1,2,
K. Takanashi1, S. Maekawa1,3 & E. Saitoh1,2,4

The energy bandgap of an insulator is large enough to prevent
electron excitation and electrical conduction1. But in addition to
charge, an electron also has spin2, and the collective motion of spin
can propagate—and so transfer a signal—in some insulators3. This
motion is called a spin wave and is usually excited using magnetic
fields. Here we show that a spin wave in an insulator can be gen-
erated and detected using spin-Hall effects, which enable the direct
conversion of an electric signal into a spin wave, and its sub-
sequent transmission through (and recovery from) an insulator
over macroscopic distances. First, we show evidence for the trans-
fer of spin angular momentum between an insulator magnet
Y3Fe5O12 and a platinum film. This transfer allows direct conver-
sion of an electric current in the platinum film to a spin wave in the
Y3Fe5O12 via spin-Hall effects4–11. Second, making use of the trans-
fer in a Pt/Y3Fe5O12/Pt system, we demonstrate that an electric
current in one metal film induces voltage in the other, far distant,
metal film. Specifically, the applied electric current is converted
into spin angular momentum owing to the spin-Hall effect7,8,10,11 in
the first platinum film; the angular momentum is then carried by a
spin wave in the insulating Y3Fe5O12 layer; at the distant platinum
film, the spin angular momentum of the spin wave is converted
back to an electric voltage. This effect can be switched on and off
using a magnetic field. Weak spin damping3 in Y3Fe5O12 is
responsible for its transparency for the transmission of spin angu-
lar momentum. This hybrid electrical transmission method poten-
tially offers a means of innovative signal delivery in electrical
circuits and devices.

A flow of spin angular momentum is called a spin current2. In
solids, there are two types of carriers for non-equilibrium spin cur-
rents. One is a conduction electron2,12,13 (Fig. 1a). The other is col-
lective motion of magnetic moments (Fig. 1b)—spin waves14,15,
comprising magnetostatic and exchange spin-wave modes14,15.
Here we call a spin current carried by spin waves a ‘spin-wave spin
current’ (see Supplementary Information section A for details).

Extensive studies of conduction-electron spin currents in metals
and semiconductors have clarified that the currents have a critical
problem; they disappear within a very short distance, typically hun-
dreds of nanometres16. In contrast, it has been shown that a spin-
wave spin current may persist for much greater distances because it is
carried by the collective motion of spins coupled by exchange inter-
action14,15. Significantly, a spin-wave spin current exists even in mag-
netic insulators, in which its decay is typically suppressed. This is
because the decay is caused mainly by conduction electrons, which
are absent in insulators. For instance, in the magnetic insulator
Y3Fe5O12, the spin-wave decay length can be several centimetres3

and thus the waves are propagated over a relatively long distance;
Y3Fe5O12 is an ideal conductor for spin-wave spin currents even
though it is an insulator for electric currents.

To make use of the spin-wave spin currents in insulators, it is
necessary to find methods for getting a d.c. spin current into and
out of the insulators. We show that this can be done by using spin
pumping and spin-transfer torque (STT). Here, spin pumping refers
to the transfer of spin angular momentum from magnetization-
precession motion to conduction-electron spin9,17–19, a phenomenon

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 2Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522,
Japan. 3CREST, 4PRESTO, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan. 5FDK Corporation, Shizuoka 431-0495, Japan.

Figure 1 | Two types of non-equilibrium spin currents in solids. a, A
schematic illustration of a conduction-electron spin current: spin angular
momentum JS carried by electron diffusion. b, A schematic illustration of a
spin-wave spin current: spin angular momentum carried by collective
magnetic-moment precession. c, A schematic illustration of the spin-

pumping detection mechanism in the present system. If the magnetization
(M) dynamics in the Y3Fe5O12 layer (on the top face of the block) pumps a
spin current JS into the Pt layer, the current generates electromotive force
ESHE via ISHE.
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which allows generation of a spin current from magnetization
motion. STT is, in contrast, the reverse process of this spin pumping,
that is, the transfer of angular momentum from conduction-electron
spin to magnetization20–22: the magnetization receives torque by
absorbing a spin current20–22. These two phenomena enable the
mutual conversion of angular momentum between conduction-elec-
tron spin and magnetization. However, up to now, experiments on
these phenomena have been limited to electric conductors. In this
Letter we show that by using Pt/Y3Fe5O12 films, both phenomena23

occur even at insulator/metal interfaces, and the phenomena allow
transmission of a d.c. electric signal through the insulator for a long
distance in a controllable manner at room temperature.

First, we show evidence for spin pumping across a Pt/garnet-type
Y3Fe5O12 interface. Y3Fe5O12 is a ferrimagnetic insulator whose
charge gap is 2.7 eV. Owing to this huge gap, Y3Fe5O12 exhibits very
high resistivity (,1012V cm at room temperature, greater than that
of air). Also, the magnetization damping is very small:
a < 6.7 3 1025, where a is the Gilbert damping coefficient19,24 for
the sample used in the present study (Fig. 2b). Figure 2a is a schematic
illustration of the experimental set-up. The sample is a bilayer film
composed of a single-crystal Y3Fe5O12 layer and a Pt layer. Here, the

Pt layer is used as a spin-current detector, in which the inverse spin-
Hall effect9–11 (ISHE) converts a spin current into electromotive force
ESHE via the spin–orbit interaction. In ISHE, when a spin current
carries the spin polarization s along the spatial direction JS, ESHE is
given by9,11 (Fig. 1c):

ESHE // JS 3 s (1)

ISHE is known to be enhanced in heavy noble metals such as Pt (refs
9, 11).

During the measurements, a static in-plane magnetic field H is
applied and the sample is placed at the centre of a 9.44 GHz micro-
wave cavity. When H fulfils the ferromagnetic spin-wave resonance
(SWR) conditions14,15, precession of magnetization is induced. If this
precession pumps spin currents into the Pt layer, then voltage is
generated in the Pt layer via ISHE; spin pumping in this system is
sensitively detected by measuring the voltage difference V between
the ends of the Pt layer9,11.

Figures 2c and 2d are the SWR spectrum and the H dependence of
dV/dH, respectively, both measured with microwaves applied and
with the external magnetic field perpendicular (h 5 90u) to the dir-
ection across the electrodes. In the SWR spectrum, many resonance
signals appear, each dispersion corresponding to a SWR mode14,15 in
the Y3Fe5O12 layer. These resonance fields are much greater than the
in-plane magnetization saturation field (HC 5 20 Oe) of this
Y3Fe5O12 film. In the dV/dH spectrum, as shown in Fig. 2d, multiple
peaks appear at these SWR fields, indicating that electromotive force
is induced in the Pt layer concomitant with SWR in the Y3Fe5O12

layer. Figure 2g shows the microwave-power dependence of the max-
imum peak values Vmax in the V(H) curves. The experimental data
(filled circles) are well reproduced by a curve (solid line) calculated
from a longitudinal spin-pumping model in which the spin accu-
mulation in the Pt layer is taken into consideration (see
Supplementary Information section B for details). This voltage signal
was found to disappear in a Cu/Y3Fe5O12 system, where the Pt layer is
replaced by a Cu layer in which the spin–orbit interaction is very
weak22, indicating the important role of spin–orbit interaction, or
ISHE, in the voltage generation. The voltage signal also disappears in
a Pt/SiO2/Y3Fe5O12 system, where the Y3Fe5O12 and the Pt layers are
separated by a thin (10 nm) film of insulating SiO2, and also in a Pt/
Gd3Ga5O12 system, where the Y3Fe5O12 layer is replaced by a para-
magnetic Gd3Ga5O12 layer. These last two results indicate that direct
contact between the magnet Y3Fe5O12 and Pt is necessary for the
observed voltage generation; electromagnetic artefacts are irrelevant.
By changing the field direction h, the V signal for Pt/Y3Fe5O12 dis-
appears at h 5 0 (Fig. 2e, f) and then changes its sign at 290u, h , 0.
This behaviour is consistent with equation (1), and is direct evidence
for ISHE induced by spin pumping from the insulator Y3Fe5O12.

The spin pumping in Pt/Y3Fe5O12 can be attributed to the small
but finite spin-exchange interaction17,19 between a conduction elec-
tron in Pt and a localized moment in Y3Fe5O12, or to the mixing
conductance of the conduction electrons23 at the interface. By taking
this interaction into account in coupled equations for the magnet-
ization and spin accumulation (the Landau–Lifshitz–Gilbert equa-
tion24 and the Bloch equation with spin diffusion17,19), we obtain the
pumped spin current, which when combined with ISHE9–11 allows
calculation of V as a function of the spin-exchange interaction at the
interface. From the experimental values of V together with values of
microwave field strength and the spin-Hall angle for Pt (ref. 11), the
magnitude of the spin-exchange energy density at the interface is
estimated to be ,16 erg cm22; alternatively, the magnitude of the
mixing conductance23 is estimated as 3 3 1012 cm22 (see
Supplementary Information section B for details).

The above observation of the spin pumping in Pt/Y3Fe5O12 sug-
gests the possibility of the reverse process: STT20–22 acting on the
insulator Y3Fe5O12. Second, we demonstrate STT across the Pt/
Y3Fe5O12 interface using the same system as follows. We applied an
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Figure 2 | Spin pumping in Pt/Y3Fe5O12. a, Schematic illustration of the
experimental set-up. The sample is a Pt/Y3Fe5O12 bilayer film, 3 mm
3 1 mm, composed of a 1.3-mm-thick garnet-type Y3Fe5O12 layer and a 10-
nm-thick Pt layer. The voltage (V) electrodes attached to the Pt film are
3 mm apart. H denotes the in-plane external magnetic field. b, SWR
spectrum measured when a magnetic field is perpendicular to the film.
Arrows, fitting results for the exchange spin-wave resonance fields29. N, spin-
wave mode number along the direction perpendicular to the film. Spectral
width and a for the N 5 1 mode was estimated via a fitting procedure using
Lorentz-type dispersion functions (Supplementary Information section E).
P and H, the microwave absorption intensity and the strength of
H, respectively. c, Ferromagnetic SWR spectrum for the Pt/Y3Fe5O12 film at
h 5 90u (h is defined in a). d, H dependence of dV/dH for the Pt/Y3Fe5O12

film measured by applying 1 mW microwaves at h 5 90u. Inset, H
dependence of V for the Pt/Y3Fe5O12 film at h 5 90u. Galvanomagnetic
effects24 in magnets are irrelevant to V, as Y3Fe5O12 is an insulator. e, H
dependence of V measured by applying the microwaves at various values of
h. f, h dependence of the maximum peak values Vmax in the V(H) curves
measured with application of microwaves. g, Microwave-power dependence
of Vmax. The experimental data (filled circles) are well reproduced by a curve
(solid line) calculated from a longitudinal spin-pumping model.
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(a) (b)

Figure 1.9: Cartoons depicting the deployment of a Pt|YIG (Y3Fe5O12) for
spin current detection via spin pumping and inverse Spin Hall e�ect. (a) Two
voltage electrodes are connected to the Pt layer. Microwave pumping induces the
precession of the magnetization M at cone angle ◊ around the in-plane magnetic
field H. (b) The magnetization precession pumps a spin current j

s

in the Pt layer,
which is converted into the electromotive force ESHE via the inverse Spin Hall
e�ect. Taken from Ref. [28].

al. [28] by deploying a magnetic insulator (YIG) / nonmagnetic metal (Pt)
bilayer. In the YIG layer, microwave pumping triggers the precession of
the magnetization M around the applied magnetic field H with cone angle
◊ [see Fig. 1.9(a)]. The precession pumps spin current into the Pt layer via
spin pumping. The Pt layer is used for spin-current detection: the strong
spin orbit coupling gives rise to a large spin Hall angle, and hence the
spin current is converted into a measurable electromotive force, as shown
in Fig. 1.9(b). Kajiwara et al. confirmed also the validity of the inverse
mechanism, which corresponds to the conversion of a charge current in a
nonmagnetic conductor into magnetization dynamics in a magnetic insu-
lator via the SHE e�ect and the spin transfer torque. For this purpose,
they injected a charge current into the Pt layer, which is converted into
a nonequilibrium spin accumulation at the Pt|YIG interface. The latter
exerts a spin-transfer torque on the YIG magnetization. In response, the
magnetization oscillates emitting electromagnetic waves, whose power spec-
tra can be measured by an antenna and ultimately related to the charge
current. A natural step forward is to combine these generation and detec-
tion techniques to study the magnetization dynamics through insulating
system. This can be achieved by deploying a normal metal (NM1) | ferro-
magnetic insulator (FI) | normal metal (NM2) heterostructure. A charge
current flows into the NM1, generating a transverse spin current via SHE.
The magnetization dynamics is then triggered at the NM1|M by the spin
current impinging from the NM1 side, and it propagates as a spin-wave
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transporting the spin angular momentum towards the second metallic layer.
At the interface between the FI and NM2 layers, the magnetic precession is
converted back to a spin current, which finally generates a charge current
as a consequence of the inverse spin-Hall e�ect.

Such setup was recently deployed by the group of B. van Wees to mea-
sure the relaxation lengthscale ⁄m associated with the motion of magnons
in YIG [35]. By varying the distance between the metallic injector and
detector, the authors were able to identify two di�erent regimes of magnon
transport. With the separation length d between the two metallic leads
being smaller than ⁄m, the recorded spin current signal was shown to scale
as 1/d, while for d > ⁄m the signal displayed a decay Ã e≠x/⁄

m (approxi-
mating the transport as one-dimensional). Hence, these regimes can be dis-
tinguished into di�usive (d < ⁄m) and relaxation-limited regimes (d > ⁄m),
pointing out the presence of mechanisms which limit the magnon lifetime
(or equivalently its propagation length) such as, e.g., the interactions with
the phononic environment.

1.4.2 Spin Seebeck e�ect

The discovery of the charge Seebeck e�ect, i.e., the conversion of a temper-
ature gradient into a charge voltage, dates back to 1821. It took almost two
centuries to detect experimentally its spin analogue, i.e., the generation of
a pure spin current via thermal bias, which is dubbed the Spin Seebeck
e�ect (SSE) [29–32]. The discovery of the SSE in a magnetic insulating
system is attributed to Uchida et al [30].

The experimental setup that has been deployed for this purpose is de-
picted in Fig. 1.10(a): a YIG slab covered by a platinum film, to which two
voltage electrodes are attached. The sample is subject to a temperature
gradient along the z axis, induced by setting a temperature di�erence �T
between the YIG substrate and the Pt film. The applied in-plane magnetic
field points along the x axis (q = 90 ¶, with q being the angle comprised
between the magnetic field and the ≠y axis). Figure 1.10(b) shows that
the measured voltage depends linearly on the temperature di�erence �T ,
and it vanishes when �T = 0. The Spin Seebeck voltage vanishes as well
when the in-plane magnetic field is rotated along the -y axis (q = 0). The
results are consistent with the following mechanism: a linear thermal bias
�T triggers the magnetization dynamics. The latter, at the YIG|Pt inter-
face, pumps a spin current js Ã �T parallel to the thermal gradient into
the Pt layer. The spin current is then electrically detected via ISHE in
the Pt layer. According to the symmetry of the ISHE (1.57), the signal
disappear for q = 0, and it reverses its sign when the thermal gradient is
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regime, in which the length scale of magnetization texture such as 
the domain-wall width is much larger than the scattering mean 
free path or Fermi wavelength, as appropriate for most transition 
metal ferromagnets. In spite of initial controversies, the importance 
of dissipation in the adiabatic regime51 is now generally appreci-
ated. In analogy to the Gilbert damping factor α, the dissipation 
under an applied current is governed by a material parameter 
βc that for itinerant magnetic materials is of the same order as α 
(ref. 51; for a review see ref. 52). In the presence of electron–hole 
asymmetry at the Fermi energy, the adiabatic thermal spin trans-
fer torque10 is associated with a dissipative βT correction53,54, which 
has been explicitly calculated for GaMnAs (ref. 55). Non-adiabatic 
corrections to the thermal spin-transfer torque in fast-pitch ballis-
tic domain walls have been calculated by "rst-principles56. Laser-
induced domain-wall pinning might give clues for heat current 
e#ects on domain-wall motion57.

Spin waves can move domain walls, leading to domain-wall 
motion in the opposite direction to the spin-wave propagation58,59. 
Recently, this topic has been addressed in the modern context of 
heat-current-induced domain-wall motion in magnetic insulators 
that induces motion to the hotter edge of the wire60–63.

Spin Seebeck e!ect. $e spin Seebeck e#ect is the transverse elec-
tromotive force in a paramagnetic contact to a ferromagnet by a 
temperature bias, as illustrated in Fig. 3d and e for the two princi-
pal sample geometries. $is e#ect is interpreted in terms of a spin 
current injected into the normal metal by the ferromagnet64 that is 
transformed into an electric voltage by the inverse spin Hall e#ect 

(ISHE)65–67 (Fig. 3c). $e ISHE is caused by the bending of electron 
orbits of up and down spins into opposite directions normal to their 
group velocity, owing to the spin–orbit interaction. It generates a 
relatively large voltage for heavy metals such as Pt while being virtu-
ally absent for Cu, and it has the advantage of scaling linearly with 
the wire length (for details see Jungwirth et al. in this issue68).

$e spin Seebeck e#ect was discovered "rst in permalloy64, and 
later in electrically insulating yttrium iron garnet (YIG)69, ferro-
magnetic semiconductors (GaMnAs)70 and Heusler alloys71, with 
very similar phenomenology. Its physics is completely di#erent 
from the spin-dependent Seebeck e#ect discussed above, because 
the conduction electron contribution is negligible72 (see, however, 
ref. 73). $is became obvious only a%er the observation of the spin 
Seebeck e#ect generated by an insulating ferromagnet69 (Fig. 3f,g). 
$e spin current is the result of a thermal non-equilibrium at the 
interface between the ferromagnet and the normal conductor, as 
explained in the following in terms of an imbalance of the ther-
mally excited spin currents over the interface by spin pumping74  
and spin torques47.

Consider "rst a ferromagnet at thermal equilibrium with an 
attached normal metal contact (Fig. 4a). When the ferromagnet is 
thermally excited, by its time dependence the magnetization m(t) 
‘pumps’ a net spin current into the normal metal74

 Js (t) m(t) dm(t)
dt× = ħgr

4π
pump

 
 (3)

where gr is the real part of the (dimensionless) spin-mixing 
conductance of the FM|NM interface. On the other hand, 
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regime, in which the length scale of magnetization texture such as 
the domain-wall width is much larger than the scattering mean 
free path or Fermi wavelength, as appropriate for most transition 
metal ferromagnets. In spite of initial controversies, the importance 
of dissipation in the adiabatic regime51 is now generally appreci-
ated. In analogy to the Gilbert damping factor α, the dissipation 
under an applied current is governed by a material parameter 
βc that for itinerant magnetic materials is of the same order as α 
(ref. 51; for a review see ref. 52). In the presence of electron–hole 
asymmetry at the Fermi energy, the adiabatic thermal spin trans-
fer torque10 is associated with a dissipative βT correction53,54, which 
has been explicitly calculated for GaMnAs (ref. 55). Non-adiabatic 
corrections to the thermal spin-transfer torque in fast-pitch ballis-
tic domain walls have been calculated by "rst-principles56. Laser-
induced domain-wall pinning might give clues for heat current 
e#ects on domain-wall motion57.

Spin waves can move domain walls, leading to domain-wall 
motion in the opposite direction to the spin-wave propagation58,59. 
Recently, this topic has been addressed in the modern context of 
heat-current-induced domain-wall motion in magnetic insulators 
that induces motion to the hotter edge of the wire60–63.

Spin Seebeck e!ect. $e spin Seebeck e#ect is the transverse elec-
tromotive force in a paramagnetic contact to a ferromagnet by a 
temperature bias, as illustrated in Fig. 3d and e for the two princi-
pal sample geometries. $is e#ect is interpreted in terms of a spin 
current injected into the normal metal by the ferromagnet64 that is 
transformed into an electric voltage by the inverse spin Hall e#ect 

(ISHE)65–67 (Fig. 3c). $e ISHE is caused by the bending of electron 
orbits of up and down spins into opposite directions normal to their 
group velocity, owing to the spin–orbit interaction. It generates a 
relatively large voltage for heavy metals such as Pt while being virtu-
ally absent for Cu, and it has the advantage of scaling linearly with 
the wire length (for details see Jungwirth et al. in this issue68).

$e spin Seebeck e#ect was discovered "rst in permalloy64, and 
later in electrically insulating yttrium iron garnet (YIG)69, ferro-
magnetic semiconductors (GaMnAs)70 and Heusler alloys71, with 
very similar phenomenology. Its physics is completely di#erent 
from the spin-dependent Seebeck e#ect discussed above, because 
the conduction electron contribution is negligible72 (see, however, 
ref. 73). $is became obvious only a%er the observation of the spin 
Seebeck e#ect generated by an insulating ferromagnet69 (Fig. 3f,g). 
$e spin current is the result of a thermal non-equilibrium at the 
interface between the ferromagnet and the normal conductor, as 
explained in the following in terms of an imbalance of the ther-
mally excited spin currents over the interface by spin pumping74  
and spin torques47.

Consider "rst a ferromagnet at thermal equilibrium with an 
attached normal metal contact (Fig. 4a). When the ferromagnet is 
thermally excited, by its time dependence the magnetization m(t) 
‘pumps’ a net spin current into the normal metal74

 Js (t) m(t) dm(t)
dt× = ħgr

4π
pump
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where gr is the real part of the (dimensionless) spin-mixing 
conductance of the FM|NM interface. On the other hand, 
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(a) (b)

Figure 1.10: (a) Longitudinal SSE setup. (b) Experimental data for the longi-
tudinal SSE in a YIG|Pt bilayer. Taken from Ref. [34].

in the opposite direction.

The voltage measured in this experimental configuration corresponds to
the so-called longitudinal Spin Seebeck voltage, as the spin current gener-
ated by the thermal gradient is parallel to the latter. There is a transverse
Spin Seebeck e�ect as well; we neglect it here as the structure of the device
used for the generation and detection of the spin current is more compli-
cated, and the overall measurement is more likely to be a�ected by parasitic
e�ects.

Recent investigations suggest that the observable spin Seebeck signal in
magnetic insulators relies on both magnon bulk transport properties and
on the interface coupling to the detection material [33]; however, there is
not yet a general consensus on the SSE phenomenology. Nonetheless, SSE
measurements have been already successfully deployed to unveil fundamen-
tal properties of magnon transport such as, e.g., the interactions between
magnons and phonons [20]. Moreover, looking at possible technological ap-
plications, the SSE appeals as a very promising mechanism as it allows to
convert otherwise-wasted heat into spin currents, opening up new prospects
for a more energy-e�cient generation of devices.



1.5. THERMOPOWER 31

1.5 Thermopower
In metallic materials, a heat current driven by a temperature gradient ˆxT
carries electronic charges with it, thereby generating a charge current jx

or a thermopower electric field E for open- or closed-circuit conditions.
This phenomenon is dubbed as Seebeck e�ect. Focusing on open-circuit
conditions, we can define the Seebeck coe�cient S (or thermopower) cor-
responding to the induced voltage gradient ˆxV = ≠E as

S © ≠ ˆxV

ˆxT

----
j

x

=0

. (1.58)

The Seebeck e�ect finds application in thermometers, power generators and
its reciprocal- the Peltier e�ect- in coolers. The basic constituent of these
devices is a thermocouple, which consists of two conductors forming an
electrical junction; most commonly an n-type and a p-type semiconductor.
As shown in Fig. 1.11(a), a heat flux applied at one end of a thermocouple
induces a thermal gradient through the conductors. Due to the Seebeck
e�ect, the heat current triggers the motion of the majority carriers, i.e.,
electrons and holes in the n-type and p-type semiconductor, respectively.
Both carriers flow in the same direction, but, as they have opposite charges,
their motion ultimately results into two charge currents with opposite di-
rectionality, giving rise to an overall current flowing through the circuit.
The temperature gradient applied between the two ends can be straight-
forwardly deduced by the resulting voltage; if the temperature of one end
is known, then the thermocouple serves as thermometer. One can as well
heat one end in a controlled way to build up a voltage di�erence (power
generator) or a voltage di�erence can be externally applied to cool or heat
one termination, serving as a temperature controller (Peltier cooler).

In reality, not only charge carriers but also magnons and phonons do
contribute to the measurable thermopower (1.58). Neglecting phonon-
related e�ects for the moment, we know from the previous section that
a heat flux triggers a flow of magnons, which drift in the direction op-
posite to the thermal gradient. As magnons and electrons interact with
each other in a bulk ferromagnetic metal, their mutual interaction gives
rise to a magnon-drag contribution to the thermopower [36]. Namely, the
electrons are dragged by magnons in the direction of the magnonic drift.
A recent experiment of group of J. Heremans (Ohio) confirms that the
magnon-drag thermopower is a nonnegligible contribution to the electron
di�usive thermopower, and it even dominates the thermopower of elemen-
tal Fe and Co over a broad range of temperatures [see Fig. 1.11(b)] [37].
This result relies on modeling the electronic and magnonic band struc-
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Observation of the spin Seebeck effect
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The generation of electric voltage by placing a conductor in a
temperature gradient is called the Seebeck effect1,2. Its efficiency
is represented by the Seebeck coefficient, S, which is defined as the
ratio of the generated electric voltage to the temperature differ-
ence, and is determined by the scattering rate and the density of
the conduction electrons. The effect can be exploited, for example,
in thermal electric-power generators and for temperature sensing,
by connecting two conductors with different Seebeck coefficients,
a device called a thermocouple1,2. Here we report the observation
of the thermal generation of driving power, or voltage, for electron
spin: the spin Seebeck effect. Using a recently developed spin-
detection technique that involves the spin Hall effect3–14, we mea-
sure the spin voltage generated from a temperature gradient in a
metallic magnet. This thermally induced spin voltage persists even
at distances far from the sample ends, and spins can be extracted
from every position on the magnet simply by attaching a metal.
The spin Seebeck effect observed here is directly applicable to the
production of spin-voltage generators, which are crucial for driv-
ing spintronic15–18 devices. The spin Seebeck effect allows us to
pass a pure spin current19, a flow of electron spins without electric
currents, over a long distance. These innovative capabilities will
invigorate spintronics research.

The spin Seebeck effect refers to the generation of spin ‘voltage’ as a
result of a temperature gradient. We define spin voltage as the spin-
current potential, which is represented by m"2 m#, where m" and m#
respectively denote the electrochemical potentials for spin-up and
spin-down electrons14,20; a gradient in the spin voltage drives a spin
current. In a metallic magnet, spin-up and spin-down conduction
electrons notably have different scattering rates and densities16, and
thus have different Seebeck coefficients, as if two conductors with
different S values were inherently present in one magnet (Fig. 1b).
When a metallic magnet is subjected to a temperature gradient,
therefore, it should generate different driving powers of electrons
in different spin channels along the temperature gradient21–24. This
is the proposed scenario for the spin Seebeck effect: in the spin sector,
a magnet works in the same way as a thermocouple (Fig. 1a, b). This
driving power of electrons generates differing amounts of flow in the
two spin channels, that is, a spin current. To be more specific, we
consider a magnet with uniform magnetization subject to a uniform
temperature gradient. In this case, and when the length of the magnet
along the temperature gradient is much greater than the spin-
diffusion length25 of the magnet, the above scenario and thermody-
namic arguments26 predict the spatial distribution of m" and m# along
the temperature gradient shown in Fig. 2a.

However, this spin Seebeck effect remains to be observed. The
recently discovered inverse-spin-Hall effect10–14 (ISHE) is a powerful
tool for detecting spin voltage, and we use it to investigate the spin
Seebeck effect in the present study. The ISHE converts a spin current
into an electromotive force ESHE by means of spin–orbit scattering. A
spin current carries a spin-polarization vector s along a spatial

direction JS. The relation between ESHE, JS and s is given by the
following vector product:

ESHE~DISHEJS|s ð1Þ
The ISHE efficiency DISHE is enhanced in noble metals, such as Pt. By
measuring ESHE, the ISHE can be used to detect a spin current10–14.

Figure 2b shows an illustration of the sample system used in the
present study. The sample consists of a 20-nm-thick, soft ferromag-
netic Ni81Fe19 film with a Pt wire attached to one end. The Ni81Fe19

layer was deposited on a sapphire substrate by electron-beam eva-
poration in a high vacuum, and the Pt layer was then sputtered in
an Ar atmosphere. Immediately before the sputtering, the surface of
the Ni81Fe19 layer was cleaned by Ar ion etching. The length, the width
and the thickness of the Pt wire are respectively LPt 5 4 mm, 100mm,
and dPt 5 10 nm. We apply an in-plane external magnetic field, H,
along the x direction (Fig. 2d), except when collecting a set of angle-
dependent data (discussed below). The coercive force, HC, of the
Ni81Fe19 layer is around 15 Oe at 300 K, and the magnetization is
aligned along the external magnetic field direction when jHj. HC.
A temperature gradient =T is applied along the x direction by generat-
ing a temperature difference DT between the ends of the layer. Owing
to the direction of the temperature gradient (parallel or antiparallel to

1Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan. 2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
3CREST, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan. 4Cross-Correlated Materials Research Group, RIKEN, Wako, Saitama 351-0198, Japan. 5PRESTO,
Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan.
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Figure 1 | The spin Seebeck effect. a, Illustration of a thermocouple. A
thermocouple consists of two conductors (metals A and B) connected to
each other. They have different Seebeck coefficients and, thus, the voltage V
between the output terminals is proportional to the temperature difference
T1 2 T2 between the ends of the couple. b, Illustration of the spin Seebeck
effect. In a metallic magnet, spin-up (") and spin-down (#) conduction
electrons have different Seebeck coefficients. When a temperature gradient is
applied, a spin voltage m"2 m# proportional to the temperature difference
appears; a magnet functions just like a thermocouple, but in the spin sector.
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Figure 1.11: (a) Thermocouple. A thermal gradient ˆ
x

T triggers a ther-
mopower electric field E in a couple of conductors with opposite thermopower.
A temperature-dependent voltage V is established at the cold end. Taken from
Ref. [29]. (b) Magnon drag is shown to dominate the thermopower of elemental
Fe from 2 to 80 K. Adapted from Ref. [37].

tures with simple parabolic dispersions. Within this approximation, the
di�usive thermopower scales linearly with the temperature as T/TF , where
TF is Fermi temperature, while the magnon-drag contribution to the ther-
mopower scales as (T/Tc)3/2, with Tc being the Curie temperature [36]. If
the Curie temperature is much lower than the Fermi one, it is reasonable
to expect that the magnonic thermopower dominates over a broad range
of temperatures, as experimentally observed. While deriving an analytical
expression for the magnon-drag thermopower, the dissipative contribution
to Eq. (1.40), i.e., the term proportional to —, was used by Lucassen et
al. as a starting point [36]. The first term in Eq. (1.40) is proportional
to –, and, with permalloy in mind (for which – π —), it was neglected.
However, we can not assume it to be generally a valid approximation for
ferromagnetic metals, and the incompleteness of the derivation calls for
further theoretical investigations. In Chapter 5 of this Thesis we present a
complete theory for the magnon-drag thermopower.

1.6 Outline
In this Thesis, the transport properties of spin superfluids, and the in-
terplay between magnons and phonons, or electrons, play a key role. In
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Chapter 2, we focus on the interactions between spin superfluid and ther-
mally excited magnons. We derive a two-fluid model describing the coupled
dynamics of condensed and thermal magnons, and we identify a possible
experimental signature of spin superfluidity. In Chapter 3, we develop a
general phenomenology describing the coupling between the coherent dy-
namics of the magnetic order parameter and the incoherent dynamics of
thermal magnons in ferromagnetic insulators. Specifically, we show that
the interactions between thermal and condensed magnons open up the pos-
sibility of mediating - via low dissipation spin superfluid current - nonlocal
communication between an incoherent spin source and topological solitons.

In Chapter 4, we investigate how magnetoelastic coupling a�ects ther-
mal spin transport. Motivated by recent spin transport measurements, we
develop a transport theory for magnon-polaron modes, and we show that
the experimental observations can be explained by invoking magneto-elastic
coupling. Ultimately, in Chapter 5, we turn our focus onto magnon-electron
interactions, and we address the magnon-drag to the thermopower arising
in ferromagnetic metals subject to temperature gradient. Our findings un-
veil a novel contribution to the already predicted magnon-drag, opening
interesting prospects for engineering new thermoelectric devices based on
metallic ferromagnetic smaterials.





2 Two-Fluid Theory for Spin
Superfluidity in Magnetic Insulators

We investigate coupled spin and heat transport in easy-plane magnetic in-
sulators. These materials display a continuous phase transition between
normal and condensate states that is controlled by an external magnetic
field. Using hydrodynamic equations supplemented by Gross-Pitaevski
phenomenology and magnetoelectric circuit theory, we derive a two-fluid
model to describe the dynamics of thermal and condensed magnons, and
the appropriate boundary conditions in a hybrid normal-metal|magnetic-
insulator|normal-metal heterostructure. We discuss how the emergent spin
superfluidity can be experimentally probed via a spin Seebeck e�ect mea-
surement.1

2.1 Introduction
It has been many years since Kapitza first observed that helium, when
cooled below a temperature of 2.17 K, displays properties attributable to
a new quantum phase of matter [38], such as the ability to flow without
dissipation through thin capillaries, the quantization of the vorticity and a
record thermal conductivity. These properties are well understood within
the framework of the two-fluid model proposed independently by Tisza [39]
and Landau [40], in which He II is described as a mixture of a normal fluid,
which is viscous and carries all the entropy of the system, and a superfluid
that flows without friction and carries no thermal energy.

Only a few years later, the two-fluid model successfully threw light upon
the apparent absence of the usual thermoelectric e�ects, such as the See-
beck and the Peltier e�ects, in the superconducting state [41]. Indeed, in

1This Chapter is directly based on Two-Fluid Theory for Spin Superfluidity in Mag-

netic Insulators, B. Flebus, S. A. Bender, Y. Tserkovnyak, and R. A. Duine, Phys. Rev.
Lett. 116, 117201 (2016). For this paper, B. Flebus performed all analytical calculations
with the help of S. Bender. Y. Tserkovnyak and R. A. Duine conceived the project. B.
Flebus drafted the paper, all other authors contributed to the text.
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superconductors, all the conventional thermoelectric properties vanish due
to the coexistence of the thermal quasiparticle current with a dissipation-
less supercurrent that counterflows with it. The analogy between the su-
percurrent of electric charge in superconductors and the mass superflow in
helium stems from the underlying common origin of these phenomena, i.e.,
the spontaneous breaking of the U(1) symmetry underlying Bose-Einstein
condensation (BEC, of either atoms or Cooper pairs) and the associated
macroscopic quantum coherence. Therefore, a superfluid phase can be de-
scribed by a two-fluid model, in which the condensed and itinerant atoms
are, loosely speaking, identified with the superfluid and normal components,
respectively. This concept can be extended to a variety of systems exhibit-
ing U(1) symmetry breaking and thus the coexistence of a normal and a
Bose-Einstein condensed fluids, such as excitons [42,43], polaritons [44,45],
and magnons [46–48].

A growing interest has recently arisen in magnonic systems as promising
setups for achieving room-temperature Bose-Einstein condensation, moti-
vated in part by the experimental progress of Demokritov et al. [3] on
parametrically pumped magnon condensates. More recently, a theoretical
proposal for the realization of a BEC of magnons by means of direct spin
current injection from an adjacent normal metal with strong spin-orbit cou-
pling was put forward by Bender et al. [17]. Unlike BEC of real particles,
BEC of quasiparticles and, in particular, quasiequilibrium magnons does
not require low temperatures, since the high densities of magnons needed
for the condensate to form can be produced via external pumping or by
tuning the magnetic field, which is facilitated by their small e�ective mass
(corresponding to strong exchange).

In this Chapter, we focus on a ferromagnetic insulator with easy-plane
magnetic anisotropy as a simple model system that displays a transition
between normal and BEC phases and exhibits superfluid behavior. The
magnet is sandwiched between two metallic reservoirs that act like ther-
mal baths, set at two di�erent temperatures, and that may provide spin
accumulation via the spin Hall e�ect (as illustrated in Fig. 4.1). The tem-
perature di�erence applied across the ferromagnet induces a spin current
into normal metals, which can be measured as an inverse spin Hall volt-
age and is dubbed the spin Seebeck e�ect [29]. By sweeping the magnetic
field in the z direction, the system can be tuned to a state where the (xy)
easy-plane rotational symmetry is spontaneously broken, and which, as a
result, supports collective spin currents. We show that the spin Seebeck
e�ect is then diminished, as a result of counterflow between condensate and
thermal spin currents. As a practical utility, our results may provide novel
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Figure 2.1: Normal-metal|easy-plane insulator|normal-metal hybrid heterostruc-
ture. The state of the equilibrium magnetization, which is determined by the inter-
play between the magnetic field B and the anisotropy energy K, can be perturbed
by magnon transport driven by temperature gradient ÒT and spin accumulations
µ

l,r

= µ
l,r

ẑ sustained by the metal leads. At low magnetic fields, the spin Seebeck
current (polarized along the z axis) j

x

induced by the temperature gradient ÒT
coexists with a superfluid spin counterflow j

c

, as discussed in the text.

routes to control thermal spin currents.

2.2 Model and hydrodynamic equations
We consider the following model Hamiltonian for an easy-plane magnetic
insulator subjected to a field B oriented along the z axis:

H =
⁄

d3r

3
≠ A

2s
ŝ · Ò2ŝ + Bŝz + K

2s
ŝ2

z

4
, (2.1)

where ŝ is the spin density operator (in units of ~), A the exchange sti�-
ness, K > 0 the constant governing the strength of the local easy-plane
anisotropy, and s the saturation spin density. Performing the Holstein-
Primako� transformation [9], ŝz = �̂†�̂ ≠ s and ŝ≠ =

Ò
2s ≠ �̂†�̂�̂, it

is straightforward to recast the Heisenberg dynamics of ŝ as a superfluid
coupled to a normal cloud (see, e.g., Ref. [12]). By, furthermore, includ-
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ing phenomenologically the Gilbert damping constant –, the corresponding
Gross-Pitaevksi equation (following the Popov approximation [10]) reads as

(i ≠ –)~ˆt� = (~� + Knc/s ≠ iR) � ≠ AÒ2� . (2.2)

Here � © È�̂Í = Ô
nce

≠iÏ is the superfluid order parameter, with Ï being
the precessional angle of the magnetization density in the xy plane and nc

(nx) condensed (normal) magnon density. In particular, sz = nc + nx ≠ s.
We are assuming small deviations from the ground state (in the absence of
anisotropy), so that nc+nx π s, throughout. ~� © B≠K(1≠2nx/s) is the
normal-phase magnon gap, and the collisional term R describes the coupling
to the finite-temperature normal cloud [49], which is defined by „̂ © �̂ ≠
�, with È„̂†„̂Í being the normal cloud density nx. At zero temperature
(and thus R æ 0), Eq. (2.2) recasts the Landau-Lifshitz-Gilbert equation
[50] for small-angle dynamics of the spin density around the ≠z direction
(see Fig. 1.4). It is, furthermore, illuminating to rewrite Eq. (2.2) as the
superfluid hydrodynamic equations:

ṅc + Ò · jc = ≠�cx ≠ 2–Ênc , (2.3a)

~(Ê ≠ �) ≠ K
nc

s
= A

C

(ÒÏ)2 ≠ Ò2

Ô
ncÔ

nc

D

, (2.3b)

where Ê = Ï̇ is the condensate frequency and jc = ncvc the condensate
spin current (polarized out of the easy plane, i.e., in the z direction), where
vc = ≠~ÒÏ/m and m © ~2/2A is the kinetic magnon mass. �cx = 2ncR/~
is the collision term describing equilibration between the condensate and
the thermal cloud, defined as �cx = 2÷(Ê ≠ µ/~)nc [10], with µ and ÷
parametrizing the chemical potential of the thermal cloud and the rate
of the thermal cloud-condensate scattering respectively [?]. The latter is
determined according to the Fermi’s golden rule as

÷ = (K/s)2

(2fi)5~6T

⁄
d3p

1

d3p
2

d3p
3

”(p
1

≠ p
2

≠ p
3

)

◊ ”(~Ê + ‘
1

≠ ‘
2

≠ ‘
3

)(1 + f
1

)f
2

f
3

. (2.4)

Here ‘i © p2

i /2m+U and fi © fB[(‘i ≠µ)/T ], with T being the equilibrium
temperature.

The equilibrium phase diagram of the easy-plane condensate is shown
in Fig. 2.2.. In the following, we will be interested in the linear response
of magnons to a temperature gradient. Linearizing with respect to small
nonequilibrium variables—Ê, vc, and ”nc © nc ≠ n

(0)

c for the condensate
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�3/2�3/2

T
/T

c

0 1 B/K

jx

Pt|YIG|Pt

magnon BEC

Figure 2.2: Equilibrium phase diagram (for more details, see Fig. 1.4). The re-
duction of the spin Seebeck current j

x

(red curve) as the magnetic field B decreases
below the transition point, at a fixed T , is a direct and observable signature of
superfluidity.

and µ and ”T © T ≠ T (0) for the cloud—Eqs. (2.3) become

”ṅc + ncÒ · vc =2÷(µ/~ ≠ Ê)nc ≠ 2–Ênc , (2.5a)

~Ê =K
”nc + 2”nx

s
≠ A

Ò2”nc

2nc
. (2.5b)

Here ”nx © nx ≠ n
(0)

x can be expanded in terms of µ and ”T (disregarding
its subleading dependence on ”nc). The superscript (0), which was dropped
in Eqs. (2.5) without danger of ambiguity, denotes the corresponding equi-
librium values in the absence of the thermal flux.

The above condensate equations are complemented by hydrodynamic
equations for the thermal cloud, which can be easily obtained, by integrat-
ing over the zeroth and second momentum moments of Eq. (1.27), as

”ṅx + Ò · jx = 2÷(Ê ≠ µ/~)nc ≠ gnµµ ≠ gnT (T ≠ Tp) , (2.6a)
”u̇ + Ò · jq = ≠guT (T ≠ Tp) ≠ guµµ . (2.6b)

Here u is the energy density of the thermal cloud, Tp is the phonon tem-
perature, and the g coe�cients parametrize relaxation of magnons by the
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(phononic) environment. [Note that a contribution to the energy rate equa-
tion (2.6b) from the condensate-cloud scattering is missing as it is quadratic
in the nonequilibrium bias: ”u̇|cx Ã ~Ê(~Ê ≠ µ).] The linear response spin,
jx, and heat, jq, current densities, furthermore, can be expanded as

jx = ≠‡Òµ ≠ ÎÒT , jq = ≠ŸÒT ≠ flÒµ , (2.7)

where ‡, Ÿ, Î, and fl are respectively the bulk spin and heat conductivities
and the intrinsic spin Seebeck and Peltier coe�cients.

2.3 Boundary conditions

The spin and heat flow across the sample must be determined consistently
with the boundary conditions defined at the F|N interfaces at x = 0, L.
Accounting for interfacial static spin-transfer and spin-pumping torques,
the linearized z-component of the condensate spin current density injected
from the left reservoir with a nonequilibrium spin accumulation µl = µlz
is given by [17]

jc|x=0

= ncg
ø¿
l (µl ≠ ~Ê)/2fi~s , (2.8)

where gø¿
l is the real part of the (dimensionless) spin mixing conductance

(per unit area). The thermal spin and heat currents flowing across the left
interface are given by

jx|x=0

= G(µl ≠ µ)|x=0

+ S(Tl ≠ T )|x=0

, (2.9a)
jq|x=0

= K(Tl ≠ T )|x=0

+ �(µl ≠ µ)|x=0

. (2.9b)

Here Tl is the electron temperature and G, K, S, and � are the interfacial
magnon spin and thermal conductances and spin Seebeck and Peltier coe�-
cients, respectively. The boundary conditions, Eq. (2.8) and Eqs. (2.9a) and
(2.9b) along with the analogous expressions for the right interface, together
with the two-fluid hydrodynamic relations, Eqs. (2.5) and (2.6), constitute
a complete set of linearized equations from which we can yield solutions for
all the dynamical variables. We will now solve this problem in a steady state
(i.e., ”ṅc = ”ṅx = ”u̇ = 0 and Ê = const), when the normal-metal reservoirs
are thermally biased: Tl = T ≠�T/2 and Tr = T +�T/2. We will suppose,
for simplicity, that the phononic heat transport and thermal profile are only
weakly disturbed by the magnons, so that Tp = T + �T (x/L ≠ 1/2), where
we, furthermore, neglected interfacial Kapitza resistances.
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2.4 Results
Let us investigate the flow of magnonic spin and heat across a mirror-
symmetric N|F|N structure driven by a small temperature bias �T . We
will consider two limiting cases: the magnet is sandwiched (1) between
two heavy metals acting as good spin sinks (as may be exemplified by
Pt|YIG|Pt), in which case µl,r = 0, or (2) between two light metals being
perfectly poor spin sinks (possibly approximated by Cu|YIG|Cu), in which
case spin accumulations build in each lead to block the total spin current
across the interfaces, jc + jx æ 0 at x æ 0, L.

Since the spin-preserving relaxation of magnon distribution towards the
phonon temperature, as parametrized by guT in Eq. (2.6b), does not rely on
relativistic spin-orbit interactions, we may expect it to be an e�cient pro-
cess at high temperatures (stemming, e.g., from the modulation of exchange
coupling by lattice vibrations). The corresponding lengthscale, which is
governed by the inelastic magnon-phonon scattering, ⁄u © 

Ÿ/guT , can
therefore be taken to be shorter than other relevant lengthscales, which are
associated with relativistic physics (i.e., ⁄n and ⁄cx defined below). In this
regime, we can set T æ Tp, which decouples the spin transport from heat
dynamics, resulting, in the steady state, in the following di�usion equation
for magnons:

ˆ2

xµ ≠ (µ ≠ ~Ê)/⁄2

cx ≠ µ/⁄2

n = 0 , (2.10)
which is solved by

µ = (⁄m/⁄cx)2~Ê + cle
≠x/⁄

m + cre(x≠L)/⁄
m . (2.11)

Here ⁄≠2

m © ⁄≠2

n + ⁄≠2

cx , ⁄n ©
Ò

‡/gnµ is the thermal magnon di�usion
length, and ⁄cx © 

~‡/2÷nc is the condensate-cloud equilibration length
(where nc is the condensate equilibrium density according to the phase
diagram in Fig. 2.2). The boundary conditions are given by

jx(0) = Gúcl ≠ Î�T/L = G[µl ≠ µ(0)] , (2.12a)
jx(L) = ≠Gúcr ≠ Î�T/L = G[µ(L) ≠ µr] , (2.12b)

for the cloud (supposing L ∫ ⁄m), where µ(0, L) = (⁄m/⁄cx)2~Ê + cl,r,
Gú © ‡/⁄m, and

vc(0) = gø¿(µl ≠ ~Ê)/2fi~s, (2.13a)
vc(L) = gø¿(~Ê ≠ µr)/2fi~s, (2.13b)

for the condensate. The reservoir spin accumulations are µl = µr = 0 in
the good spin sink case and are found according to ncvc + jx = 0 (at both
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interfaces) for the poor spin sinks. Integrating the steady-state version of
Eq. (2.5a),

ˆxvc = 2÷(µ/~ ≠ Ê) ≠ 2–Ê , (2.14)

we get for �vc © vc(L) ≠ vc(0):

�vc = 2÷⁄m(cl + cr)
~ ≠

Ë
2– + 2÷(⁄m/⁄n)2

È
ÊL . (2.15)

In the simpler, good spin sink case (where the spin Seebeck physics is
manifested through the total spin currents injected into the metal reser-
voirs), we thus have 5 linear equations, (2.12), (2.13), and (2.15), for 5
unknowns: cl,r, ~Ê, and vc at x = 0, L. For poor spin sinks (where the spin
Seebeck physics is manifested through the spin accumulations induced in
the metal reservoirs), we have two additional unknowns, µl,r, and two more
equations (for the vanishing total spin current at the interfaces). Note that
the di�erential equation (2.5b) for ”nc decouples in the linearized treat-
ment. Adding and subtracting Eqs. (2.12), and substituting the di�erence
of Eqs. (2.13) into Eq. (2.15) leads to

(G + Gú)c≠ ≠ Î�T/L ≠ Gµ≠ = 0 ,

(G + Gú)c
+

+ G(⁄m/⁄cx)2~Ê ≠ Gµ
+

= 0 ,

2÷⁄mc
+

~ ≠
C

– + ÷

3
⁄m

⁄n

4
2

+ gø¿

2fisL

3
1 ≠ µ

+

~Ê

4D

ÊL = 0 , (2.16)

where c± © (cl ± cr)/2 and µ± © (µl ± µr)/2.
In the good spin sink case, µ± = 0, the last two equations above lead

immediately to Ê = 0 and c
+

= 0. The remaining equation gives

cl = Î�T/L

G + Gú
= ≠cr . (2.17)

The spin currents at the two interfaces (which turn out to be purely
thermal and equivalent) are thus given by

jx = ≠ Î�T/L

1 + Gú/G
, (2.18)

and vanish when either ⁄cx æ 0 (strong condensate-cloud interaction regime,
where ⁄m æ ⁄cx) or ⁄n æ 0 (strong magnon damping regime, where
⁄m æ ⁄n), since Gú Ã 1/⁄m æ Œ. As, by decreasing field B, we go deeper
into the condensate phase at a fixed T , and nc is monotonically increasing,
⁄cx decreases and thus the magnitude of jx is reduced (see Fig. 2.2), where



2.4. RESULTS 43

Figure 2.3: In the presence of a temperature gradient �T , the magnon chemical
potential µ(x) deviates near the interfaces from its zero bulk value in the ferro-
magnet (YIG). This is accompanied by the electronic spin accumulation build-up
in adjacent metals (Cu, treated as a poor spin sink). The spin accumulation µ

l

at
the left interface exerts a torque on the magnetic order parameter, twisting it in
the opposite direction with respect to the one induced by µ

r

= ≠µ
l

at the right
interface. In the mirror-symmetric case, the precession frequency Ê vanishes. The
condensate, j

c

, and thermal, j
x

, contributions to the spin currents are plotted for
⁄

n

= ⁄
cx

.

we took into account the dependence of ⁄m on B but ignored the depen-
dence of other quantities on B, which is valid as long as T ∫ K ). jx is
largest at the transition point to the normal state and is given by Eq. (5.7)
with ⁄m æ ⁄n. Note that although the superfluid velocity vc vanishes at
both interfaces, it is nonzero inside the ferromagnet (at distances beyond
⁄m from the interfaces), according to Eq. (2.14):

vc = 2÷⁄mcl

~ = 2÷⁄m

~
Î�T/L

G + Gú
. (2.19)

Already in this simple case we encounter the conveyor-belt physics, as the
superfluid spin current ncvc in the bulk counteracts the di�usive thermal
flux ≠Î�T/L and reduces the net spin Seebeck e�ect as measured at inter-
faces.

In the opposite limit of the poor spin sinks, we still find Ê = 0 and
c

+

= 0, so that µ
+

= 0, while

µl = Î�T/L

Gú + (1 + Gú/G)gø¿nc/2fi~s
= ≠µr . (2.20)
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This spin accumulation vanishes when either ⁄cx æ 0 or ⁄n æ 0 and
decreases with decreasing field B, displaying an analogous behavior to the
one of the spin current at the interfaces in the good spin sink case (see
Fig. 2.2). While the total current now vanishes at the interfaces, jx and vc

are both nonzero in the ferromagnet (see Fig. 2.3).

2.5 Experimental feasibility
Let us see if the superfluid characteristics in the spin Seebeck e�ect are
detectable by sweeping B across the equilibrium phase diagram at T < Tc.

To this end, we need first to estimate the transport and dissipation co-
e�cients introduced in Eqs. (2.6a), (2.6b), (2.7), (2.9a) and (2.9b). The
g coe�cients entering Eqs. (2.6a) and (2.6b) can be obtained according to
the Gilbert-damping term Ã ·≠1

– in Eq. (1.27), and go as gnµ ≥ gnT ≥
–s(T/Tc)3/2/~, guT ≥ guµ = TgnT (with the equality reflecting Onsager
reciprocity).2 We can similarly evaluate the coe�cients appearing in Eqs. (2.9a)
and (2.9b) as [102] G = ˆµM

1

, S = ˆT M
1

, K = ˆT M
2

, and � = ˆµM
2

, in
terms of

Mn © gø¿

fi~s

⁄
d3p

(2fi~)3

‘n
pfB[(‘p ≠ µ)/T ]. (2.21)

In equilibrium (in the condensate phase), ‘p = p2/2m + Knc/s. Approxi-
mating, furthermore, ‘p ¥ p2/2m (which is justified as T ∫ U æ Knc/s),
we get (G, S, K, �) = (gø¿/fi–s)(gnµ, gnT , guT , guµ), using the above Gilbert-
damping expressions for the g’s.

The transport coe�cients in Eq. (2.7) are obtained following the inte-
gration of Eq. (1.27) over momentum subsequent to multiplication by p.
In the resulting integrals over the magnon energies, the integrands are in-
versely proportional to the scattering rate ·≠1

– + ·≠1. Assuming an energy-
independent scattering length l, the scattering rate 2–‘p/~ +

Ò
2‘p/ml2

is dominated by momentum scattering at energies below ‘ú © Tc/s2/3(–l)2

and by Gilbert damping above ‘ú. With YIG in mind and taking – ≥ 10≠4,
and s ≥ 10 nm≠3, ‘ú . Tc corresponds to l & 10 µm, with shorter
l thus putting us in the scattering-dominated regime (due to disorder
and phonons). Therefore, Î ≥ (T/Tc)(s2/3l)/~, Ÿ ≥ fl = T Î, and ‡ ≥
(T/Tc)(s2/3l)/~ (omitting a logarithmic factor for ‡, which depends on the

2In practice, however, the magnon energy relaxation Ã g

uT

driven by the magnon-
phonon temperature mismatch, T ≠ T

p

, can be dominated by nonrelativistic spin-
preserving magnon-phonon scattering (which is clearly outside the Gilbert damping phe-
nomenology).
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low-energy cuto� for our treatment of magnon transport). It is important,
for our purposes, to remark that the bulk spin Seebeck coe�cient Î may in
practice be strongly enhanced (compared to the above treatment) by the
magnon-phonon drag.

Let us now consider the spin Seebeck current (5.7):

jx Ã 1
1 + Gú/G

, (2.22)

where

G ≥ gø¿

fi~

3
T

Tc

4
3/2

. (2.23)

For highest-quality Pt/YIG interfaces, gø¿ ≥ 5 nm≠2, which could be sig-
nificantly reduced depending on the growth conditions and quality of the
interface [101].

In the limit G ∫ Gú, the Gú dependence in jx drops out altogether
(as in this regime the di�usive bulk spin Seebeck current is fully trans-
mitted across the interface inducing only a very small spin accumulation),
while in the opposite regime jx Ã G/Gú, which is thus most favorable for
manifesting the superfluid characteristics contained in Gú.

The relevant bulk conductance

Gú = ‡

⁄m
= ‡

Ò
⁄≠2

n + ⁄≠2

cx (2.24)

needs to be comparable to G at the transition point and ⁄cx needs to become
comparable to ⁄n below the transition point (in the superfluid regime), for
jx to readily exhibit the two-fluid aspects. The normal-phase Gú, which
governs the ordinary spin Seebeck e�ect is

Gú
n = ‡

⁄n
= Ô

‡gnµ ≥ 1
~


–s5/3l

3
T

Tc

4
5/4

. (2.25)

For the spin-di�usion length:

⁄n =
Û

‡

gnµ
≥

ı̂ıÙ l

–s1/3

Û
Tc

T
. (2.26)

At room temperature, T ≥ Tc/2, where Tc ¥ 560 K, and taking – ≥ 10≠4,
we need to set l ≥ 10 µm in order to get the experimental ⁄n ≥ 10 µm
[35]. These parameters then give ~Gú

n ≥ 3 nm≠2, so that Gú
n & G even

for good interfaces. If, e.g., for another material, the opposite regime of
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Gú
n π G is realized, the two-fluid aspects may be more clearly observed by

the measurement of the spin accumulation, Eq. (19), in the poor spin sink
regime, rather than the spin current in the good spin sink regime.

The superfluid conveyor-belt characteristics can thus be manifested be-
low the transition temperature so long as ⁄cx is not too large compared to
⁄n. Basing the estimates on our kinetic theory,

3
⁄n

⁄cx

4
2

= 2÷nc

~gnµ
≥ ÷

–

nc

s

3
Tc

T

4
3/2

. (2.27)

At low temperatures (say T . Tc/2), nc/s ≥ 1≠B/B̃, below the transition
field B̃(T ), and thus

3
⁄n

⁄cx

4
2

≥ ÷

–

3
1 ≠ B

B̃

4 3
Tc

T

4
3/2

. (2.28)

For YIG, B̃ = K ≥ 2 kG at zero temperature. Equation (2.4) can be
evaluated in equilibrium (U æ Knc/s and µ æ 0), in which case ÷ Ã
(T/Tc)3(K/T )2 [51]. We estimate thus that sweeping the field across the
condensate phase (i.e., below B̃) results in an observable drop of the spin
current jx of order 1% at room temperature and 10% at the liquid helium
temperature, due to the superfluid spin counterflow.

One key remaining issue is the exact estimate for the ratio ÷/–. The
above expression for ÷ underestimates the potentially dominant contribu-
tion of the low-energy subthermal magnons [51]. The question of the rele-
vant – for thermal magnons is also still open, as the experimentally known
– pertains to the Gilbert damping in the ferromagnetic resonance. Studying
the conveyor-belt physics can become a useful practical tool for addressing
these issues in YIG and other (ferro- and antiferro-)magnetic insulators.

It is worthwhile to remark that the spin Seebeck e�ect in our setup
should clearly vanishes when B æ 0, at any temperature and irrespective
of the spin superfluidity, according to the reflection symmetry in the xz
plane. Below Tc and when B is reduced below the transition field B̃, the
spin Seebeck e�ect (corresponding to the spin current polarized along the
z axis) is gradually reduced due simply to the tilt of the magnetic order
parameter away from the z axis, even in the absence of the superfluid
(which could, for example, be pinned by a small anisotropy within the
easy plane). Our theory does not capture this, unless we properly expand
the exchange term in the Hamiltonian (2.1) in terms of the higher-order
terms that couple the thermal and condensate fields, which would lead to a
Bogolyubov structure modifying both the spectrum and the spin character
of magnons. This trivial geometric reduction Ã cos ◊ ≥ 1 ≠ nc/s (where
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◊ is the polar angle of the magnetic order parameter relative to ≠z) of
the spin Seebeck e�ect can mask the conveyor-belt physics. One way to
overcome it is to actually utilize the (otherwise parasitic) weak anisotropy
within the easy plane. The latter sets a critical bias �Tc/L above which the
conveyor belt is activated. The geometric contribution would be essentially
the same below and above this threshold, while the superfluid-mediated
conveyor belt would result in a steplike reduction of the spin Seebeck e�ect
(as described by our theory) just above the threshold bias.

2.6 Discussion and conclusions
In this Chapter, we constructed a hydrodynamic theory which describes
the interactions between thermal and condensed magnons in an easy-plane
magnetic insulator in the presence of a thermal gradient. We predicted that
spin superfluidity can be induced by sweeping the external magnetic field
and experimentally probed via spin Seebeck e�ect. We estimate that for
YIG this drop should be observable. Although we have explicitly considered
a ferromagnetic insulator, we anticipate, according to Refs. [52] and [53],
qualitatively similar behavior also for antiferromagnets.

Future works should more systematically address the magnon-phonon
relaxation mechanisms and study the role of magnons in the net heat trans-
port. Nonlinear response, in the contexts of dynamic instabilities [12] and
pinning by parasitic in-plane anisotropies [4] have been partially addressed
in Ref. [54].





3 Local thermomagnonic torques in
two-fluid spin dynamics

We develop a general phenomenology describing the interplay between co-
herent and incoherent dynamics in ferromagnetic insulators. Using the
Onsager reciprocity and Neumann’s principle, we derive expressions for the
local thermomagnonic torques exerted by thermal magnons on the order-
parameter dynamics and the reciprocal pumping processes, which are in
close analogy to the spin-transfer torque and spin pumping at metallic in-
terfaces. Our formalism is applicable to general long-wavelength dynamics
and, although here we explicitly focus on ferromagnetic insulators possess-
ing U (1) symmetry, our approach can be easily extended to other classes
of magnetic materials. As an illustrative example, we apply our theory to
investigate a domain wall floating over a spin superfluid, whose dynamics is
triggered thermally at the system’s edge. Our results demonstrate that the
local pumping of coherent spin dynamics by a thermal magnon gas o�ers
an alternative route - with no need for conducting components and thus
devoid of Ohmic losses - for the control and manipulation of topological
solitons.1

3.1 Introduction

The interaction between spin-polarized electron transport and magnetiza-
tion dynamics via spin-transfer torques [13, 14] and spin pumping [18] has
been investigated for almost two decades now. It paved the way for the
manipulation of magnetization textures and dynamics without the deploy-
ment of external magnetic fields [55]. Recently, much enthusiasm has been

1This Chapter is directly based on Local thermomagnonic torques in two-fluid spin

dynamics, B. Flebus, P. Upadhyaya, R. A. Duine, and Y. Tserkovnyak, Phys. Rev. B.,
in press. For this paper, B. Flebus performed all analytical calculations with the help of
P. Upadhyaya. Y. Tserkovnyak conceived the project. B. Flebus drafted the paper, all
other authors contributed to the text.



50 3. LOCAL THERMOMAGNONIC TORQUES IN TWO-FLUID SPIN DYNAMICS

bolstered by the possibility of attaining similar outcomes by means of ther-
mal control. Thermally-driven magnetization dynamics could be achieved
through laser pulsing, as well as through heat di�usion, thereby removing
the need for an electronic medium altogether [34].

In magnetic insulators, a thermal bias triggers a pileup of thermal
magnons via the spin Seebeck e�ect [30–32]. This incoherent magnon cloud
can relax by transferring spin angular momentum to the magnetic order
parameter and thus resulting in a local (thermomagnonic) spin-transfer
torque [51, 54]. The latter may then launch nonequilibrium spin textures,
opening up new prospects for thermally-driven nonvolatile magnetic mem-
ories and logic with potentially little net dissipation.

In this Chapter, via Neumann’s principle and the Onsager reciprocity
relations, we develop a general formalism describing the local thermo-
magnonic torques exerted on the magnetic order parameter and the back-
action of the coherent dynamics on the thermal magnons. These reciprocal
phenomena are in close analogy to the spin-transfer torque and spin pump-
ing in metallic multilayers [56]. Our phenomenology is suited to describe
the interplay between di�usive and collective (Landau-Lifshitz–type) dy-
namics for general spin textures, providing a generalization of previous
results [51,54].

To simplify our discussion, we focus on the simplest nontrivial case
yielding local thermomagnonic torques, i.e., axially-symmetric (either easy-
or hard-axis) magnetic systems. The hard-axis case has been proposed for
hosting a spin superfluid, which is rooted in the Goldstone mode associated
with the spontaneous U (1) symmetry breaking [4, 5, 57, 58]. In contrast to
the exponentially-decaying flow of thermal magnons, the spin superfluid
can transmit spin transport over long distances. This has been exploited
recently by Upadhyaya et al. [59], who suggested that a hard-axis magnet
can e�ciently transfer spin angular momentum between a metallic spin
reservoir and a distant domain wall. Here, we employ our phenomenology
to extend their proposal to a domain wall driven by a thermally-activated
superfluid dynamics.

3.2 Local thermomagnonic torques

In this section, we construct a general phenomenology describing the cou-
pling between magnetic order-parameter dynamics and a quasi-equilibrium
cloud of thermal magnons. Specifically, we consider a magnetic insulator,
whose spin density is given in the ground state by s = sn, s being the
saturated spin density (in units of ~) and n the spin density orientation.
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Finite temperature gives rise to the fluctuations ”ŝ = ŝ ≠ ÈŝÍ, where ŝ is
the spin-density operator. These are composed of thermal magnons, whose
density ñ reduces the magnitude of the spin density to s̃ © s ≠ ñ. Here, we
will assume that the interactions within the thermal magnon cloud are fast
enough (compared to the pumping and relaxation processes) to equilibrate
them to a common temperature T and chemical potential µ. We are sup-
posing the temperature to be large compared to the anisotropy fields, such
that the magnons are of the exchange type and carry spin ≠~ along n.

If the coherent texture is smooth on the scale of the thermal - magnon
wavelength, the hydrodynamic variables that describe the system are the
orientation n of the order parameter and the thermal-magnon density ñ,
which together parametrize the total (three-component) spin density ÈŝÍ ©
(s≠ ñ)n. In terms of these variables, the instantaneous state of the magnet
can be described by a free-energy functional F [n, ñ]. The e�ective (Landau-
Lifshitz) transverse field H © ”nF [n, ñ] and the chemical potential µ ©
”ñF [n, ñ] are the forces conjugate to the variables n and ñ, respectively.

Within the linear response, the relations between the rates ṅ and ˙̃n and
the forces can be written as

A
ṅ
˙̃n

B

=
A

Lnn Lnñ

Lñn Lññ

B A
H
µ

B

© L
A

H
µ

B

, (3.1)

where we have introduced the 3◊3 linear-response matrix L, per each point
in space. (Lnn is a 2 ◊ 2 block etc.) Leaving the relaxation processes aside
for the moment, the decoupled orientational dynamics obey the Landau-
Lifshitz equation [6]:

~ṅ = 1
s̃

H ◊ n . (3.2)

The decoupled dynamics of the incoherent magnon cloud is treated di�u-
sively:

˙̃n = ≠Ò · j̃ , (3.3)

where we have defined (in the absence of thermal gradients, for now)
j̃ = ≠‡Òµ as the magnon flux, with ‡ being the magnon conductiv-
ity [58, 60]. The kinetic (matrix-valued) coe�cients Lnn and Lññ can be
easily read o� from Eqs. (3.2) and (3.3). The o�-diagonal coe�cient Lnñ

describes the thermomagnonic torque exerted by the thermal magnons on
the orientational dynamics. Its reciprocal counterpart is the pumping of
the magnon gas by the coherent magnetic precession, which is described by
the coe�cient Lñn.
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The o�-diagonal linear-response coe�cients are connected via Onsager
reciprocity [16], which dictates that

[Lnñ(n)]ij = ≠[Lñn(≠n)]ji , (3.4)

where the minus signs stems from di�erent time-reversal transformations
of n and ñ. Let us next write the equation of motion for n due to thermo-
magnonic torques as

~ṅ = ≠h(µ, n, ṅ) ◊ n , (3.5)

where h(µ, n, ṅ) ‹ n is a linear function of the nonequilibrium arguments µ
and ṅ. Terms Ã ṅ in Eq. (3.5) contribute to the coe�cient Lnn. Their form
is restricted by the Onsager reciprocal relations between the components
of the transverse magnetization dynamics, i.e.,

Lnn(n) = [Lnn(≠n)]T , (3.6)

where T denotes matrix transpose. In addition to the requirements imposed
by the reciprocity relations (3.4) and (3.6), the form of h(µ, n, ṅ) must be
constrained by the structural symmetries of the system [61].

In the following, we restrict our attention to insulating magnets which
retain U (1) symmetry, typical examples of which are the simple easy-plane
and easy-axis ferromagnets. In these systems, due to the rotational invari-
ance around the z axis, Neumann’s principle requires that

h(Rzn, Rzṅ) = Rz{h(n, ṅ)} , (3.7)

where Rz(◊) is the SO(3) rotation matrix by angle ◊ around the z axis. The
U (1) symmetry, furthermore, enforces the conservation of the z-component
of the total angular momentum associated with the total spin density, i.e.,

s̃ṅz ≠ ˙̃nnz = 0 , (3.8)

where nz © ẑ·n. To derive explicitly the equations of motion (3.1), we start
by expanding h in Eq. (3.5) up to linear order in H, µ and ṅ, which captures
the Landau-Lifshitz torque, the static and the dynamic thermomagnonic
torque, respectively. Utilizing structural symmetries (3.7), Onsager rela-
tions (3.4) to derive the reciprocal equation for ˙̃n, and the constraints (3.6)
and (3.8), we finally arrive at

~ṅ =÷Õnz(~nzṅ ≠ µn ◊ ẑ) ≠ ÷nzn ◊ (~nzṅ ≠ µn ◊ ẑ)

+ 1
s̃

H ◊ n , (3.9)

˙̃n =÷Õs̃nzṅz ≠ ÷
s̃

~ ẑ · n ◊ (~nzṅ ≠ µn ◊ ẑ) ≠ Ò · j̃ , (3.10)



3.2. LOCAL THERMOMAGNONIC TORQUES 53

where ÷ and ÷Õ are some even function of nz. Since we are working at
linear response, s̃ here can be taken to be the equilibrium spin density at
the ambient temperature T .

We next proceed to restore the relaxation mechanisms, both for the
precessional dynamics and the magnon density. Microscopically, these are
rooted in the relativistic corrections, such as spin-orbit coupling, which
would a�ect the conservation of the z-component of the spin angular mo-
mentum. We thus relax the constraint (3.8) when including the relaxation
terms, while not revising our derivation of Eqs. (3.9) and (3.10). The un-
derlying premise of such an approach is that the relaxation processes are
usually weak enough that we can start by disregarding their role in the spin
transfer between the coherent and incoherent dynamics.

The damping terms naturally appear in the Gilbert and Bloch forms
for n and ñ, respectively, which append Eqs. (3.9) and (3.10) as follows:

~ṅ =÷Õnz(~nzṅ ≠ µn ◊ ẑ) ≠ ÷nzn ◊ (~nzṅ ≠ µn ◊ ẑ)

+ 1
s̃

H ◊ n ≠ –~n ◊ ṅ , (3.11)

˙̃n =÷Õs̃nzṅz ≠ ÷
s̃

~ ẑ · n ◊ (~nzṅ ≠ µn ◊ ẑ) ≠ Ò · j̃

≠ “µ . (3.12)

Here, – and “ parametrize the Gilbert damping and the (T
1

) Bloch relax-
ation of magnons, respectively. While – and “ can generally depend on
n2

z (and have a tensorial form, according to the axial symmetry), we will
for simplicity be considering the limit when they are mere constants. Note
that the general thermomagnonic torques Ã ÷ in Eqs. (3.11) and (3.12)
reproduce the results of Ref. [54] for nz ¥ ≠1 (considered there).2 The
terms Ã ÷Õ on the right-hand side of both equations have been omitted in
Ref. [54], which we will similarly do hereafter. Indeed, in Eq. (3.11), the
term Ã ÷Õṅ can be combined with the left-hand side, merely leading to a
small rescaling of the equation if (which is natural to expect) ÷Õ π 1, while
the term Ã ÷Õµ gives rise to a field-like torque, which does not play a sub-
stantial role in the dynamics that we are interested in. The term Ã ÷Õṅz in

2Note that the discussion of the large-angle dynamics in Ref. [54], when n

z

deviates
significantly from ≠1, leading to their Eq. (9), is not reliable, as the appropriate factors
of n

z

that are present in Eqs. 3.11 have not been taken into account. In particular, the
reorientation of the magnetization subjected to a large antidamping torque Ã ÷µ > 0
does not switch between opposite directions along the z axis, i.e., n

z

: ±1 ‘æ û1,
but rather pushes the magnetization towards the symmetry plane, i.e., n

z

: ±1 ‘æ 0.
(÷µ < 0 pushes the magnetization away from the xy plane.) This follows correctly from
the present equations and is evident according to the structural symmetries as well as on
physical grounds.
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Eq. (3.12) is inoperative in a steady state with nz = const, which is the case
we will be focusing on. As a final simplification, we will take the remaining
coe�cient ÷ (which microscopically stems from the axial anisotropy [51])
to be a constant, in the spirit of our treatment of – and “.

3.3 Domain wall floating on a superfluid

Let us now turn to a concrete application of the formalism derived in the
previous section. Specifically, we will investigate the coupling between a
domain wall and a spin superfluid. Our setup is similar to that of Ref. [59],
except that the superfluid dynamics are here triggered thermally. It is
accomplished by a thermomagnonic torque exerted by a pileup of thermal
magnons, which is induced by a local heat source.

The key ingredient for the realization of a system supporting both zero
modes, the spin superfluid and the domain wall, is the spontaneous breaking
of the U (1)◊Z

2

composite symmetry, with U (1) standing for the rotations
around the z axis (which would define a spin superfluid within, e.g., an easy-
plane magnet) and Z

2

for the time reversal (which would govern domain
walls within, e.g., an easy-axis magnet). A weakly exchange coupled bilayer
of an easy-plane and an easy-axis magnetic films proposed in Ref. [59] is one
such system that could be easily engineered. See Fig. 3.1 for a schematic.

�

�

n

m

x̂

ẑ
ŷ I II III

{

Z2
g

nz

�mz

U(1)

U(1) � Z2

Figure 3.1: An easy-axis magnet exhibits an Ising-like order, with the global
ground state oriented either up or down in spin space; a domain wall, resulting
from this Z2 symmetry breaking, separates the up and down domains (which are
related by the time reversal). A superfluid arises in an easy-plane magnet from
the spontaneous U (1) symmetry breaking. When the layers are coupled together
by a weak exchange interaction Ã g, the resulting bilayer displays a composite
U (1)◊Z2 symmetry breaking. The coupling induces a tilt n

z

(”m
z

) of the order
parameter n (m) in regions I and III, while it locks together the orientations of the
order parameters in region II. Here Ï („) is the azimuthal angle of the easy-axis
(easy-plane) order parameter n (m).
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While the easy-plane magnet hosts a spin superfluid, the ground state
of an easy-axis magnet breaks the time-reversal (Z

2

) symmetry, harboring
a domain wall as a topologically-stable defect. The exchange coupling Ã g
between the two layers acts as an e�ective magnetic field on the easy-plane
magnet: it tilts the order parameter, n, out-of- plane, resulting in a finite
nz. The latter enables the conversion of thermal magnons into coherent
spin dynamics via the thermomagnonic torques Ã ÷µ in Eq. (3.11). In
the domain-wall region, the exchange coupling locks the orientations of
the easy-plane and the easy-axis order parameters, allowing for an e�cient
transfer of angular momentum. This, finally, gives rise to the domain-wall
motion, as argued in Ref. [59].

3.3.1 Model

We consider a bilayer of an easy-axis ferromagnet (of thickness t̄) coupled to
an easy-plane ferromagnet (of thickness t), as sketched in Fig. 3.2. Our anal-
ysis can also be straightforwardly generalized to an easy-axis ferromagnet|
easy-plane antiferromagnet heterostructure [59] or essentially any U (1)◊Z

2

-
breaking system of the type sketched in Fig. 4.2.

A biased heat conductor at the left contact induces an accumulation
of thermal magnons in the easy-plane layer, which is localized within the
spin-di�usion length ⁄m π L, with L being the bilayer length in the x
direction [58]. The thermally-induced nonequilibrium magnon density ñ
exerts a torque Ã ÷ over the spin-di�usion length, triggering superfluid
dynamics in the easy-plane magnet. The spin transport is subsequently
carried along the x axis by means of coherent precession of n in the xy
plane [59]. The thermal magnons hosted in the easy-axis magnet can also
exert a torque on the superfluid across the interface. Here, however, in the
limit of a weak interlayer coupling, we can neglect it, as it scales as Ã g2.

The free-energy density (per unit of area in the xy plane) describing
our bilayer is

F [m, n, ñ] =Āt̄(ˆxm)2/2 ≠ K̄t̄m2

z/2
+ At(ˆxn)2/2 + Ktn2

z/2
+ U

int

[m, n] + U [ñ] , (3.13)

where Ā (A) and K̄ (K) are the exchange sti�ness and the magnetic
anisotropy of the easy-axis (easy-plane) magnet respectively, and we sup-
posed quasi-one-dimensional textures along the x axis. The interfacial ex-
change interaction U

int

= ≠g m · n couples the order parameters of the two
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�xT x̂
ŷẑ

� g > 0

t̄

t

heat

Figure 3.2: A bilayer of an easy-plane ferromagnet of thickness t, coupled (with
coupling strength g > 0) to an easy-axis ferromagnet of thickness t̄. At the left
edge, a heat conductor induces the heat flux Ã ≠ˆ

x

T (localized near the bilayer
edge), which, in turn, activates the superfluid current j Ã ≠ˆ

x

Ï. The coupling
Ã g locks the easy-plane and easy-axis orientations in the domain-wall region,
interrupting the superfluid flow. The superfluid current is then absorbed by the
domain wall, inducing its motion with velocity v. Note that we are assuming that
the heat is drained out through a material that acts as a good spin sink (such
as, e.g., a platinum contact). This would mitigate thermomagnonic torques that
would counter those on the injection side.

magnets with the coupling strength g. U [ñ] is the thermal-magnon free en-
ergy, taken to be decoupled from the order parameters, as our focus is on the
dissipative spin torques. m = (sin ◊ cos „, sin ◊ sin „, cos ◊) is the unit vector
oriented along the direction of the spin density in the easy-axis ferromagnet,
parametrized by the spherical angles ◊ and „. The spin-density orienta-
tion of the easy-plane ferromagnet n = (


1 ≠ n2

z cos Ï,


1 ≠ n2

z sin Ï, nz)
is parametrized by the azimuthal angle Ï and the z projection nz. The
chemical potential µ is contained in the dependence U [ñ].

Let us now suppose the easy-axis magnet to host a domain wall of width
⁄ =

Ò
Ā/K̄ π L. In the following, we account solely for the coupling be-

tween the domain wall and the coherent dynamics of the easy-plane ferro-
magnet. We neglect the interactions between the domain wall and thermal
magnons, which are disturbed by the heat flux only in the vicinity of the
bilayer edge (see Fig. 3.2). Taking x = X as the domain wall location, we
have ◊ ¥ 0 for x π X (regions Ii,b) and ◊ ¥ fi for x ∫ X (region III).
Then, in regions Ii,b, the exchange interaction U

int

¥ ≠gnz leads to a tilt
of the z-component, nI

z, of the order parameter n, with nI

z ? 0 for g ? 0.
In region III, we have instead U

int

¥ gnz, and the tilt, nIII

z , reverses its
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Figure 3.3: (a) Out-of-equilbrium chemical potential profile decaying away from
the left edge with the di�usion length ⁄

m

. The thermal magnon density ñ equili-
brates by exerting a torque Ã ÷ on the order parameter n. (b) Superfluid current
profile. The current increases and saturates exponentially in the interfacial region
I
i

, decays linearly in the bulk region I
b

, is absorbed by the domain wall in region
II, with the remaining current decaying linearly within region III.

sign. Note that, for simplicity, we are taking the coupling g to be weak
(compared to Kt and K̄t̄), so that |nI,III

z | π 1; to linear order in g, we
neglect the tilt ”mz induced on m. nI,III

z are constant in regions Ii,b and
III, respectively, with nIII

z = ≠nI

z.
The static canting of the magnetization, nI

z, enables the two-fluid char-
acter for the out-of-plane polarized spin transport in the easy-plane mag-
net. [58] Namely, in the interfacial region Ii, the heat flux at the left in-
terface induces a pileup of thermal magnons with chemical potential µ
[see Fig. 3.3(a)], which feed the superfluid current according to the term
Ã ÷nI

zµ in Eq. (3.11). This gives rise to a z-polarized superfluid current
density, which is proportional to the gradient of the azimuthal angle, i.e.,
j ≥ ≠ˆxÏ [4,62]. In region II, the coupling U

int

locks the azimuthal angles
of the easy-axis and easy-plane magnets, „ = Ï at x = X, impeding the su-
perfluid current flow. Since the U (1) symmetry demands the conservation
of the z-component of the angular momentum, the superfluid current is
absorbed by the domain wall [see Fig. 3.3(b)] and converted into its sliding
motion (see Fig. 3.2).

3.3.2 Coupled dynamics

Within the Landau-Lifshitz-Gilbert phenomenology and by including the
relevant thermomagnonic torques [see Eq. (3.11)], the orientational order-



58 3. LOCAL THERMOMAGNONIC TORQUES IN TWO-FLUID SPIN DYNAMICS

parameter dynamics in our bilayer can be written as

~(1 + –̄m◊)ṁ = ≠ m ◊ ”mF/s̄t̄ , (3.14)
~(1 + –n◊)ṅ = ≠ n ◊ ”nF/st

≠ ÷nzn ◊ (~nzṅ ≠ µn ◊ ẑ) , (3.15)

where – (–̄) parametrizes Gilbert damping of the easy-plane (easy-axis)
ferromagnet, s (s̄) is the equilibrium spin density of the easy-plane (easy-
axis) ferromagnet, and the functional derivatives ” are taken with respect
to the xy coordinates only. (We are hereafter dropping the tilde on s̃.)
Soft dynamics of the easy-axis ferromagnet reduces to the dynamics of the
domain-wall region, which, in the collective-coordinate approach [63,64] and
using the Walker ansatz for the magnetization profile, i.e., ln tan(◊/2) =
(x ≠ X)/⁄, reads as

s̄�̇ ≠ –̄s̄Ẋ/⁄ = 0 , s̄Ẋ + –̄s̄⁄�̇ = ·
�

/2t̄ . (3.16)

Here, the soft-mode coordinates X and � © „(X) are the location of
the domain wall and the azimuthal angle at its center, respectively, while
~·

�

© ≠ˆ
�

s
dx U

int

= g
s

⁄ dx sin ◊ sin(Ï≠„) is the torque arising from the
exchange interaction with the easy-plane ferromagnetic sublayer.

To linear order in nz, the z-projected dynamics of Eq. (3.15) become

~s(ṅz + –„̇) =Aˆ2

xÏ ≠ ÷snzµ + (g/t) sin ◊ sin(„ ≠ Ï) . (3.17)

Viewing Eq. (3.17) as a continuity equation for the z- component of the
spin density sz = snz allows us to identify j = ≠AˆxÏ as the z-polarized
superfluid spin-current density flowing in the x direction. The thermal-
magnon density ñ evolves according to Eq. (3.12) as

˙̃n + ˆxj̃ + ‡µ/⁄2

m = ≠÷snzÏ̇ , (3.18)

where j̃ = ≠‡ˆxµ ≠ ’ˆxT (with ’ being the bulk magnon Seebeck co-
e�cient) is the thermal-magnon flux and ⁄m =


‡/(“ + ÷s/~) is the

thermal-magnon di�usion length, which is reduced by the superfluid cou-
pling ÷.3 Note that so far, we are not including the direct thermomagnonic
torques [65, 66] by the thermal gradient ˆxT onto the precessional order-
parameter dynamics. We will comment on those below.

3The more general expression following from Eq. ??EQ13) is ⁄

m

=
‡/[“ + ÷s(1 ≠ n

2
z

)/~], which reproduces the result derived in Ref. [58],
⁄

m

=


‡/(“ + 2÷n

c

/~), where n

c

= s(1 + n

z

) is their magnon-condensate den-

sity, in the limit opposite to the one taken in this Chapter: n

z

æ ≠1.
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In the following, we solve Eqs. (3.16)-(3.18), looking for solutions of the
form �̇ = �, Ẋ = v, Ï(x, t) = f(x) + �t, ṅz = 0 and ˙̃n = 0, corresponding
to a steady-state motion of the domain wall propelled by a superfluid spin
flow. We impose hard-wall boundary conditions at x = 0 both for the
superfluid and normal components of the spin current, i.e.,

ˆxÏ = 0 , ‡ˆxµ + ’ˆxT = 0 . (3.19)

Solving Eq. (3.18) with the boundary conditions (3.19) yields

µ(x) = µ
0

e≠x/⁄
m ≠ (⁄m/⁄cx)2 nI

z~� , (3.20)

in region I. Here, µ
0

= ⁄m’ˆxT/‡ and ⁄cx =


~‡/÷s is the superfluid-
thermal magnon equilibration length [58]. Integrating Eq. (3.17) in regions
I and III, with ⁄m, ⁄ π X, L, leads us to 4

j≠ = ≠÷snI

zµ
0

⁄m ≠ –s~�X , (3.21)
j

+

= –s~�(L ≠ X) , (3.22)

where jû are the superflow spin currents just before and after the domain
wall (i.e., region II). On the other hand, the spin-current loss within the
domain-wall region, �j = j≠ ≠ j

+

, equals

�j = –s~�⁄ + ~·
�

/t . (3.23)

Combining Eqs. (3.21)-(3.23) yields

·
�

/t = ≠÷snI

zµ
0

⁄m/~ ≠ s–�L . (3.24)

The physical interpretation of Eq. (3.24) is straightforward: The amount of
the angular momentum transferred from the superfluid to the domain wall
is proportional to the spin current fed into the superfluid by the thermal
cloud, minus the net current loss due to Gilbert damping.

Using Eqs. (3.16) and (3.24), we can determine the velocity v at which
the domain wall moves as

v © Ẋ = ≠ ÷nI

z⁄2

m(s/s̄)(’/‡)/2~
(t̄/t)(1 + –̄2) + ––̄L/2⁄

ˆxT . (3.25)

Equation (3.25) is the central result of our calculation. The numerator is
proportional to the torque exerted by the thermally-induced magnon pileup

4We are neglecting the last term in Eq. 3.20, Ã n

I
z

, which would result in a higher-
order, Ã (nI

z

)2, correction to the velocity below.
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at the left edge of the bilayer, while the denominator is augmented by the
Gilbert-damping spin leakage associated with the domain-wall dynamics
in the easy-axis layer and the superfluid dynamics in the easy-plane layer.
When a ferromagnetic (antiferromagnetic) exchange coupling between the
two layers is switched on, g ? 0, the superfluid induces a domain-wall
motion towards the right (left) end, with a driving force proportional to
the interfacial temperature gradient ˆxT < 0 and to the strength of the
interaction between the superfluid and the thermal cloud within the easy-
plane magnet, ÷.

Let us compare, in the limit of small damping, i.e., –, –̄ π 1, Eq. (3.25)
with the result of Ref. [66] for the domain-wall velocity subject to the bulk
thermomagnonic torques Ã ˆxT . The latter concerns the domain-wall mo-
tion induced by a thermal-magnon flux traversing its profile (which should
be contrasted with our superfluid-mediated torques that are induced nonlo-
cally). Within the stochastic Landau-Lifshitz-Gilbert phenomenology, the
corresponding velocity is [66]

v ≥ 0.1 ˆxT

–̄~s̄⁄̄
, (3.26)

where ⁄̄ =
Ò

Ā/s̄T is the thermal-magnon wavelength (in units such that
the Boltzmann constant is kB = 1). With YIG in mind, taking s̄ = 1/nm3,
–̄ = 10≠4, ⁄̄ = 10 nm, and ˆxT = 20 K/mm, the domain-wall veloc-
ity (3.26) is v ƒ 0.1 m/s. The superfluid-induced domain-wall velocity
(3.25) exceeds Eq. (3.26) when

÷ & 0.1
nI

z

1
–̄⁄̄

t̄

t

1
s⁄2

m

‡

’
, (3.27)

supposing that ––̄ π (⁄/L)(t̄/t). Let us take, consistently with our ap-
proximations, nz ≥ 0.1. Following the transport theory of Ref. [58], we can
set ‡/’ ≥ 1 in the simplest di�usive limit. Rewriting s ≥ 1/a3, with a
being the atomic-lattice constant, Eq. (3.27) reads as

÷ &
3 1

–̄

4

¸ ˚˙ ˝
∫1

A
a3

⁄̄⁄2

m

B

¸ ˚˙ ˝
π1

t̄

t
. (3.28)

This show that it is in principle possible to achieve domain-wall motion with
the superfluid-mediated spin transfer, which is faster than the motion in
response to the direct thermal gradient. Taking –̄/÷ ≥ 10 and ⁄m ≥ 10 µm,
the superfluid-induced (3.25) and the thermally-driven DW velocities (3.26)
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are comparable for films of the same thickness. We note, however, that
the dissipation of energy in the superfluid case scales more favorably with
the geometric dimensions of the structure, as the spin current can be sup-
plied predominantly to the domain wall, without the di�usive/Ohmic losses
throughout the entire system.

3.4 Discussion and conclusion
In this work, we have outlined a phenomenological approach to derive local
thermomagnonic torques and pumping allowed by the symmetries of a mag-
netic system, using axially-symmetric U (1) magnets as a concrete illustra-
tive example. Our formalism, which relies on the Onsager and Neumann’s
principles, can be extended to other classes of magnetic systems, as well as
the nonlocal torque/pumping phenomena. For simplicity, we have included
the dissipative spin angular-momentum losses perturbatively, disregarding
their e�ect on the torque/pumping process. In the opposite regime of a
very strong spin relaxation, this assumption can also be easily relaxed.

As a possible practical application, we have discussed the coupling be-
tween a superfluid and a domain-wall in an easy-plane|easy-axis ferromag-
netic heterostructure. We have shown that a local heat flux can induce a
distant motion of a domain wall via a spin superfluid. Furthermore, we
have established that the transfer of angular momentum in our set-up can
be more e�cient than the one involving bulk temperature gradients and
the direct interaction between thermal magnons and the domain wall.

Our findings allow to bridge thermal biases with collective spin dynam-
ics, paving a way for the conversion of heat into long-ranged spin transport
that su�ers little dissipation. In particular, this can be used for channeling
spin currents into topological soliton motion from featureless heat sources.
A possible future application is the injection of chiral domain walls by
means of a local thermal bias, as a natural extension of the proposal put
forward in Ref. [67].





4 Magnon-polaron transport in
magnetic insulators

We theoretically study the e�ects of strong magnetoelastic coupling on the
transport properties of magnetic insulators. We develop a Boltzmann trans-
port theory for the mixed magnon-phonon modes (”magnon polarons”) and
determine transport coe�cients and spin di�usion length. Magnon-polaron
formation causes anomalous features in the magnetic field and tempera-
ture dependence of the spin Seebeck e�ect when the disorder scattering in
the magnetic and elastic subsystems is su�ciently di�erent. Experimental
data by Kikkawa et al. [20] on yttrium iron garnet films can be explained
by an acoustic quality that is much better than the magnetic quality of
the material. We predict similar anomalous features in the spin and heat
conductivity and non-local spin transport experiments.1

4.1 Introduction
The magnetoelastic coupling (MEC) between magnetic moments and lat-
tice vibrations in ferromagnets stems from spin-orbit, dipole-dipole and
exchange interactions. This coupling gives rise to magnon-polarons, i.e.,
hybridized magnon and phonon modes in proximity of the intersection of
the uncoupled elastic and magnetic dispersions [21–24]. Interest in the
coupling of magnetic and elastic excitations emerged recently in the field of
spin caloritronics [34], since it a�ects thermal and spin transport properties
of magnetic insulators such as yttrium iron garnet (YIG) [68–71].

In this work we address the spin Seebeck e�ect (SSE) at low tempera-
tures – which provides an especially striking evidence for magnon-polarons

1This Chapter is directly based on Magnon-polaron transport in magnetic insulators,
B. Flebus, K. Shen, T. Kikkawa, K. Uchida, Z. Qiu, E. Saitoh, R. A. Duine, and G.
E. W. Bauer, submitted to PRB. For this paper, B. Flebus performed all analytical
calculations while the numerical calculations were carried out by K. Shen. R. Duine, G.
E. W. Bauer, and E. Saitoh conceived the project. B. Flebus drafted the paper, all other
authors contributed to the text.
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in the form of asymmetric spikes in the magnetic field dependence [20]. The
enhancement emerges at the magnetic fields corresponding to the tangen-
tial intersection of the magnonic dispersion with the acoustic longitudinal
and transverse phonon branches that we explain by phase-space arguments
and an unexpected high acoustic quality of YIG.

Here we present a Boltzmann transport theory for coupled magnon and
phonon transport in bulk magnetic insulators and elucidate the anomalous
field and temperature dependencies of the SSE in terms of the composite
nature of the magnon-polarons. The good agreement between theory and
the experiments generates confidence that the SSE can be used as an instru-
ment to characterize magnons vs. phonon scattering in a given material.
We derive the full Onsager matrix, including spin and heat conductivity as
well as the spin di�usion length. We predict magnon-polaron signatures in
all transport coe�cients that await experimental exposure.

This Chapter is organized as follows: In Sec. 4.2 we start by introducing
the standard model for spin wave and phonon band dispersions of a mag-
netic insulator and the magnetoelastic coupling. In Sec. 4.3, we describe
the magnon-polaron modes and their field-dependent behavior in reciprocal
space. The linearized Boltzmann equation is shown to lead to expressions
for the magnon-polaron transport coe�cients. In Sec. 4.4, we present nu-
merical results for the spin Seebeck coe�cient, spin and heat conductivity,
and spin di�usion length for YIG. We also derive approximate analyti-
cal expressions for the field and temperature dependence of the anomalies
emerging in the transport coe�cients and compare our results with the
experiments. In Sec. 4.5 we present our conclusions and an outlook.

4.2 Model

In this section we introduce the Hamiltonian describing the coupling be-
tween magnons and phonons in magnetic insulators. The experimentally
relevant geometry is schematically depicted in Fig. 4.1.

4.2.1 Magnetic Hamiltonian

We consider a magnetic insulator with spins Sp = S(rp) localized on lattice
sites rp. The magnetic Hamiltonian consists of dipolar and (Heisenberg)
exchange interactions between spins and of the Zeeman interaction due to
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an external magnetic field B = µ
0

H ẑ [?, 72, 73]. It reads as

H
mag

= µ
0

(gµB)2

2
ÿ

p”=q

|rpq|2Sp · Sq ≠ 3 (rpq · Sp) (rpq · Sq)
|rpq|5

≠ J
ÿ

p”=q

Sp · Sq ≠ gµBB
ÿ

p

Sz
p . (4.1)

Here, g is the g-factor, µ
0

the vacuum permeability, µB the Bohr magneton,
J the exchange interaction strength, and rpq = rp ≠ rq. By averaging over
the complex unit cell of a material such as YIG, we define a coarse-grained,
classical spin S = |Sp| = a3

0

Ms/(gµB) on a cubic lattice with unit cell lattice
constant a

0

, with Ms being the zero temperature saturation magnetization
density. The crystal anisotropy is disregarded, while the dipolar interaction
is evaluated for a magnetic film in the yz-plane, see Fig. 4.1. We employ
the Holstein-Primako� transformation and expand the spin operators as [9]

S≠
p =

Ô
2Sa†

p

Û

1 ≠ a†
pap

2S
¥

Ô
2S

C

a†
p ≠ a†

pa†
pap

4S

D

,

Sz
p = S ≠ a†

pap , (4.2)

where S≠
p = Sx

p ≠ iSy
p , and ap/a†

p annihilate/create a magnon at the lattice
site rp and obey Boson commutation rules [ap, a†

q] = ”pq. Substituting the
Fourier representation

ap = 1Ô
N

ÿ

k
eik·r

pak , a†
p = 1Ô

N

ÿ

k
e≠ik·r

pa†
k , (4.3)

where N is the number of lattice sites, and retaining only quadratic terms
in the bosonic operators and disregarding a constant, the Hamiltonian (4.1)
becomes

H
mag

=
ÿ

k
Aka†

kak + 1
2

1
Bka≠kak + Bú

ka†
ka†

≠k
2

, (4.4)

with

Ak
~ = D

ex

Fk + “µ
0

H + “µ
0

Ms sin2 ◊k
2 ,

Bk
~ = “µ

0

Ms sin2 ◊k
2 e≠2i„k . (4.5)

Here, D
ex

= 2SJa2

0

is the exchange sti�ness, “ = gµB/~ the gyromagnetic
ratio, ◊k = arccos (kz/k) the polar angle between wave-vector k with k =
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YIG Pt

L

�T

V

jm

x̂

ŷ

H

�ẑ

Figure 4.1: Pt|YIG bilayer subject to a thermal gradient ÒT Î x̂ and a magnetic
field H Î ẑ. The thermal bias gives rise to a flow of magnons, i.e., a magnonic spin
current jm, in the YIG film of thickness L. In the Pt lead, the spin current is then
converted into a measurable voltage V via the inverse Spin Hall e�ect.

|k| and the magnetic field along ẑ and „k the azimuthal angle of k in the
xy plane. The form factor F(k) = 2(3 ≠ cos kxa

0

≠ cos kya
0

≠ cos kza
0

)/a2

0

can be approximated as F(k) ¥ k2 in the long-wavelength limit (ka
0

π 1).
Equation (4.4) is diagonalized by the Bogoliubov transformation [74]

C
ak

a†
≠k

D

=
C

uk ≠vk
≠vú

k uk

D C
–k

–†
≠k

D

, (4.6)

with parameters

uk =
Û

Ak + ~Êk
2~Êk

, vk =
Û

Ak ≠ ~Êk
2~Êk

e2i„k . (4.7)

The Hamiltonian (4.4) is then simplified to

H
mag

=
ÿ

k
~Êk–†

k–k , (4.8)

where ~Êk =
Ò

A2

k ≠ |Bk|2 is the magnon dispersion. For bulk magnons in
the long-wavelength limit [75,76]

Êk =
Ò

D
ex

k2 + “µ
0

H
Ò

D
ex

k2 + “µ
0

(H + Ms sin2 ◊k). (4.9)
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We disregard Damon-Eshbach modes [77] localized at the surface since, in
the following, we focus on transport in thick films normal to the plane,
i.e., in the x-direction in Fig. 4.1. For thick films the backward moving
volume modes are relevant only for wave numbers k very close to the origin
and are disregarded as well. Higher order terms in the magnon operators
that encode magnon-magnon scattering processes have been disregarded as
well in Eq. (4.4), which is allowed for su�ciently low magnon-densities or
temperatures (for YIG . 100 K [78]). In this regime, the main relaxation
mechanism is magnon scattering by static disorder [68] with Hamiltonian

H
mag-imp

=
ÿ

k,kÕ
vmag

k,kÕ –
†
k–kÕ , (4.10)

where vmag

k,kÕ is an impurity-scattering potential. In the following, we employ
the isotropic, short-range scattering approximation vmag

k,kÕ = vmag.

4.2.2 Mechanical Hamiltonian
We focus on lattice vibrations or sound waves with wavelengths much larger
than the lattice constant that are well-described by continuum mechanics.
The Hamiltonian of an elastically isotropic solid reads [79]

H
el

=
⁄

d3r
ÿ

i,j

�2

i (r)
2fl̄

”ij + (c2

Î ≠ c2

‹) fl̄

2
ˆRi(r)

ˆxi

ˆRj(r)
ˆxj

+ c2

Î
fl̄

2
ˆRi(r)

ˆxj

ˆRi(r)
ˆxj

, (4.11)

where fl̄ is the average mass density, Ri is the i-th component of the dis-
placement vector R of a volume element at r with respect to its equilibrium
position, �i is the conjugate phonon momentum and cÎ and c‹ are the
velocities of the longitudinal acoustic (LA) and transverse acoustic (TA)
lattice waves, respectively. The Hamiltonian (4.11) can be quantized by
the phonon creation (annihilation) operators c†

⁄k (c⁄k) as

Ri(r, t) =
ÿ

k,⁄

‘i⁄(k)
3 ~

2fl̄V Ê⁄k

4
1/2

(c†
⁄k + c⁄≠k)eikr , (4.12)

�i(r, t) = i
ÿ

k,⁄

‘i⁄(k)
3

fl̄~Ê⁄k
2V

4
1/2 1

c†
⁄k ≠ c⁄≠k

2
e≠ikr , (4.13)

where ⁄ = 1, 2 labels the shear waves polarized normal to the wave-vector k
(TA phonons), while ⁄ = 3 represents a pressure wave (LA phonons). Here
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Ê⁄k = c⁄|k| is the phonon dispersion and ‘i⁄(k) = x̂i · ‘̂(k, ⁄) are Cartesian
components i = x, y, z of the unit polarization vectors

‘̂(k, 1) = (cos ◊k cos „k, cos ◊k sin „k, ≠ sin ◊k) , (4.14a)
‘̂(k, 2) = i(≠ sin „k, cos „k, 0) , (4.14b)
‘̂(k, 3) = i(sin ◊k cos „k, sin ◊k sin „k, cos ◊k) , (4.14c)

that satisfy ‘̂ú(k, ⁄) = ‘̂(≠k, ⁄) [68]. In terms of the operators c⁄k and c†
⁄k,

Eq. (4.11) becomes

H
el

=
ÿ

k,⁄

~Ê⁄k
1
c†

⁄kc⁄k + 1

2

2
. (4.15)

Analogous to magnons, at low temperatures phonon relaxation is dom-
inated by static disorder

H
imp

=
ÿ

⁄

ÿ

k,kÕ
vph

k,kÕc
†
⁄kc⁄kÕ , (4.16)

where vph

k,kÕ is the phonon impurity-scattering potential, in the following
assumed to be isotropic and short-range, i.e., vph

k,kÕ = vph.

4.2.3 Magnetoelastic coupling
The magnetic excitations are coupled to the elastic displacement via mag-
netoelastic interactions. In the long-wavelength limit, to leading order in
the magnetization Mi = ngµBSi (n = 1/a3

0

) and displacement field Ri, the
magnetoelastic energy reads as [22,74]

H
mec

= ~n

M2

s

⁄
d3r

ÿ

ij

[BijMi(r)Mj(r)

+B
Õ
ij

ˆM(r)
ˆri

· ˆM(r)
ˆrj

D

Rij(r) , (4.17)

where Bij = ”ijBÎ + (1 ≠ ”ij)B‹ and BÕ
ij = ”ijBÕ

Î + (1 ≠ ”ij)BÕ
‹ are the

phenomenological magnetoelastic constants and

Rij(r) = 1
2

C
ˆRi(r)

ˆrj
+ ˆRj(r)

ˆri

D

, (4.18)

is the displacement gradient Rij .
The exchange term ≥ BÕ

ij in Eq. (4.17) contains magnetization gradi-
ents and predominantly a�ects short wavelength magnons. We disregard
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this term since we are interested in capturing low temperature features.
Linearizing with respect to small nonequilibrium variables – Ri, Mx, My –
Eq. (4.17) then becomes

H
mec

= ~nB‹

A
“~2

4Msfl̄

B
1/2 ÿ

k,⁄

kÊ
≠1/2

k⁄ e≠i„ak(c⁄≠k + c†
⁄k)

◊ (≠i”⁄1

cos 2◊k + i”⁄2

cos ◊k ≠ ”⁄3

sin 2◊k) + H.c. , (4.19)

where ”⁄i is the Kronecker delta.

4.3 Magnon-polarons
Here we introduce magnon-polarons and formulate their semiclassical trans-
port properties.

4.3.1 Magnon-polaron modes
We rewrite the Hamiltonian H = H

mag

+ H
el

+ H
mec

as

H = 1
2

ÿ

k

Ë
—†

k —≠k
È

· Hk ·
Ë
—k —†

≠k

ÈT
(4.20)

where —†
k ©

1
–†

k c†
1k c†

2k c†
3k

2
and the Bogoliubov-de Gennes Hamiltonian

Hk is an 8 ◊ 8 Hermitian matrix. Following Ref. [80], we introduce the
para-unitary matrix T k that diagonalizes Hk as

HkT k = ‹T k

C
Ek 0
0 ≠E≠k

D

, (4.21)

where [‹]jm = ”jm‹j with ‹j = +1 for j = 1, .., 4 and ‹j = ≠1 for j =
5, .., 8, and Ek is a diagonal matrix, whose i-th element ~�ik represents
the dispersion relation of the hybrid mode with creation operator �†

ik =
q

8

j=1

[—†
k —≠k]j(T ≠1

k )ú
ij that is neither a pure phonon or magnon, but a

magnon-polaron.
Let us focus our attention to waves propagating perpendicularly to the

magnetic field, i.e., k = kx̂ (see Fig. 4.1). It follows from Eq. (4.19) that
magnon-polarons involve only TA phonons. Disregarding the dipolar in-
teractions, the TA phonon branch is tangent to the magnon dispersion for
µ

0

H‹ = c2

‹/4Dex“ at k‹ = c‹/2Dex. This estimate holds for Ms π H‹;
otherwise the dipolar interaction shifts the magnon dispersion to higher
values, leading to a smaller critical field H‹. For H < H‹, the TA phonon
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Figure 4.2: Magnon, TA phonon (⁄ = 1), and magnon-polaron mode dispersions
for YIG (see Table 4.1 for parameters) with H Î ẑ and k Î x̂ (◊ = fi/2 and „ = 0).
(a) For µ0H = 1 T, the magnon and transverse phonon dispersions intersect at
two crossing points k1,2. The mixing between magnons and phonons (see insets)
is maximized at these crossings. (b) For µ0H‹ = 2.64 T, the phonon dispersion
becomes a tangent to the magnon dispersion which maximizes the phase space of
magnon-polaron formation (see inset).

dispersion intersects the spin wave spectrum at two crossing points, k
1

and
k

2

,

k
1,2 = k‹ û

Û

k2

‹ ≠ “µ
0

H

Dex
, (4.22)

where the minus (plus) corresponds to the label 1 (2). In the vicinity of
k

1,2, the modes corresponding to the dispersions �
1,2k are strongly cou-

pled, as shown in the inset of Fig. 4.2(a). The magnetoelastic coupling
changes the crossing at k

1,2 into an anti-crossing with energy splitting
��k1,2 = �

2k1,2 ≠ �
1k1,2 . For k π k

1

, the �†
1k (�†

2k) mode resembles closely
a pure spin wave (lattice vibration) whilst for k

1

π k π k
2

these roles are
reversed, returning to their original character for k ∫ k

2

. At the critical
magnetic field H‹, the magnon dispersion shifts upwards such that the TA
phonon branch becomes tangential. Figure 4.2(b) shows that this “touch-
ing” condition generates the strongest e�ects of the MEC, since the magnon
and phonon modes are strongly coupled over a relatively large volume in
momentum space. At higher magnetic fields, the uncoupled magnonic and
TA phononic curves no longer cross, hence the MEC does not play a signif-
icant role, and T k reduces to the identity matrix. An analogous physical
picture holds when considering the magnon-polaron modes arising from the
coupling between magnons and LA phonons for sin 2◊k ”= 0, with critical
field µ

0

HÎ = c2

Î/4Dex“ and touch point kÎ = cÎ/2Dex (for Ms π HÎ).
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Table 4.1: Selected YIG parameters [84–91].

Symbol Value Unit
Macrospin S 20 -
g-factor g 2 -
Lattice constant a

0

12.376 Å
Gyromagnetic ratio “ 2fi ◊ 28 GHz/T
Saturation magnetization µ

0

Ms 0.2439 T
Exchange sti�ness Dex 7.7 ◊ 10≠6 m2/s
LA-phonon sound velocity cÎ 7.2 ◊ 103 m/s
TA-phonon sound velocity c‹ 3.9 ◊ 103 m/s
Magnetoelastic coupling B‹ 2fi ◊ 1988 GHz
Average mass density fl̄ 5.17 ◊ 103 Kg/m3

Gilbert damping – 10≠4 -

4.3.2 Magnon-polaron transport

We proceed to assess the magnetoelastic coupling e�ects on the transport
properties of a magnetic insulator in order to model the spin Seebeck e�ect
and magnon injection by heavy metal contacts.

A non-equilibrium state at the interface between the magnetic insula-
tor and the normal metal generates a spin current that can be detected
by the inverse spin Hall e�ect, as shown in Fig. 4.1. The spin current
and spin-mediated heat currents are then proportional to the interface spin
mixing conductance that is governed by the exchange interaction between
conduction electrons in the metal and the magnetic order in the ferromag-
net. In the presence of magnon-polarons, the excitations at the interface
have mixed character. Since the spin-pumping and spin torque processes
are mediated by the exchange interaction, only the magnetic component
of the magnon-polaron in the metal interacts with the conduction elec-
trons. We focus here on the limit in which the smaller of the magnon
spin di�usion length and magnetic film thickness is su�ciently large such
that the spin current is dominated by the bulk transport and the interface
processes may be disregarded. We therefore calculate in the following the
spin-projected angular momentum and heat currents in the bulk of the fer-
romagnet, assuming that the interface scattering processes and subsequent
conversion into an inverse spin Hall voltage do not change the dependence
of the observed signals on magnetic field, temperature gradient, material
parameters, etc..

Since the phonon specific heat is an order of magnitude larger than
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the magnon one at low temperatures [81], we may assume that the phonon
temperature and distribution is not significantly perturbed by the magnons.
T is the phonon temperature at equilibrium and we are interested in the
response to a constant gradient ÒTÎx̂. The spin-conserving relaxation of
the magnon distribution towards the phonon temperature is assumed to
be so e�cient that the magnon temperature is everywhere equal to the
phonon temperature. Also the magnon-polaron temperature profile is then
T (x) = T +|ÒT | x. Assuming e�cient thermalization of both magnons and
phonons and weak spin-non-conserving processes as motivated by the small
Gilbert damping, a non-equilibrium distribution as injected by a metallic
contact can be parameterized by a single parameter, viz. the e�ective
magnon-polaron chemical potential µ [60]. This approximation might break
down at a very low temperatures, but to date there is no evidence for that.

In equilibrium the chemical potential of magnons and phonons vanishes
since their number is not conserved. The occupation of the i-th magnon-
polaron in equilibrium is therefore given by the Planck distribution function

f
(0)

ik =
3

exp ~�ik
kBT

≠ 1
4≠1

. (4.23)

Note that here we have assumed the i-th magnon polaron scattering rate
to be su�ciently smaller than the gap between the magnon-polaron mode
dispersions, i.e., ·≠1

ik
i

π ��k
i

for every ki, which guarantees the i-th
magnon-polaron to not dephase and hence its distribution function to be
well-defined. We focus on films with thickness L ∫ �

mag

, �
ph,⁄, ¸

m

, ¸
ph,⁄,

where �
mag

= (4fi~Dex/kBT )1/2 and �
ph,⁄ = ~c⁄/kBT are the thermal

magnon and phonon (de Broglie) wavelengths, respectively, and ¸
m

(¸
ph,⁄)

the magnon (phonon) mean free path. The bulk transport of magnon-
polarons is then semiclassical and can be treated by means of Boltzmann
transport theory. In the relaxation time approximation to the collision
integral, the Boltzmann equation for the out-of-equilibrium distribution
function fik(r, t) reads

ˆtfik + ˆrfik · ˆk�ik = ≠(fik ≠ f
(0)

ik )/·ik , (4.24)
where ·ik is the relaxation time towards equilibrium. In the steady state,
the deviation ”fik(r) = fik(r) ≠ f

(0)

ik encodes the magnonic spin, j
m

, and
heat, jQ,m, current densities

j
m

=
⁄

d3k
(2fi)3

ÿ

i

Wik(ˆk�ik)”fik , (4.25)

jQ,m =
⁄

d3k
(2fi)3

ÿ

i

Wik(ˆk�ik)(~�ik)”fik . (4.26)
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Here, Wik = |(Uk)i1|2 + |(Uk)i5|2 is the magnetic amplitude of the i-th
quasi-particle branch with Uk = T ≠1

k . For small temperature gradients,
Eqs. (4.25) and (4.26) can be linearized

j
m

ƒ ≠‡ · Òµ ≠ ’ · ÒT , (4.27)
jQ,m ƒ ≠fl(m) · Òµ ≠ Ÿ(m) · ÒT , (4.28)

where the tensors ‡, Ÿ(m) , ’, and fl(m)(= T’ by the Onsager-Kelvin re-
lation) are, respectively, the spin and (magnetic) heat conductivities, and
the spin Seebeck and Peltier coe�cients. In the absence of magnetoelastic
coupling, Eqs. (4.27) and (4.28) reduce to the spin and heat currents of
magnon di�usion theory [60].

The total heat current jQ carried by both magnon and phonon systems
does not invoke the spin projection Wik, i.e.,

jQ =
⁄

d3k
(2fi)3

ÿ

i

(ˆk�ik)(~�ik)”fik ,

ƒ ≠Ÿ · ÒT , (4.29)

where Ÿ is the total heat conductivity.
In terms of the general transport coe�cients

Lmn
–“ = —

⁄
d3k

(2fi)3

ÿ

i

(Wik)m·ik(ˆk
–

�ik)(ˆk
“

�ik)

◊ e—~�

ik

(e—~�

ik ≠ 1)2

(~�ik)n , (4.30)

(with — = 1/kBT ), we identify ‡–“ = L10

–“ , ’–“ = L11

–“/T , Ÿ
(m)

–“ = L12

–“/T
and Ÿ–“ = L02

–“/T .
At low temperatures, the excitations relax dominantly by elastic magnon-

and phonon-disorder scattering as modelled here by Eqs. (4.10) and (4.16),
respectively. The Fermi Golden Rule scattering rate ·≠1

ik of the i-th magnon-
polaron reads

·≠1

ik = 2fi

~

4ÿ

l=1

ÿ

jkÕ

Ë
(UkÕ)ú

jl(Uk)il

+(UkÕ)ú
jl+4

(Uk)il+4

È
2 |vl|2”(~�ik ≠ ~�jkÕ) , (4.31)

where v
1

= vmag and v
2,3,4 = vph, while the purely magnonic and phononic

scattering rates are given by

·≠1

k,mag

= L3|vmag|2
2fi~2Dex

k , ·≠1

k,ph

⁄

= L3|vph|2
fi~2c⁄

k2 . (4.32)
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Figure 4.3: (a) Scattering times of magnons, TA phonons (⁄ = 1), and lower
(L)/upper (H) branch magnon-polarons in YIG for µ0H = 1 T (H Î ẑ) as a
function of wave vector k Î x̂ for ÷ = 100. (b) Same as (a) but µ0H‹ = 2.64 T.

4.4 Results
In this section we discuss our numerical results for the transport coe�cients,
in particular the emergence of field and temperature dependent anomalies,
and we compare the thermally induced spin current with measured spin
Seebeck voltages [20].

4.4.1 Spin and heat transport

We consider a su�ciently thick (> 1 µm) YIG film subject to a tem-
perature gradient ÒT Î x̂ and magnetic field H Î ẑ, as illustrated in
Fig. 4.1. The parameters we employ are summarized in Table 4.1. A scat-
tering potential |vmag|2 = 10≠5 s≠2 (with vmag in units of ~) reproduces
the observed low-temperature magnon mean free path [81]. We treat the
ratio between magnetic and non-magnetic impurity-scattering potentials,
÷ = |vmag/vph|2, as an adjustable parameter. With the deployed scattering
potentials ·≠1

k
i

π ��k
i

for all magnon-polaron modes, ensuring the valid-
ity of our treatment. We compute the integrals appearing in Eq. (4.30)
numerically on a fine grid (≥ 106 k-points) to guarantee accurate results.

Figure 4.3(a) shows the magnon-polaron scattering times and how they
deviate from the purely phononic and magnonic ones close to the anti-
crossings. At the “touching” fields the phase space portion over which the
scattering times are modified with respect to the uncoupled situation is
maximal (see Fig. 4.2(b)) as are the e�ects on spin and heat transport
properties as discussed below.
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Figure 4.4: (a) The magnetic field and temperature dependence of longitudinal
spin Seebeck coe�cient ’

xx

for di�erent values of the ratio ÷ between magnon and
phonon impurity-scattering potentials. (b) Longitudinal spin Seebeck coe�cient
’

xx

as a function of magnetic field at T = 10 K. The solid, dashed, dotted blue
lines are computed for, respectively, ÷ = 100, 1, 0.01, while the black dash-dotted
curve is calculated for ÷ = 103. The triangled curve corresponds to the LLSC
in the absence of MEC. The inset shows the dispersions of uncoupled magnons,
transverse (TA) and longitudinal (LA) acoustic phonons at HÎ and H‹.

In Fig. 4.4(a), , we plot the (bulk) spin Seebeck coe�cient ’xx as a
function of magnetic field for di�erent values of ÷. For ÷ = 1, ’xx de-
creases monotonously with increasing magnetic field, while for ÷ ”= 1 two
anomalies are observed at µ

0

H‹ ≥ 2.64 T and µ
0

HÎ ≥ 9.3 T. More pre-
cisely, peaks (dips) appear for ÷ = 100(0.01) at the same magnetic fields
but with amplitudes that depend on temperature. The underlying physics
can be understood in terms of the dispersion curves plotted in the inset of
Fig. 4.4(b). The first (second) anomaly occurs when the TA (LA) phonon
branch becomes a tangent of the magnon dispersion, which maximizes the
integrated magnon-polaron coupling.

The group velocity of the resulting magnon-polaron does not di�er sub-
stantially from the purely magnonic one, but its scattering time can be
drastically modified, depending on the ratio between the magnonic and
phononic scattering potentials (see Fig. 4.3(b)). The spin currents can
therefore be both enhanced or suppressed by the MEC. When the magnon-
impurity scattering potential is larger than the phonon-impurity one, the
hybridization induced by the MEC lowers the e�ective potential perceived
by magnons, giving rise to an enhanced scattering time and hence larger
currents. This can be confirmed by comparing the blue solid (÷ = 100)
and the black dash-dotted (÷ = 103) lines in Fig. 4.4(b), showing that the
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Figure 4.5: (a) The magnetic field and temperature dependence of the magnon-
polaron contribution to ’

xx

for di�erent values of the ratio ÷ between magnon and
phonon impurity-scattering potentials. (b) ’

xx

as function of magnetic field for
H ‹ ÒT (blue solid line) and HÎÒT (green dashed line) at T = 10 K for ÷ = 100.

magnitude of the peaks increases with increasing ÷. When magnetic and
non-magnetic scattering potentials are the same, i.e., ÷ = 1, the anomalies
vanish as illustrated by the dashed blue line in Fig. 4.4(b), and agrees with
the results obtained in the absence of MEC (triangles).

The frequencies at which magnon and phonon dispersions are tangential
for uncoupled transverse and longitudinal modes are 0.16 THz (=̂8 K)and
0.53 THz (=̂26 K). Far below these temperatures, the magnon-polaron
states are not populated, which explains the disappearance of the sec-
ond anomaly and the strongly reduced magnitude of the first one at 1 K
inFig. 4.4(a). In the opposite limit, the higher energy anomaly becomes
relatively stronger [see the solid curve at 50 K in Fig. 4.4(a)]. The overall
decay of the spin Seebeck coe�cient with increasing magnetic field is ex-
plained by the freeze-out caused by the increasing magnon gap opened by
the magnetic field [see the inset of Fig. 4.4(b)].

This strong decrease has been observed in single YIG crystals [82, 92],
but it is suppressed in thinner samples or even enhanced at low temper-
atures [20]. The e�ect is tentatively ascribed to the paramagnetic GGG
substrate that becomes magnetically active a low temperatures [20] and is
beyond the scope of the present theory. We therefore subtract the pure
magnonic background (triangles in Fig. 4.4(b)) from the magnon-polaron
spin currents, which leads to the net magnon-polaron contribution shown
in Fig. 4.5(a).

The dipolar interaction is responsible for the anisotropy in the magnon
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Figure 4.6: (a) The magnetic field and temperature dependence of the magnon
spin conductivity ‡

xx

for di�erent values of the ratio ÷ between magnon and
phonon impurity-scattering potentials. (b) The magnetic field and temperature
dependence of the magnon heat conductivity Ÿm

xx

for di�erent values of the ratio
÷ between magnon and phonon impurity-scattering potentials.

dispersion in Eq. (4.9), which is reflected in the magnetic field dependence
of the heat and spin currents. In Fig.. 4.5(b) we plot ’xx as function of the
angle ËT between magnetic field and transport direction for ÷ = 100 and
T = 10 K. The magnon-polaron contributions for magnetization parallel
and perpendicular to the transport are plotted as the green dashed and
blue solid curves, respectively. The anisotropy shifts the magnon-polaron
peak positions, but does not substantially modify their amplitude. On
these grounds, we proceed with computing other transport coe�cients for
the configuration H‹ÒT only.

Figure 4.6(a) shows the magnon spin conductivity ‡xx as function of the
magnetic field and temperature for di�erent values of ÷. Two peaks (dips)
appear at H‹ and HÎ for ÷ = 100 (÷ = 0.01) at 10 K and 50 K, while they
disappear for ÷ = 1. At very low temperatures, T = 1 K, the anomalies
are not visible anymore. The dependence of the spin conductivity on the
temperature, on the angle between the magnetic field and temperature
gradient, and on the scattering potentials ratio ÷ is the same as reported
for the spin Seebeck coe�cient ’xx.

In Fig. 4.6(b), we plot the dependence of the magnon heat conductivity
Ÿ

(m)

xx on the magnetic field and on the temperature for di�erent values of
÷. The only di�erence with respect to the coe�cient ’xx is in the ratio
between the amplitudes of the two anomalies at T = 10 K, at which the
magnon modes contributing to the low-field (H‹) anomaly are thermally
excited, in contrast to high field

1
HÎ

2
modes. In ’xx the anomaly at H‹
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heat conductivity Ÿ

xx

≠ Ÿ
xx

(Œ) at T = 10 K for di�erent values of the ratio ÷
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should therefore by better visible, as is indeed the case. The magnon heat
conductivity from Eq. (4.30) contains an additional factor in the integrand
which is proportional to the energy of the magnon-polaron modes. The
latter compensates for the lower thermal occupation, which explains why
the anomaly at HÎ is more pronounced in comparison with the spin Seebeck
e�ect.

Perhaps surprisingly, the total heat conductivity Ÿxx in Fig. 4.7(a) dis-
plays only dips for ÷ ”= 1 at the special fields H‹,Î. This can be explained
as follows. For ÷ ∫ 1, the phonon contribution to the heat conductivity is
larger than the magnon contribution. Except at the critical fields H‹,Î, the
magnetic field dependence of Ÿxx is therefore very weak (solid blue line).
When phonons mix with magnons with a short scattering time, the thermal
conductivity is suppressed, causing the dips close to H‹,Î. For ÷ π 1, on
the other hand, the magnon contribution to heat conductivity prevails, as
is seen by the strong magnetic field dependence of Ÿxx (dotted blue line).
Since now |vmag| < |vph|, the heat conductivity of the resulting magnon-
polaron mode is lower than the purely magnonic one. Again dips appear
close to the “touching” magnetic fields.

Experimentally, the magnon heat conductivity Ÿ
(m,exp)

xx at a given tem-
perature was referred to the di�erence between finite-field value Ÿxx(H)
and Ÿxx(Œ), i.e., Ÿ

(m,exp)

xx (H) = Ÿxx(H)≠Ÿxx(Œ) [81]. The latter, Ÿxx(Œ),
corresponds to the saturation value of the heat conductivity at high-field
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limit, above which it becomes a constant function of the magnetic field,
suggesting that the magnon contribution has been completely frozen out
and only the phonon contribution remains. In general, Ÿ

(m)

xx and Ÿ
(m,exp)

xx

di�er in the presence of magnetoelasticity. The magnon heat conductiv-
ity Ÿ

(m,exp)

xx in Fig. 4.7(b), evaluated by subtracting the high-field limit for
T = 10 K, shows dips for both ÷ = 0.01 and ÷ = 100, in contrast to the
magnon heat conductivity Ÿ

(m)

xx in Fig. 4.6(b) with peaks for ÷ = 100. The
disagreement stems from Ÿxx(Œ), which is the (pure) phonon contribution
to the heat conductivity at infinite magnetic fields, but is not the same as
the phonon heat conductivity at ambient magnetic fields when the MEC is
significant. In the latter case, the phonon heat conductivity itself depends
on the magnetic field and displays anomalies at H‹,Î; hence Ÿ

(m,exp)

xx ”= Ÿ
(m)

xx .
Nonetheless Ÿ

(m,exp)

xx can be useful since its fine structure contains infor-
mation about the ratio between the magnon-impurity and phonon-impurity
scattering potentials |vmag| and |vph|. Also, Ÿxx (Œ) for ÷ = 100 is much
larger than for ÷ = 0.01, and its value gives additional information about
the relative acoustic and magnetic quality of the sample. For example, the
results reported by Ref. [81] can be interpreted, within our theory, as sug-
gesting a much higher acoustic than magnetic quality of the samples, i.e.,
÷ ∫ 1. The authors, however, have not investigated the magnetic field de-
pendence of the heat conductivity but rather the temperature dependence,
which is beyond the scope of this work.

The appearance of the anomalies can be understood analytically with
few straightforward simplifications. Let us consider a one-dimensional sys-
tem along x̂ and H = (0, 0, H) . According to Eq. (4.19) only the TA
phonons couple to the magnons leading to the magnon-polaron dispersion

�
1,2k =

Êk + Ê
1k ±

Ò
(Êk ≠ Ê

1k)2 + Ễ2

k

2 , (4.33)

where Ễk = (S‹k)1/2 and S‹ = (nB‹)2(“~2/4Msfl̄c‹). The magnon-
polaron spin amplitudes W

1,2k are

W
1k =

Êk ≠ Ê
1k +

Ò
(Êk ≠ Ê

1k)2 + Ễ2

k

2
Ò

(Êk ≠ Ê
1k)2 + Ễ2

k

, (4.34)

and W
2k = 1 ≠ W

1k. Disregarding the small dipolar interactions (Ms π
H‹) the uncoupled dispersions touch at µ

0

H‹ = c2

‹/4Dex“. We focus on
the contribution of the k‹– mode (with k‹ = c‹/2Dex) to the transport
coe�cients (4.30) close to the touching field and expand in ”H = H ≠ H‹.
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As in Fig. 4.2(b), for k = k‹ and ”H π H‹, the energies and group
velocities of the upper and lower magnon-polarons are approximately the
same, i.e., �

1k‹ ƒ �
2k‹ and ˆk�

1

|k=k‹ ƒ ˆk�
2

|k=k‹ . Eq. (4.34) then reads

W
1k‹ = 1

2

S

U1 + k̃”H
Ò

1 + (k̃”H)2

T

V , (4.35)

with k̃ = µ
0

“/(4S‹k‹)1/2. The scattering times (4.31) can be approxi-
mated as

·
1,2k‹ ≥ ˆk�

1,2k|k=k‹

|v
ph

|2
1

(1 ≠ W
1,2k‹) + ÷W

1,2k‹

. (4.36)

Hence

Lnm
xx ≥ —

L2|v
ph

|2 (ˆk�
1k)3

e—~�1k

(e—~�1k ≠ 1)2

(~�
1k)n

---- k=k‹,
H=H‹

◊ ym(”H) , (4.37)

where

y
0

(”H) =
4

Ë
1 + (k̃”H)2

È
(1 + ÷)

1 + ÷
Ë
2 + 4(k̃”H)2 + ÷

È ,

and

y
1

(”H) =
2

Ë
1 + 2(k̃”H)2 + ÷

È

1 + ÷
Ë
2 + 4(k̃”H)2 + ÷

È .

The indices n and m correspond to those in Eq. (4.30). Both y
0

(”H) and
y

1

(”H) have a single extremum at H = H‹, i.e.,

y
Õ
0

(”H)|”H=0

= y
Õ
1

(”H)|”H=0

= 0 , (4.38)
y

ÕÕ
0

(”H)|”H=0

Ã (1 ≠ ÷)2 , (4.39)
y

ÕÕ
1

(”H)|”H=0

Ã (1 ≠ ÷) . (4.40)

Eqs. (4.38) and (4.39) prove that y
0

has a minimum at H = H‹ for ÷ ”= 1,
while for ÷ = 1 it is a constant. This explains our numerical results for the
heat conductivity Ÿxx, which is unstructured for ÷ = 1 and always display
dips for both ÷ < 1 and ÷ > 1 (see Fig. 4.7(a)). According to Eqs. (4.38)
and (4.40) the function y

1

is also stationary at H = H‹, but it has a min-
imum only for ÷ < 1, while an inflection point for ÷ = 1, and a maximum
otherwise. The resulting dependence on ÷ of Eq. (4.37) explains the spin
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Seebeck coe�cient ’xx, the spin conductivity ‡xx and magnon heat con-
ductivity Ÿ

(m)

xx , in Figs. 4.4(a), 4.6(a) and 4.6(b) respectively. As we have
discussed in detail in the reporting of the numerical results, the anomalies
can be understood physically in terms of the scattering time of the magnon-
polaron. This scattering time is the sum of magnonic and phononic scatter-
ing times, so, depending on the value of ÷, the spin transport is enhanced
(÷ > 1) or suppressed (÷ < 1) close to the touching point.

4.4.2 Spin di�usion length
Integrating the spin-projection of Eq. (4.24) over momentum leads to the
spin conservation equation:

ṅs + Ò · js = ≠gµµ , (4.41)

where
ns =

⁄
d3k

(2fi)3

ÿ

i

fik(r) , (4.42)

is the total magnon density (in units of ~), and

gµ = —

⁄
d3k

(2fi)3

ÿ

i

Wik
1

·nc

ik

e—~�

ik

(e—~�

ik ≠ 1)2

, (4.43)

is the magnon relaxation rate, and we have introduced the relaxation time
·nc

ik . Elastic magnon-impurity scattering processes discussed in the previous
sections do not contribute to ·nc

ik . However, we parameterize the spin not-
conserving processes as

1
·nc

ik
= 2–�ki , (4.44)

in terms of the dimensionless Gilbert damping constant –. In the non-
equilibrium steady-state Eq. (4.41) becomes

Ò2µ = 1
⁄n

µ , (4.45)

in terms of the magnon di�usion length ⁄n ©
Ò

‡xx/gµ that is plotted in
Fig. 4.8. At 10 K and 50 K, the spin di�usion length decreases monotonously
with the magnetic field for ÷ = 1, in agreement with observations at room
temperature [93]. For ÷ = 100 (÷ = 0.01) the spin di�usion length displays
two peaks (dips) at the critical fields H‹ and HÎ, which become more pro-
nounced when lowering the temperature. At T = 1 K only the peak (dip)
at H‹ is visible for ÷ = 100 (÷ = 0.01). For ÷ = 1, the spin di�usion
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Figure 4.8: The magnetic field and temperature dependence of the spin di�usion
length ⁄

n

for di�erent values of the ratio ÷ between magnon and phonon impurity-
scattering potentials..

length monotonically decreases with increasing magnetic field. The curve
for ÷ = 0.01 behaves similar except for the dip at H = H‹. On the other
hand, for ÷ = 100, the spin di�usion length behaves very di�erently show-
ing strong enhancement at both low and high magnetic fields. This strong
increase of the di�usion length (for constant Gilbert damping) happens
when

‡xx(H
1

, ÷)
‡xx(H

2

, ÷) >
gµ(H

1

)
gµ(H

2

) , (4.46)

where H
1,2 are two given values of the applied magnetic field, with H

1

> H
2

.
To understand the dependence of the ratio ‡xx(H

1

, ÷)/‡xx(H
2

, ÷) on ÷ and
on the temperature, we recall that the main contribution to the magnon
spin conductivity ‡xx arises from magnon-like branches. At relatively high
temperature, the magnon-like branches are su�ciently populated to over-
come the phonon contribution to the magnon spin conductivity at all ÷.
Indeed, Fig. 4.6(a) shows that, at relatively high temperatures, the ratio
‡xx(H

1

, ÷)/‡xx(H
2

, ÷) hardly depends on ÷. On the other hand, when the
temperature decreases below the magnon energy, the contribution of the
magnon-like branches are quickly frozen out by a magnetic field. The mag-
nitude of ÷ then becomes very relevant. On the other hand, while the
right-hand side of Eq. (4.46) depends on temperature, it is not a�ected by
÷. For ÷ < 1, the phonon mobility is smaller than the magnon one and
hence the phonons are short circuited by the magnons. For ÷ > 1, the
phonons prevail, leading to a higher ratio ‡xx(H

1

, ÷)/‡xx(H
2

, ÷) because
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the phonon dispersion is not a�ected by the magnetic field. When ÷ ∫ 1,
the condition (4.46) is therefore satisfied. While in this regime the spin cur-
rent is very small, it is perhaps an interesting limit for studying fluctuation
and shot noise in the spin current [71].

4.4.3 Comparison with experiments

The spin Seebeck e�ect was measured in Pt|YIG|GGG structures in the
longitudinal configuration, i.e., by applying a temperature di�erence normal
to the interfaces (x-direction) and subjecting the sample to a magnetic field
H Î ẑ [20]. The thermal bias induces a spin current into the Pt layer that by
the inverse Spin Hall e�ect (ISHE) leads to the detected transverse voltage
V over the contact, see Fig. 4.1. The bottom of the GGG substrate and the
top of the Pt layer are in contact with heat reservoirs at temperature TL

and TH , respectively. Disregarding phonon (Kapitza) interface resistances,
the phonon temperature gradient is ÒT = (TH ≠ TL)/L, with L being
the thickness of the stack, and average temperature T = (TH + TL)/2.
As discussed, we assume that the magnon and phonon temperatures are
the same and disregard the interface mixing conductance. The measured
voltage is then directly proportional to the bulk spin Seebeck coe�cient.

In the experimental temperature range of 3.5≠50 K the thermal magnon,
�

mag

, and phonon, �
ph,µ, wavelengths are of the order of 1 ≠ 10 nm.

Even if the magnon and phonon thermal mean free paths have been es-
timated to be of the order of ≥ 100 µm at very low temperatures [81],
here we assume that the transport in the YIG film of thickness L ƒ
4 µm can be treated semiclassically. Note that scattering at the interfaces
can make the transport di�usive even when the formal conditions for dif-
fusive transport are not satisfied. The bulk spin Seebeck coe�cient is then
well-described by Eq. (4.30) and proportional to the observed voltage V .
These assumptions are encouraged by the good agreement for the observed
and calculated peak structures at H‹ and HÎ with a single fitting param-
eter ÷ = 100 [20]. We may therefore conclude that the disorder potential
scatters the magnons more than the phonons and is therefore likely to be
magnetic.

4.5 Conclusion and Outlook

We have established a framework which captures the e�ects of the magne-
toelastic interaction on the transport properties of magnetic insulators. In
particular, we show that the magnon-phonon coupling gives rise to peak-like
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or dip-like structures in the field dependence of the spin and heat transport
coe�cients, and of the spin di�usion length.

Our numerical evaluation reproduces the peaks in the observed low tem-
perature longitudinal spin Seebeck voltages of YIG|Pt layers as a function
of magnetic field. We quantitatively explain the temperature-dependent
behavior of these anomalies in terms of hybrid magnon-phonon excitations
(“magnon-polarons”). The peaks occur at magnetic fields and wave num-
bers at which the phonon dispersion curves are tangents to the magnon
dispersion, i.e., when magnon and phonon energies as well as group veloci-
ties become the same. Under these conditions the e�ects of the magnetoe-
lastic interaction are maximized. The computed angle dependence shows
a robustness of the anomalies with respect to rotations of the magneti-
zation relative to the temperature gradient. The agreement between the
theory and the experimental results confirms that elastic magnon(phonon)
impurity-scattering is the main relaxation channel that limits the low tem-
perature transport in YIG. Our theory contains one adjustable parameter
that is fitted to the large set of experimental data, consistently finding a
much better acoustic than magnetic quality of the samples. The spin See-
beck e�ect is therefore a unique analytical instrument not only of magnetic,
but also mechanical material properties. The predicted e�ects of magnon-
polaron e�ects on magnonic spin and heat conductivity call for further
experimental confirmation.

We believe that the presented results open new avenues in spin caloritron-
ics. We focused here on the low energy magnon dispersion of cubic YIG,
which is well represented by the magnetostatic exchange waves of a homo-
geneous ferromagnet [78]. However, the theoretical framework can be easily
extended to include anisotropies as well as ferri- or antiferromagnetic order.
The magnetoelastic coupling in YIG is relatively small and the conspicuous
magnon-polaron e�ects can be destroyed easily. However, in materials with
large magnon-phonon couplings these e�ects should survive in the presence
of larger magnetization broadening as well as higher temperatures.



5 Landau-Lifshitz theory of the
magnon-drag thermopower

Metallic ferromagnets subjected to a temperature gradient exhibit a magnonic
drag of the electric current. We address this problem by solving a stochas-
tic Landau-Lifshitz equation to calculate the magnon-drag thermopower.
The long-wavelength magnetic dynamics result in two contributions to the
electromotive force acting on electrons: (1) An adiabatic Berry-phase force
related to the solid angle subtended by the magnetic precession and (2) a
dissipative correction thereof, which is rooted microscopically in the spin-
dephasing scattering. The first contribution results in a net force pushing
the electrons towards the hot side, while the second contribution drags
electrons towards the cold side, i.e., in the direction of the magnonic drift.
The ratio between the two forces is proportional to the ratio between the
Gilbert damping coe�cient – and the coe�cient — parametrizing the dis-
sipative contribution to the electromotive force.1

5.1 Introduction

The interest in thermoelectric phenomena in ferromagnetic heterostructures
has been recently revived by the discovery of the spin Seebeck e�ect [29,30].
This e�ect is now understood to stem from the interplay of the thermally-
driven magnonic spin current in the ferromagnet and the (inverse) spin
Hall voltage generation in an adjacent normal metal [31]. Lucassen et
al. [36] subsequently proposed that the thermally-induced magnon flow in
a metallic ferromagnet can also produce a detectable (longitudinal) volt-
age in the bulk itself, due to the spin-transfer mechanism of magnon drag.
Specifically, smooth magnetization texture dynamics induce an electromo-

1This Chapter is directly based on Landau-Lifshitz theory of the magnon-drag ther-

mopower, B. Flebus, R. A. Duine, and Y. Tserkovnyak, EPL 115, 57004 (2016). For this
paper, B. Flebus performed all analytical calculations, while Y. Tserkovnyak conceived
the project. B. Flebus drafted the paper, all other authors contributed to the text.
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tive force [1,2], whose net average over thermal fluctuations is proportional
to the temperature gradient.

In this Chapter, we develop a Landau-Lifshitz theory for this magnon
drag, which generalizes Ref. [36] to include a heretofore disregarded Berry-
phase contribution. This additional magnon drag can reverse the sign of
the thermopower, which can have potential utility for designing scalable
thermopiles based on metallic ferromagnets.

5.2 Seebeck coe�cient
Electrons propagating through a smooth dynamic texture of the directional
order parameter n(r, t) [such that |n(r, t)| © 1, with the self-consistent spin
density given by s = sn] experience the following geometric electromotive
force [1, 2]

Fi = ~
2 (n · ˆtn ◊ ˆin ≠ —ˆtn · ˆin) , (5.1)

for spins up along n and ≠Fi for spins down. The resulting electric current
density is given by

ji = ‡ø ≠ ‡¿
e

ÈFiÍ = ~P‡

2e
Èn · ˆtn ◊ ˆin ≠ —ˆtn · ˆinÍ , (5.2)

where ‡ = ‡ø + ‡¿ is the total electrical conductivity, P = (‡ø ≠ ‡¿)/‡ is
the conducting spin polarization, and e is the carrier charge (negative for
electrons). The averaging È. . . Í in Eq. (5.2) is understood to be taken over
the steady-state stochastic fluctuations of the magnetic orientation. The
latter obeys the stochastic Landau-Lifshitz-Gilbert equation [94]

s(1 + –n◊)ˆtn + n ◊ (Hz + h) +
ÿ

i

ˆiji = 0 , (5.3)

where – is the dimensionless Gilbert parameter [7], H parametrizes a mag-
netic field (and/or axial anisotropy) along the z axis, and ji = ≠An ◊ ˆin
is the magnetic spin-current density, which is proportional to the exchange
sti�ness A. For H > 0, the equilibrium orientation is n æ ≠z, which we
will suppose in the following.

The Langevin field stemming from the (local) Gilbert damping is de-
scribed by the correlator [95]

Èhi(r, Ê)hú
j (rÕ, ÊÕ)Í = 2fi–s~Ê”ij”(r ≠ rÕ)”(Ê ≠ ÊÕ)

tanh ~Ê
2k

B

T (r)

, (5.4)
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upon Fourier transforming in time: h(Ê) =
s

dteiÊth(t). At temperatures
much less than the Curie temperature, Tc, it su�ces to linearize the mag-
netic dynamics with respect to small- angle fluctuations. To that end, we
switch to the complex variable, n © nx ≠ iny, parametrizing the trans-
verse spin dynamics. Orienting a uniform thermal gradient along the x
axis, T (x) = T + xˆxT , we Fourier transform the Langevin field (5.4) also
in real space, with respect to the y and z axes. Linearizing Eq. (5.3) for
small-angle dynamics results in the Helmholtz equation:

A(ˆ2

x ≠ Ÿ2)n(x, q, Ê) = h(x, q, Ê), (5.5)

where Ÿ2 © q2 + [H ≠ (1 + i–)sÊ]/A, h © hx ≠ ihy, and q is the two-
dimensional wave vector in the yz plane.

Solving Eq. (5.5) using the Green’s function method, we substitute the
resulting n into the expression for the charge current density (5.2), which
can be appropriately rewritten in the following form (for the nonzero x
component):

jx = ~P‡

2e

⁄
d2qdÊ

(2fi)3

Ê Re(1 + i—)Èn(x, q, Ê)ˆxnú(x, qÕ, ÊÕ)Í
(2fi)3”(q ≠ qÕ)”(Ê ≠ ÊÕ) . (5.6)

Tedious but straightforward manipulations, using the correlator (5.4), fi-
nally give the following thermoelectric current density:

jx = –sP‡ˆxT

4eA2kBT 2

⁄
d2qdÊ

(2fi)3

(~Ê)3

sinh2 ~Ê
2k

B

T

Re [(1 + i—)I] , (5.7)

where I(Ÿ) © Ÿ/|Ÿ|2(Re Ÿ)2, having made the convention that Re Ÿ > 0.
To recast expression (5.7) in terms of magnon modes, we incorporate

the integration over qx by noticing that, in the limit of low damping, – æ 0,

I = 2
fi

⁄
dqx

1 + iq2

x/–Ễ

(Ễ ≠ q2

x ≠ q2 ≠ ›≠2)2 + (–Ễ)2

. (5.8)

Here, we have introduced the magnetic exchange length › © 
A/H and

defined Ễ © sÊ/A. After approximating the Lorentzian in Eq. (5.8) with
the delta function when – π 1, Eq. (5.7) can finally be expressed in terms
of a dimensionless integral

J(a) ©
⁄ Œ

a/
Ô

2

dx
x5

Ô
2x2 ≠ a2

sinh2 x2

, (5.9)

as
j =

3
1 ≠ —

3–

4
J

3
⁄

›

4
kBP‡

fi2e

3
T

Tc

4
3/2

ÒT . (5.10)
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Here, T is the ambient temperature, kBTc © A(~/s)1/3 estimates the Curie
temperature, and ⁄ © 

~A/skBT is the thermal de Broglie wavelength in
the absence of an applied field. We note that –, — π 1 while – ≥ —, in
typical transition-metal ferromagnets [2].

For temperatures much larger than the magnon gap (typically of the
order of 1 K in metallic ferromagnets), ⁄ π › and we can approximate
J(⁄/›) ¥ J(0) ≥ 1. This limit e�ectively corresponds to the gapless
magnon dispersion of ‘q © ~Êq ¥ ~Aq2/s. Within the Boltzmann phe-
nomenology, the magnonic heat current induced by a uniform thermal
gradient is given by jQ = ≠ÒT

s
[d3q/(2fi)3](ˆq

x

Êq)2·(Êq)‘qˆT f
B

, where
·≠1(Êq) = 2–Êq is the Gilbert-damping decay rate of magnons (to remain
within the consistent LLG phenomenology) and f

B

= [exp(‘q/k
B

T) ≠ 1]≠1

is the Bose-Einstein distribution function. By noticing that

‘qˆT f
B

= kB

C
~Êq/2kBT

sinh(~Êq/2kBT )

D
2

, (5.11)

it is easy to recast the second, Ã — contribution to Eq. (5.10) in the form

j(—) = —
~P‡

2eA
jQ , (5.12)

which reproduces the main result of Ref. [36].
The magnon-drag thermopower (Seebeck coe�cient),

S = ≠ˆxV

ˆxT

----
j

x

=0

, (5.13)

corresponds to the voltage gradient ˆxV induced under the open-circuit
condition. We thus get from Eq. (5.10):

S =
3

—

3–
≠ 1

4
J

kBP

fi2e

3
T

Tc

4
3/2

= (— ≠ 3–) ~PŸm

2eA
, (5.14)

where Ÿm = (2/3fi2)JkBA(T/Tc)3/2/–~ is the magnonic contribution to
the heat conductivity. Such magnon-drag thermopower has recently been
observed in Fe and Co, with scaling Ã T 3/2 over a broad temperature range
and opposite sign in the two metals [37]. Note that the sign depends on
—/– and the e�ective carrier charge e.

5.3 Discussion and conclusions
Equations (5.10) and (5.14) constitute the main results of this Chapter.
In the absence of Gilbert damping, – æ 0, the magnon-drag thermopower
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Figure 5.1: Schematics for the two contributions to the electron-magnon drag. In
the absence of decay (i.e., – æ 0), magnons drifting from the hot (left) side to the
cold (right) side drag the charge carriers viscously in the same direction, inducing
a thermopower Ã —. The (geometric) Berry-phase drag governed by the magnon
decay is proportional to – and acts in the opposite direction. It is illustrated for
a spin wave that is thermally emitted from the left. As the spin wave propagates
to the right, the solid angle � subtended by the spin precession shrinks, inducing
a force oriented to the left for spins parallel to n.

S is proportional to the heat conductivity. This contribution was studied
in Ref. [36] and is understood as a viscous hydrodynamic drag. In simple
model calculations [2], —P > 0 and this hydrodynamic thermopower thus
has the sign of the e�ective carrier charge e. When P > 0, so that the
majority band is polarized along the spin order parameter n, the Ã –
contribution to the thermopower is opposite to the Ã — contribution. (Note
that – is always > 0, in order to yield the positive dissipation.)

The underlying geometric meaning of this result is sketched in Fig. 5.1.
Namely, the spin waves that are generated at the hot end and are propa-
gating towards the cold end are associated with a decreasing solid angle,
ˆx� < 0. The first term in Eq. (5.1), which is rooted in the geometric Berry
connection [97–100], is proportional to the gradient of this solid angle times
the precession frequency, Ã Êˆi�, resulting in a net force towards the hot
side acting on the spins collinear with n.

Note that we have neglected the Onsager-reciprocal backaction of the
spin-polarized electron drift on the magnetic dynamics. This is justified
as including the corresponding spin-transfer torque in the LLG equation
would yield higher-order e�ects that are beyond our treatment. The back-
action by the spin-transfer torque would be absent when the longitudinal
spin current, ji = ‡(PEi + Fi/e)n, vanishes, where Ei is the electric field
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and Fi is the spin-motive force (5.1). Understanding Eq. (5.10) as pertain-
ing to the limit of the vanishing spin current ji rather than electric current
ji = ‡(Ei + PFi/e)n would, however, result in higher-order (in T/Tc) cor-
rections to the Seebeck coe�cient (5.13). These are beyond the level of our
approximations.

The di�usive contribution to the Seebeck e�ect, Ã T/EF , where EF is
a characteristic Fermi energy, which has been omitted from our analysis, is
expected to dominate only at very low temperatures [37]. The conventional
phonon-drag e�ects have likewise been disregarded. A systematic study of
the relative importance of the magnon and phonon drags is called upon in
magnetic metals and semiconductors.



Outlook

This Thesis has dealt with two overarching themes: the interplay between
coherent and incoherent spin dynamics, with a particular focus on planar
magnets, where the coherent dynamics is superfluid in nature, and the
mutual interaction between magnons, electrons and phonons. While our
research has lead to progress within both directions, it has yielded, at the
same time, new open questions.

The first concerns the interactions between coherent and incoherent
spin dynamics, and precisely more the magnitude of the coupling constants
appearing in our theory. While an analytical estimate has already been
given, only fitting our theoretical predictions to experimental data can in-
disputably assess the order of magnitude of the coupling constants and thus
the relevance of the coupled dynamics. This could be achieved by utilizing
well-established techniques capable of generating coherent dynamics such
as microwave pumping, without invoking spin superfluid dynamics, whose
detection and manipulation is still largely unexplored.

Concerning the latter, the presented transport framework provides an
adequate basis to address the concomitant experimental progress. As in
this work we focused solely on spin transport phenomena, we still need to
address the coupled spin and heat dynamics and assess how spin superflu-
idity influences heat propagation.

In most of materials, however, there are further anisotropies within the
xy plane, e.g., an easy-axis anisotropy along the x̂ or ŷ direction. These
anisotropies break the helical spin winding, pertaining to the spin super-
fluid, down into particle-like topological solitons. In the case of an easy-axis
anisotropy, for example, in a magnetic wire, chiral domain walls take over
as elementary building blocks of a general planar spin texture (see Fig. 5.2).
While these anisotropies might appear detrimental to spin superfluidity as
they lift the U (1) symmetry, a more robust hydrodynamics than the su-
perfluid one seems to emerge from them. This hydrodynamics is rooted
in the conserved topological charge, which supersedes the z-component of
the spin angular momentum. In the case of the magnetic textures depicted
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Figure 5.2: In a planar ferromagnet, the winding of the phase Ï carries the flow
of the z-component S

z

of the spin angular momentum. Subjected to an easy-axis
anisotropy along the x axis, the spin winding in the xy plane breaks down into a
train of domain walls. Defining the topological charge of a domain wall in terms of
its chirality, we assign q = +1 to the clockwise-wound domain walls and q = ≠1 to
the anticlockwise-wound ones. The conservation of the net winding of the phase
in the xy plane ensures the conservation of the net topological charge, which is
carried by single domain walls.

in Fig. 5.2, the topological charge is a measure of the chirality of the do-
main wall, i.e., we assign q = +1 to the clockwise-wound domain walls
and q = ≠1 to the anticlockwise- wound ones. The topological charge den-
sity is carried by individual domain walls and its transport mimics many
manifestations of spin superfluidity [67].

In this sense, part of the work carried out in this Thesis can be regarded
as a foundation for investigating broader superfluids dynamics, which go
beyond the U (1) superfluidity, and still all rely on the idea of superseding
the exponential decaying magnon hydrodynamics with a purely geometric
spin dynamics. The concepts illustrated by the above example are general
and in future work they could be extended to any topological invariant
that can be distributed over particle-like topological defects in magnetic
system. For example, a two-dimensional physical realization is provided by
a magnetic film carrying an ensemble of vortices or skyrmions, with the net
skyrmion number playing the role of a topological invariant [103].

Moving to the research conducted on the e�ects on magnon-phonon
coupling on thermally-driven spin transport, our results are in excellent
agreement with the experimental observations, which is a good indicator
of the validity of our approach. Therefore, our further predictions on the
other spin and heat transport coe�cients, will hopefully encourage future
experimental investigations. Of interest would be also to extend our theory
to capture the transport properties of magnon-polarons arising in magnetic
systems with di�erent crystalline symmetries, and in antiferromagnetic ma-
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terials. The unambiguous observation of signatures of coupling mechanisms
between thermal magnons and collective excitation suggests that the inter-
action between the superfluid dynamics and phonons could lead as well to
a number of unexplored phenomena and still needs to be addressed.

Turning to our last Chapter, the discovery of a novel magnon drag con-
tribution to the thermopower, whose sign is opposite to the one of the
previously known contribution, carries important consequences. As recent
experiments demonstrated, the magnon drag contribution can dominate the
thermopower over a broad range of temperatures. The ratio –/— between
the di�erent magnon-drag contributions depends on microscopic details of
the system under consideration, and can possibly be controlled by doping
the material [96]. As the possibility of engineering ferromagnetic metals
with opposite thermopowers suggests intriguing perspective for a new gen-
eration of devices, we hope that our results will stimulate experimental ef-
forts in this direction. We want to remark that in our work only the mutual
electron-magnon interaction has been taken into account, as the inclusion
of phononic degrees of freedom leads to a considerably more convoluted and
involved dynamics. Nonetheless, in the future the mutual phonon, magnon
and electron interactions should be addressed systematically.





Summary

E�cient storage and transmission of information has been and remains
among the most desired technological objectives. These needs have fu-
eled tremendous basic research on electron transport in condensed mat-
ter. While the traditional devices based on semiconductors and metals
rely solely on electric charge flows, cutting-edge research has been shift-
ing towards novel transport phenomena involving spin degrees of freedom
in magnetic materials. Specifically, a vigorous interest in spin transport
phenomena activated by heat fluxes has risen recently, as the possibility of
converting energy abandoned as waste heat back to electric power carries
promising potential for more e�cient and sustainable devices.

In this Thesis, we have investigated the magnetic dynamics in both
insulating and metallic magnetic systems, with an eye on deepening the
understanding of well-established thermally-activated spin transport phe-
nomena, and on exploring alternative ways of transmitting information via
spin dynamics. Chapter 1 is intended to give the reader an overview of the
state-of-the-art, and also introduces the experimental techniques to which
we refer in the following chapters. Moreover, it acquaints the reader with
the concept of magnon, i.e., the quantized version of the spin-wave oscilla-
tions in the magnetization, as a carrier of spin.

In the first part of this Thesis, we depart from the paradigm of di�u-
sive particle-like magnon transport by focusing on coherent spin dynamics.
Specifically, we turn our attention to systems in which the coherent spin dy-
namics is constrained by anisotropies to undergo planar precession. In such
cases, we can benefit from the notion of spin superfluidity as the collective
dynamics mimics the one of neutral superfluids. The geometric spin su-
perfluid dynamics is fundamentally distinct from the incoherent magnetic
dynamics, which is activated only at finite temperature and su�ers from
Ohmic-like dissipation. It di�ers as well from the coherent spin motion
induced by RF or microwave fields, as the spontaneous character of a spin
superfluid allows it to carry currents, which su�er of very little dissipation,
without any external driving source. In Chapter 2, we investigate the finite
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temperature dynamics of a spin superfluid in a planar magnet. Namely, we
derive a two-fluid theory describing the interplay between a spin superfluid
and thermal magnons. We discuss as well how thermoelectric measure-
ments can be deployed to probe spin superfluidity. In Chapter 3, we build
a general phenomenology describing the coupling between coherent and in-
coherent spin dynamics in magnetic insulators. Our results pave the way for
converting waste heat into coherent spin dynamics in a controlled fashion.
While our derivation focuses on magnetic insulators with U (1) symmetry,
it can be easily extended to other systems. As an example, we address a
planar ferromagnet, whose coherent dynamics is superfluid in nature, cou-
pled to a magnet hosting a domain-wall. We show how the interconversion
between thermal magnons and spin superfluid can be used to control the
motion of a domain-wall in low dissipation regimes.

The overarching theme of the second part of this Thesis is the inter-
play between the magnetization dynamics and other degrees of freedom,
such as electrons and collective lattice excitations. Motivated by recent
spin transport experiments, in Chapter 4 we derive a transport theory for
magnon-polarons, i.e., the quasi-particles arising from the coupling between
magnetic and elastic excitations. Our results show that the hybridization
between magnons and phonons is responsible for the appearance of anoma-
lous features in the magnetic-field dependence of the transport coe�cients,
in agreement with the experimental observations. Besides, we unveil how
these features can be interpreted to assess the relative magnetic and acous-
tic quality of a sample. Our further predictions of anomalies in spin and
heat transport coe�cients will hopefully encourage additional experimental
investigation. In Chapter 5, we turn our focus to the charge transport in-
duced by a thermal bias in a ferromagnetic metal. We investigate how the
resulting magnetization dynamics influences the electrons’ motion, result-
ing in two magnon-drag contributions to the thermopower, one of viscous
nature, the other rooted in the geometry of the damped magnetic preces-
sion. The magnon drag contributions have opposite sign and their relative
magnitude can possibly be controlled by manufacturing processes, opening
new prospects for thermoelectric devices based on metals.



Samenvatting

Het e�ciënt opslaan en verzenden van informatie is een erg belangrijke
technologische behoefte. Deze drijfveer heeft uiteindelijk geleid tot een
stroom aan fundamenteel onderzoek naar elektronentransport binnen de
gecondenseerde materie. De meeste traditionele apparaten zijn immers
gebaseerd op halfgeleiders of metalen, en deze zijn daarom sterk afhanke-
lijk van de manier waarop elektrische lading door deze materialen stroomt.
In het hedendaagse onderzoek verschuift de aandacht echter langzaam naar
nieuwe transportmechanismen waarbij de spinvrijheidsgraden in magnetis-
che materialen een belangrijke rol spelen. In het bijzonder is er recentelijk
veel interesse naar spintransportverschijnselen die geactiveerd worden door
middel van warmtefluxen. Op deze manier kan afvalwarmte indirect wor-
den omgezet naar elektriciteit en dit kan weer leiden tot de ontwikkeling
van duurzame apparaten.

In dit proefschrift hebben we de magnetisatiedynamica in isolerende en
metallische, magnetische systemen onderzocht met een speciale nadruk op
het begrijpen van de welbekende thermisch geactiveerde spintransportver-
schijnselen. Tevens hebben we alternatieve manieren onderzocht om infor-
matie te verzenden door middel van spindynamica.

Hoofdstuk 1 geeft de lezer een samenvatting van het hedendaagse onder-
zoek, en bovendien worden de experimentele technieken beschreven waar
we in latere hoofdstukken naar zullen verwijzen. Ook leggen we het concept
magnon uit (gekwantiseerde trillingen van spingolven in de magnetisatie)
en we zetten uiteen hoe dit gebruikt kan worden om spin over te dragen.

In het eerste gedeelte van dit proefschrift leiden we een theorie af
dat gebruikmaakt van coherente spindynamica, en dit gaat verder dan
het paradigma van di�usieve magnonentransport waarbij de magnonen als
deeltjes behandeld worden. In het bijzonder brengen we systemen on-
der de aandacht waarbij de coherente spindynamica beperkt wordt door
anisotropieën, wat ertoe leidt dat alleen precessie van de magnetisatie in
een tweedimensionaal vlak mogelijk is. In deze gevallen kunnen we ge-
bruikmaken van de notie spinsuperflüıditeit, aangezien de collectieve dy-
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namica hetzelfde is als die van neutrale superflüıde vloeisto�en. De ge-
ometrische spinsuperflüıditeitsdynamica is fundamenteel anders dan de in-
coherente magnetisatiedynamica. Laatstgenoemde kan immers alleen geac-
tiveerd worden bij eindige temperaturen met daarbij het optreden van de
onwenselijke Ohmse dissipatie. Ook verschilt het van de coherente beweg-
ing van spins die door radiofrequente straling of door microgolven ontstaat.
De spontane vorming van een superflüıde spinvloeistof leidt namelijk tot
het ontstaan van dissipatievrije stromen zonder dat er een externe bron
nodig.

In hoofdstuk 2 onderzoeken we de spindynamica van een superflüıde
spinvloeistof bij een eindige temperatuur, waarbij de magnetisatie beperkt
is in een tweedimensionaal vlak. We leiden een twee-flüıda theorie af die
de wisselwerking beschrijft tussen een superflüıde spinvloeistof en thermis-
che magnonen. We beschrijven tevens hoe thermo-elektrische metingen
gebruikt kunnen worden om spinsuperflüıditeit vast te stellen.

In hoofdstuk 3 beschrijven we fenomenologisch de koppeling tussen co-
herente en incoherente spindynamica in magnetische isolatoren. Onze re-
sultaten laten zien dat het mogelijk is om op een gecontroleerde manier
afvalwarmte om te zetten naar een coherente spindynamica. Onze theo-
retische afleiding richt zich op magnetische isolatoren met U (1) symmetrie,
maar dit kan makkelijk worden uitgebreid naar andere systemen. Als een
voorbeeld nemen we een ferromagneet waarbij de magnetisatie slechts in
een tweedimensionaal vlak kan bewegen. De coherente dynamica van de
ferromagneet kan worden beschreven als een superflüıde vloeistof gekop-
peld aan een magneet met domeinmuren. We laten zien dat de omzetting
van thermische magnonen naar een superflüıde spinvloeistof gebruikt kan
worden om de beweging van domeinmuren te manipuleren in regimes met
weinig dissipatie.

Het tweede gedeelte van dit proefschrift gaat over de wisselwerking van
de magnetisatiedynamica met andere vrijheidsgraden, zoals elektronen of
collectieve roosterexcitaties. In hoofdstuk 4 leiden we een transporttheorie
af voor zogenaamde magnon-polaronen, die een belangrijke rol zal spelen
voor het begrijpen van recente spintransportexperimenten. Deze quasi-
deeltjes ontstaan door de koppeling tussen magnetische en elastische exci-
taties. Onze resultaten laten zien dat de hybridisatie tussen magnonen en
fononen resulteert in een atypische afhankelijkheid van transportcoe�ciënten
als functie van het magnetische veld, wat weer overeenstemt met experi-
mentele waarnemingen. Bovendien hebben we laten zien hoe we deze ken-
merken kunnen begrijpen met informatie over de relatieve magnetische en
akoestische kwaliteit van het experimentele monster. Onze voorspellingen
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betreft het atypische gedrag van spin- en warmtetransportcoe�ciënten zal
hopelijk leiden tot nieuwe experimenten.

In hoofdstuk 5 richten we ons op het ladingstransport dat gëınduceerd
wordt door een thermische bias in een ferromagnetisch metaal. We onder-
zoeken hoe de resulterende magnetisatiedynamica de elektronenbeweging
bëinvloedt, en hoe dit uiteindelijk leidt tot twee wrijvingsbijdragen van
de magnonen aan het thermovermogen: hiervan is één van viskeuze aard,
terwijl de andere bijdrage geometrisch van aard is met betrekking tot de
gedempte magnetische precessie. Deze magnonwrijvingsbijdragen hebben
een tegengesteld teken en hun relatieve grootte kan worden gemanipuleerd
in het productieproces. De laatstgenoemde kan uiteindelijk weer leiden
tot nieuwe mogelijkheden om thermo-elektrische apparaten te maken die
gebaseerd zijn op metalen.
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