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Nanopolyhedra form a versatile toolbox to investigate the effect of particle shape on self-assembly.
Here we consider rod-like triangular prisms to gauge the effect of the cross section of the rods on liquid
crystal phase behavior. We also take this opportunity to implement and test a previously proposed
version of fundamental measure density functional theory (0D-FMT). Additionally, we perform Monte
Carlo computer simulations and we employ a simpler Onsager theory with a Parsons-Lee correction.
Surprisingly and disappointingly, 0D-FMT does not perform better than the Tarazona and Rosenfeld’s
version of fundamental measure theory (TR-FMT). Both versions of FMT perform somewhat better
than the Parsons-Lee theory. In addition, we find that the stability regime of the smectic phase is
larger for triangular prisms than for spherocylinders and square prisms. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978502]

I. INTRODUCTION

Recent advances in colloid synthesis techniques allow
the preparation of colloids and nanoparticles with a larger
number of distinct polyhedral shapes and sizes ranging from
the nanometer to the micrometer.1–3 With this great vari-
ety of available polyhedral shapes, polyhedra are attractive
as a toolbox for investigating the effect of shape on self-
assembly.4–9 This requires efficient theories or computer
simulations to guide future synthesis efforts. In fact, a syn-
ergy of the two types of techniques could be used: First,
a reliable and efficient, but approximate, theory predicts
the phase behavior for a large range of parameters. Sub-
sequently, particle-resolved computer simulations improve
on these predictions at the cost of a greater computational
effort.

A range of theoretical techniques exist for hard bod-
ies: The fluid and the crystal can be described using scaled
particle theory and cell theory, respectively, while the most
suitable non-phenomenological theory for liquid crystals
is density functional theory (DFT).10,11 Density functional
theory is a continuum theory for systems that are inho-
mogeneous or anisotropic either due to applied external
fields10,12,13 or spontaneous symmetry breaking.14–16 For hard
spheres, the most successful DFT is fundamental measure
theory (FMT)15,17,18 or an extension.19–22 FMT is strongly
based on geometry, which makes the extension to non-
spherical particles12,13,23,24 more elegant than for previous
DFTs for anisotropic particles.25–28 FMT has been success-
fully applied to polyhedra with moderate shape anisotropy.29

More recent advances,30,31,33 after which the smectic phase
of rods can be described, were not implemented in
Ref. 29.

a)M. Marechal and S. Dussi contributed equally to this work.

The existence of polyhedral nanorods3,34–36 and the obser-
vation of smectic-like ordering of these rods34,35 motivated
us to consider the effect of polyhedral shape on the liquid-
crystal phases of rod-like particles. Furthermore, polyhedral
rods present a good system to test the recent advances from
Refs. 30–33 for shapes other than spherocylinders and to inves-
tigate the performance of a fully non-empirical version of
FMT (see Sec. III) which has not yet been applied to non-
spherical particles. We chose the triangular prisms as the rod-
like polyhedron to consider as it is the prism that differs the
most from the spherocylinder. Computer simulations of square
prisms (also known as cuboids or tetragonal parallelepipeds)
have already been performed37,38 showing the expected liquid
crystal phases for sufficient elongation.

This paper is organized as follows: First, we present the
model and its parameters in Sec. II. In the subsequent section
(Sec. III), we first present the two versions of FMT we will con-
sider. In Sec. IV, we describe a simpler (Onsager-like) theory;
the performance of the more complicated FMT will be com-
pared to this theory for the nematic phase. Sec. VI contains our
results. Finally, we will summarize our results in Sec. VII and
compare them to results for other particles shapes. The appen-
dices contain details considering the implementation of FMT
for general shapes (in Appendix A) and the specialization to
polyhedra (in Appendix B).

II. MODEL

The particle model we use is a hard triangular prism
of height h, see Fig. 1(a). The orientation of the particle is
defined by the Euler angles depicted in Fig. 1(b). The vol-

ume of the particle is 3 = h
√

3 l2

2 , where l is the length of the
regular triangle’s edges. We define the “width” of the trian-
gular prisms via the circumference of the triangle 3l ≡ π4,
see Fig. 1(a). With that definition of width, the aspect ratio
is h/4.
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FIG. 1. (a) Triangular prism with an equilateral base. The height of the particle
is h whereas the width 4 of the prism is defined as the circumference over π.
(b) The Euler angles defining the orientation $ of a particle where the z axis
is aligned with the nematic director. θ is the polar angle, φ is the azimuthal
angle (not shown), and ψ is the particle internal angle.

III. DENSITY FUNCTIONAL THEORY: FUNDAMENTAL
MEASURE THEORY

Density functional theory is specifically designed to han-
dle inhomogeneous mixtures of anisotropic particles described
by a density profile ρs(r,$), which expresses the local den-
sity of particles of species s orientation $ at position r, where
$ denotes the three Euler angles. The grand potential—the
thermodynamic potential of the ensemble where the chemical
potentials µs, the volume V, and the temperature T are held
fixed—can be written as a sum over three parts

Ω[ρ] = Fid[ρ] + Fexc[ρ]

+
∑

s

∫
d$

∫
drρs(r,$)[V ext

s (r,$) − µs], (1)

where V ext
s (r,$) is the external potential. The first term in the

grand potential Ω is the ideal gas free energy,10

Fid[ρ] = kBT
∑

s

∫ ∫
ρs(r,$){log[ρs(r,$)V] − 1} d$ dr,

(2)
where kB is Boltzmann’s constant and V is the irrelevant ther-
mal volume, which is the result of the integrals over the
momenta conjugate to r and$. We will use the (approximate)
excess free energy Fexc from fundamental measure theory
(FMT).

In FMT12,13,15,17,39 and variants,19,20 hard-particle sys-
tems are connected to geometry by identifying a particle with
species s and coordinates (r,$) with the set of points in its
interior Bs(r,$). There are different versions of FMT, but all
of them have an excess free energy of the form

Fexc[ρ] ≡ kBT
∫

dr
3∑

k=1

Φk

(
{nα[ρ](r)}

)
(3)

in three dimensions, where theΦk are functions of the (mixed)
weighted densities nα[ρ] that we will define shortly

Φ
(
{nα}

)
= −n0 log(1 − n3) +

n12

1 − n3
+ C

n222

(1 − n3)2
. (4)

The differences between versions of FMT lie in the definitions
of n12 and n222 and whether C , 1 is used to improve the third
virial coefficient. The weighted densities nα for 0 ≤ α ≤ 3
have units of (length)α−3 (n1 and n2 are introduced for later
reference). These are related to the geometry of the particles,
namely the topology, the integrated mean curvature, the sur-
face area, and the volume of the particles for α = 0, 1, 2, and
3, respectively. These are related to the geometry of the inter-
sections of n particles. A mixed40 weighted density nA with
multi-index A = α1 · · · αn has units of length to the power∑n

i=1(αi − 3), such that each term in Eq. (4) has the units of
density. Usually n12 and n222 are written in terms of a (ten-
sor) product of single-index weighted densities of a tensorial
nature.

The original version of FMT by Rosenfeld for hard
spheres17 has the disadvantage that it predicts the crystal of
hard spheres to be unstable at all densities. To resolve this, an
FMT for hard spheres was derived by demanding that the the-
ory is exact in the so-called zero-dimensional limit, which is
related to the crystal in the close-packed limit.41 In this limit,
the system is confined to such a great extent that only one par-
ticle with discrete positions and orientations fits in the volume
of the system (in this case, the density profile is a sum of delta
functions).18,41 The resulting non-empirical version of FMT,
which we will call 0D-FMT, can also be derived by approxi-
mating the virial series42 and resumming the series to a closed
form. This theory was deemed too unwieldy to use in FMT cal-
culations for the hard sphere crystal, because n222 could not
be written in terms of single-index weighted densities (unlike
previous versions); moreover, its prediction for the third virial
coefficient of hard spheres is off. In the same publication18

in which 0D-FMT was first derived, Tarazona and Rosenfeld
solved both problems by approximating n222 as an expression
containing tensorial weighted densities of rank two and less
and adjusting C in Eq. (4) such that FMT yields the exact third
virial coefficient for hard spheres; we will refer to Tarazona
and Rosenfeld’s version of FMT as TR-FMT. Later, additional
improvements were proposed that lead to a very accurate DFT
for hard spheres.15,19–22

After extending FMT to non-spherical particles, Rosen-
feld realized that his original FMT would never predict a stable
nematic phase.39 A more careful extension of n12 to non-
spherical particles by Hansen-Goos and Mecke did lead to
a DFT that can also describe the nematic phase,12,13 while the
functional can still be expressed in tensorial weighted densities
of rank two and lower. However, an empirical rescaling was
required for an accurate description of the isotropic–nematic
transition. Afterwards,30 it was found that the smectic phase
was stable in a similarly extended TR-FMT but not in the more
recent improved theories. Finally, it is possible to calculate
n12 exactly for non-spherical particles either by a direct cal-
culation, which is computationally expensive, or an improved
expansion in tensorial weighted densities.31 We consider this
theory as the proper extension of TR-FMT to non-spherical
particles and refer to it simply as “TR-FMT.” The predictions
of TR-FMT for liquid crystals of hard spherocylinders are
generally accurate, see Ref. 33 for an overview. Moreover,
the semi-empirical constant introduced in Ref. 12 is removed
from the theory. Nevertheless, the constant C , 1 in front of
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the expression for n222 is still somewhat empirical; further-
more, its value is obtained for hard spheres and thus might not
be appropriate for non-spherical particles. For these reasons,
we will also consider 0D-FMT, which has no adjustable con-
stants (C = 1) and thus might be more robust under changes
of the particle shape.

We will now give expressions for the weighted densities
in the 0D-FMT functional and, subsequently, provide the dif-
ferences between 0D-FMT and TR-FMT. First, the weighted
density, n3, is defined using an integral of the density profile
over the particle volume

n3[ρ](r) =
∑

s

∫
d$

∫
Bs(0,$)

dp ρs(r − p,$). (5)

Note that the integral over p runs over the interior of a par-
ticle centered around the origin; after a variable substitution
p → r′ = r − p, Eq. (5) may also be interpreted as the sum
over all species of the integral over all particle positions r′ and
orientations such that r lies inside Bs(r′,$), the interior of a
particle at r′. The other weighted densities are defined using
an integral over the particle surface in addition to an integral
over the particle’s orientations and a sum over the species (if
applicable) or repeated integrals of this type, for which we
define the shorthands∫

d<

{∂Bs(0,$)}

≡
∑

s

∫
d$

∫
∂Bs(0,$)

d2p, (6)

∫
{∂Bs(0,$)}n

d<n ≡

∫
∂Bs1 (0,$1)

d<1 · · ·

∫
∂Bsn (0,$n)

d<n, (7)

and finally, we define ρ(r −<i) ≡ ρsi (r − pi,$i), where d2p
denotes a surface area element at a point p on the boundary
∂Bs(0,$) and <i = (pi, si,$i). With these shorthands, the
(mixed) weighted density nA, where A has n components, reads

nA[ρ](r) =
∫
{∂Bs(0,$)}n

d<n QA

(
<n

) n∏
i=1

ρ(r −<i). (8)

Similarly as for n3, suitable variable substitutions allow the
interpretation of Eq. (8) as the average of QA over all particle
positions, orientations, and species such that r simultaneously
lies on the surfaces of all n particles.

The function QA

(
<n

)
with <i = (pi, si,$i) for i

= 1, . . . , n depends on the principal moments of curvature
κii and κiii , the corresponding directions vii and viii and the nor-
mal vector ni of the surface ∂Bsi (0,$i) at the point pi for all
i = 1, . . . , n. The explicit expressions for QA read

Q0(<1) ≡
K1

4π
, (9)

Q12(<2) ≡
κii1(vi1 · n2)2 + κi1(vii1 · n2)2

4π(1 + n1 · n2)
, (10)

Q222(<3) ≡ |(n1 × n2) · n3 |
2π − 3 α(n1, n2, n3)

24π
, (11)

where Ki = κiiκ
ii
i is the Gaussian curvature and α(n1, n2, n3)

is the angle between the two cross products,43 n1 × n2 and
n2 × n3.

The only quantities that are different in TR-FMT com-
pared to 0D-FMT are the value for the adjustable constant
C = 9 and the form for Q222,18

Q222(<3) ' QTR
222(<3) ≡

1
48π

[n1 · (n2 × n3)]2, (12)

which reduces to Q222 in the limit that the normal vectors
become parallel.42

The high dimensionality of the integrals over <n in the
definition of the mixed weighted densities n12 for TR-FMT and
0D-FMT and n222 for 0D-FMT makes it difficult to evaluate
them (practically impossible in case of n222 for the smectic
phase). Therefore, we follow Wertheim44 in expanding the
nA in terms of spherical harmonics. While this expansion is
new in the case of n222 and has never been applied to FMT, the
(analytic) calculation of the coefficients is somewhat involved,
so we present it in Appendix A. The result has the typical form
for FMT

n12(r) =
∑
~l

n(~l)
1 (r)n(~l)

2 (r), (13)

n222(r) =
∑
~l1,~l2,~l3

C(~l1,~l2,~l3)
222 n(~l1)

2 (r)n(~l2)
2 (r)n(~l3)

2 (r), (14)

where~li = (li, mi) with the degree li and order mi of a spher-

ical harmonic and the weighted densities n(~l)
α for α = 1, 2 are

defined by

n(~l)
α (r) =

∑
s

∫
d$

[∫
dr′ 4(~l)

α (r − r′, s,$)ρs($, r′)
]

, (15)

where the expression in square brackets is a convolution of a
weight function and the density profile that can be efficiently
calculated using fast Fourier transforms (see Appendix B).

Here, 4(~l)
α (r, s,$) are the weight functions (proportional to

a one-dimensional delta-function) defined in Eqs. (A40)–
(A42). The method for calculating the weighted densities for
polyhedra is given in Appendix B and Ref. 29.

For the minimization of the grand potential with respect
to the density profile, we employ either a variational approach,
where the density profile is parametrized as described in
Ref. 30, or we perform a full minimization using Picard
iteration on a grid.48 In either case, the density profile is
calculated on a two-dimensional grid consisting of equidis-
tant points in the z-direction and, in the θ-direction, either
a fine equidistant grid or the points from a modified
Gauss-Legendre quadrature. For the modified Gauss-Legendre
quadrature, we first performed a variable transformation
θ→ x = sinh(λ cos θ) with λ chosen such that cosh(λθ)
approximates the expected θ-dependence of the density
profile (see Ref. 49 for the reasoning behind perform-
ing such a variable transformation). We also performed
full minimizations on three-dimensional (z, θ,ψ) grids, but
we never found significant ψ-dependence of the density
profile.

IV. SECOND-VIRIAL DFT:
ISOTROPIC-NEMATIC TRANSITION

To describe the isotropic-nematic transition, we also use
a second-virial (Onsager-like50) density functional theory that
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we compare against results from FMT and simulations. In this
case, we do not fully consider the biaxial nature of the particle
shape in the description of the nematic order. In particular, we
assume that the single-particle density of the homogeneous
bulk nematic phase can be written as ρ(r,$) = ρ̄ ϕ(θ), with
ρ̄ = N/V = η/3 the number density, V the volume of the
system, 3 the particle volume, and η the packing fraction of
the system. The orientation distribution function ϕ depends
only on the polar angle θ (see Fig. 1(b)) and the free energy of
the system is

βF [ϕ]
V

= ρ̄(logV ρ̄ − 1) + 4π2 ρ̄

∫
d cos θ ϕ(θ) log ϕ(θ)

+ G(η)
ρ̄2

2

∫
d cos θ d cos θ ′E(θ, θ ′)ϕ(θ)ϕ(θ ′)

(16)

with β = 1/kBT , V the irrelevant thermal volume, and G(η)
= (1− 3

4η)/(1 − η)2 the Parsons-Lee correction factor.51,52 The
excluded volume between two particles with orientation$ and
$′, respectively, and separated by a distance r is given by

E(θ, θ ′) = −
∫

dφ dφ′ dψ dψ ′dr f (r,$,$′) (17)

with f (r,$,$′) = exp(−βU(r,$,$′)) − 1 the Mayer func-
tion, U(r,$,$′) the (hard-core) pair potential, and φ and
ψ the azimuthal and internal angle (see Fig. 1(b)). In prac-
tice, the excluded volume is computed by performing a Monte
Carlo (MC) integration over many randomly generated pairs
of particles, by checking if they overlap using an algorithm
based on the Robust and Accurate Polygon Interface Detec-
tion (RAPID) library.53 This procedure has been already used,
for example, to describe the chiral nematic order in similar sys-
tems composed of twisted triangular prisms.54 In summary, the
excluded volume used as input for the (Parsons-Lee) Onsager
theory is an average over the particle internal angle. The free-
energy functional is minimized subject to the normalization
condition ∫ d$ϕ(θ) = 1. The resulting non-linear equation
for the orientation distribution function reads

ϕ(θ) =
1
Z

exp

(
− ρ̄G(η)

∫
d cos θ ′

E(θ, θ ′)

4π2
ϕ(θ ′)

)
, (18)

where Z is a normalization constant. Eq. (18) is solved self-
consistently at fixed density ρ̄ by using a discrete grid for the
polar angle θ (see, e.g., Ref. 55). The resulting equilibrium
orientation distribution function ϕeq(θ) is used to calculate the
relevant thermodynamic and structural quantities, such as the
nematic order parameter

S =
∫

dθ

[
3
2

cos2(θ) −
1
2

]
ϕeq(θ). (19)

V. COMPUTER SIMULATIONS

To study the phase behavior of hard elongated triangular
prisms, we employ standard Monte Carlo (MC) simulations
either in the NPT or in the NVT ensemble.56 We use N
= 2000 particles with different aspect ratios h/4 ∈ [3.0, 6.0]
and several millions of MC steps are performed for typical
runs. For NVT -MC simulations, each MC step consists on

average of N /2 attempts of translating a random particle and
N /2 attempts of rotating a random particle. For NPT -MC sim-
ulations, an additional attempt to either scale isotropically the
volume or to change only one edge of the cuboidal simula-
tion box is tried at each MC step. The particles interact via a
hard-core potential only. To detect overlaps between particles,
we use an algorithm, based on the RAPID library,53 that con-
sists in detecting the intersections between the (rectangular or
triangular) faces of the polyhedral particles.

To quantify the orientational and positional order in the
system, we use standard order parameters. First, we construct
the nematic order parameter tensor

Qαβ =
1
N

N∑
i=1

[
3
2

ûiαûiβ −
δαβ

2

]
, (20)

where α, β = x, y, z component, û denotes the particle long
axis, N is the number of particles, and δαβ the Kronecker delta.
After diagonalizing Q, we identify the (scalar) order parame-
ter S as the maximum eigenvalue. The associated eigenvector
corresponds to the nematic director n̂. Similar nematic order
parameter tensors can be calculated considering the short and
the medium particle axes, thereby probing oblate (or discotic-
like) order in the system. Furthermore, it is also possible to
quantify the degree of (macroscopic) biaxial alignment of a
nematic phase by defining an additional order parameter, as,
for example, used in Ref. 57. However, for the particle shapes
studied in the present work, we observe only the formation
of uniaxial prolate (or calamitic) nematic phases. The results
on similar particle shapes forming prolate and biaxial nematic
phases have been anticipated in Ref. 54 and will be reported
in detail elsewhere.

To identify the phase transition to a smectic phase, we
monitor the onset of positional order along the nematic direc-
tor n̂ and we calculate the smectic order parameter defined
as

τ = max
l∈ℝ

�������

N∑
j=1

exp

(
2π
l

irj · n̂
) �������

, (21)

where rj denotes the position of particle j.

VI. RESULTS

We first report the liquid crystal behavior of hard trian-
gular prisms as obtained using MC simulations that will be
compared below with the theoretical predictions. The equa-
tion of state is obtained after long equilibration runs in the
NPT ensemble, typically expanding from close-packed con-
figurations, and averaging the density over equilibrated con-
figurations generated in the last ∼106 MC steps. In Fig. 2(a),
we plot the reduced pressure βP43, with β = 1/kBT , T the
temperature, and kB the Boltzmann constant, as a function
of the packing fraction η for some of the systems stud-
ied. We find an isotropic (I) phase at low densities and a
crystal (X) phase at high densities for all the aspect ratios
h/4 ∈ [3.0, 6.0]. For h/4 = 3, we observe a clear jump in
the density that corresponds to a first-order transition from
I to a smectic (Sm) phase. In the case of longer particles, a
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FIG. 2. (a) Equations of state (reduced pressure βP43 versus packing frac-
tion η) obtained by MC-NPT simulations for triangular prisms with different
aspect ratio h/4 along with representative snapshots of (b) an isotropic (I)
phase, (c) a nematic (N) phase, and (d) a smectic (Sm) phase. Particles are
colored according to the orientation of their long axis. At high densities, the
triangular prisms form a crystal phase (X).

nematic (N) phase is also observed, and the jumps in densi-
ties associated with the I-N and N-Sm transitions are barely
visible.

Both in the nematic phase and in the smectic phase, only
the long particle axis exhibits long-range orientational order,
as evident from visual inspection of typical configurations,
shown in Figs. 2(c) and 2(d), and further confirmed by the
order parameter analysis. The liquid crystal behavior is there-
fore qualitatively similar to that of spherocylinders (uniaxial
rod-like particles) with comparable aspect ratio.58 The phase

transitions can be determined by identifying the jumps of the
nematic order parameter S and the smectic order parameter τ
as a function of the packing fraction η, as shown in Fig. 3.
For h/4 = 3, we can clearly identify an I-Sm transition since
both S and τ simultaneously jump in correspondence to the
large density jump. A direct transition from I to Sm can also
be observed for h/4 = 4, despite the smectic order parameter
τ displaying a less abrupt jump. For larger aspect ratios, a N
phase appears in between the I and the Sm phase. A weakly
first-order N-Sm transition is observed for triangular prisms
with h/4 = 4.1 and h/4 = 4.3, since τ displays a jump at larger
η than S, and this is further confirmed by the visual inspection
of the configurations. Longer triangular prisms exhibit more
pronounced jumps of the order parameters. We can conclude
that triangular prisms with h/4 & 4 self-assemble into a N
phase. For larger h/4, the I-N transition clearly shifts towards
smaller η whereas the location of the N-Sm is less sensitive to
h/4.

We now compare the equation of state as obtained by
computer simulations with that calculated by using the two
versions of FMT.

The equation of state for the homogeneous fluid can
be obtained from a density functional theory by inserting
a constant density profile ρ(r,$) = η/3. In this case, all
weighted densities are also constant and only the scalar
weighted densities (i.e., those with l = 0 and m = 0) are
nonzero

n(l,m)
α (r) = δl,0δm,0 ξαη/3, (22)

where the ξα are the so-called fundamental measures of the
particle: ξ0 is a topological invariant, which is equal to one
for all simply connected particles; ξ1 =

3 l
8 + h

4 is the mean-
half width (proportional to the integrated mean curvature); ξ2

=
√

3 l2

2 + 3 h l is the area, and ξ3 = 3 =
√

3 l2

4 is the volume of
the triangular prism. Furthermore,

C(0,0,0,0,0,0)
222 =

π

384
and C(0,0,0,0,0,0)

TR =
1

216π
, (23)

FIG. 3. Reduced pressure βP43,
nematic order parameter S, and smectic
order parameter τ versus packing
fraction η for triangular prisms with
(a) h/4 = 3, (b) h/4 = 4, (c) h/4 = 4.1,
and (d) h/4 = 4.3. Vertical lines are
guides-to-the-eye to locate the jumps
in the order parameters and therefore
estimate the phase transitions.
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see Subsection 2 of Appendix A. Therefore, the pressure as
calculated from−(∂F/∂V )N with F = F [ρ]= Fid[ρ]+Fexc[ρ]
from FMT reads

βP
ρ
=

1 + (c1 − 2) η + (2 c2 − c1 + 1) η2

(1 − η)3
, (24)

where c1 =
ξ1 ξ2
ξ3

and c2 =C(0,0,0,0,0,0)
222

ξ3
2

ξ2
3
= π

384
ξ3

2

ξ2
3

for 0D-FMT

and c2 = 9C(0,0,0,0,0,0)
TR

ξ3
2

ξ2
3
= 1

24π
ξ3

2

ξ2
3

for TR-FMT. For TR-FMT,

Eq. (24) is the usual scaled particle equation of state, which
reduces to the Percus-Yevick equation of state (from the com-
pressibility route) for spheres. The EOS from 0D-FMT is
not a very good one for the homogeneous fluid of spheres,18

but it is interesting to see how it performs for triangular
prisms. For the nematic phase and the smectic phase, we
calculated the pressure within TR-FMT and 0D-FMT by
numerically calculating the derivative −(∂F/∂V )N , where
the free energy F was obtained by minimizing F [ρ] with
respect to ρ at a constant average density using a variational
approach.30

The resulting equation of state is shown in Fig. 4 and
compared to the simulation results (we have not considered
the crystal in FMT) for triangular prisms with h/4 = 3 and
h/4 = 6. It can be seen that the equation of state from TR-
FMT is more accurate than that of 0D-FMT especially for
the longer particles. Surprisingly, TR-FMT is more accurate
for longer prisms than for shorter ones. We would not nec-
essarily expect TR-FMT to perform well for long particles
since the value for C in Eq. (4) is chosen such that it gives a
good EOS for spheres. The less empirical theory, 0D-FMT,
seems to have a consistent deviation from the simulation
result; in particular, it always overestimates the pressure for
the smectic phase. In the remainder of this paper, we will
employ TR-FMT as it generally performs better than 0D-
FMT concerning both the accuracy and the computational
efficiency.

FIG. 4. Comparison between the equations of states, pressure P versus pack-
ing fraction η, from simulations (MC) and the functionals 0D-FMT and
TR-FMT for hard triangular prisms with aspect ratios (a) h/4 = 3 and (b)
h/4 = 6.

In order to obtain more insight into the performance
of (TR-)FMT, we will now compare the results for the
nematic order parameter with simulations and also with results
obtained by using the second-virial Onsager-Parsons-Lee the-
ory (described in Sec. IV). In Fig. 5, we plot the dependence
of the nematic order parameter S on the packing fraction η as

FIG. 5. Nematic order parameter S ver-
sus packing fraction η as obtained by
MC-NVT simulations, by Onsager the-
ory with Parsons-Lee (PL) correction,
and by TR-FMT, for triangular prisms
with (a) h/4 = 3, (b) h/4 = 4.3, (c) h/4
= 5, and (d) h/4 = 6.
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obtained by the three different methods, for triangular prisms
with different h/4. We observe that Onsager-PL theory largely
overestimates the packing fraction at which the I-N transition
occurs, confirming the known drawback of such a theory. On
the other hand, FMT predictions for the jump of S match well
with the simulation results for triangular prisms with h/4 = 3,
for which only the I-Sm transition occurs. On the other hand,
as soon as the N phase becomes stable, e.g., for h/4 = 4.3, the
FMT underestimates the packing fraction associated with the
jump of S. However, upon increasing aspect ratio h/4, the dis-
crepancy diminishes and already for h/4 = 6 a good agreement
for the I-N transition is obtained.

The nematic order parameter is only the second moment
for the distribution ϕ(cos θ), where θ is the angle between the
director of the nematic phase and the long axis of the par-
ticle. In Fig. 6, we compare the full distribution from FMT
to the simulated profile. Clearly, the prediction for the distri-
bution from FMT is quite good, except for the larger angles
that have a very low ϕ(cos θ) and thus hardly contribute to
ensemble averages. We show that the deviation is mostly due
to an incorrect prediction of the order parameter by perform-
ing an FMT calculation at a lower density where the nematic
order parameter S equals that of the computer simulations.
The profile ϕ(θ) from this calculation (the short-dashed line
in Fig. 6) agrees almost perfectly with the simulated ϕ(θ).
We also show the orientational distribution from Ref. 30 as
the long-dashed line in Fig. 6. The deviation between the
parametrized orientational distribution and the exact minimum
is small, clearly much smaller than the deviation between DFT
and the simulation results. Therefore, we feel a full minimiza-
tion on a grid is not warranted and we will use the parametrized
variational approach in the remainder, also for the smectic
phase.

Finally, we superimpose the simulations results in Fig. 7
together with the phase diagram obtained by the FMT, where
we employ the aspect ratio h/4—packing fraction η repre-
sentation. For the simulation results, we estimate the phase

FIG. 6. The orientational distribution, ϕ(θ) [see Fig. 1(b) for the definition
of θ]: sin θ ϕ(θ) and logϕ(θ) (inset) as a function of θ for an aspect ratio h/4
= 5. Simulation results are shown for the nematic phase for η = 0.311 666
(red squares) and these are compared to TR-FMT results for the same density
(solid and long-dashed red lines) and a different density η = 0.286 (short-
dashed blue line) at which the nematic order parameter S is approximately
equal to that of the simulation at η = 0.311 666. The solid and short-dashed
lines correspond to a free minimization on a grid and the long-dashed line
corresponds to a parametrized minimization.30

FIG. 7. Phase diagram obtained by TR-FMT (solid lines) compared with
simulation results (symbols) in the aspect ratio h/4–packing fraction η repre-
sentation. Isotropic (I) stability region is colored gray, nematic (N) red, smectic
(Sm) blue, and coexistence regions white. The boundaries for the crystal phase
(X) are not calculated explicitly.

boundaries based on the order parameters and by consider-
ing the upper and lower packing fraction at which a given
phase is observed. We estimate the degree of uncertainty in
the identification of the phase boundaries and plot the coex-
isting densities in η with the estimated error bar of 0.01 in
Fig. 7.

We confirm once more that the overall qualitative liquid-
crystal behavior of triangular prisms is well captured by FMT
that also predicts a stable nematic phase for triangular prisms
with h/4 > 4.0. No biaxial order was observed in simula-
tions or predicted by FMT, neither for the nematic nor for the
smectic phase. As was already found for spherocylinders,30,31

TR-FMT predicts the smectic phase to be more stable than it
actually is, especially for longer particles. The less-empirical
theory, 0D-FMT, more accurately predicts the area of stabil-
ity of the smectic phase, as can be seen from the tie-lines in
Fig. 4. However, this is most likely a cancellation of errors, as
the quality of the EOS from 0D-FMT is considerably worse
than the one from TR-FMT.

Interestingly, the smectic phase is stable at a considerably
lower packing fraction for prisms than for spherocylinders31,58

in both FMT and simulations. Despite the two particle models
have different shapes, we can try to compare their phase behav-
ior assuming that triangular prisms with h/4 = h∗ behave simi-
lar to spherocylinders with (L + D)/D = h∗, with L the cylinder
length and D the particle diameter (which coincides with the
diameter of the two hemispherical caps). If this analogy holds,
we observe that a nematic phase is stabilized for triangu-
lar prisms with h∗ & 4 and for spherocylinders with h∗ > 4.7.
Furthermore, in this range of h∗, the smectic phase can be sta-
bilized at lower packing fraction η in the case of triangular
prisms (η . 0.4) than for spherocylinders (η & 0.45).

VII. SUMMARY AND DISCUSSION

We have considered the liquid crystal phases of triangular
prisms using both simulations and density functional theory
(DFT), with the following goals: (1) we investigated the accu-
racy of a recently (re)derived theory, 0D-FMT42 compared to
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the more established theory TR-FMT18 and (2) we were inter-
ested in the effect of the shape of the particles beyond their
overall rod-like shape. Regarding the first point, we showed
that TR-FMT generally performs better than 0D-FMT irre-
spective of particle aspect ratio. We should note that TR-FMT
has undergone a minor empirical modification (in the C-factor
in Eq. (4)). It is possible that a similar modification to 0D-
FMT leads to a similar improvement, although our preliminary
attempts have been unsuccessful.

Regarding the effect of the particle shape, we found that
the smectic phase is stabilized relative to the nematic phase
compared to the commonly studied spherocylinders.58 In other
words, both the packing fraction of the nematic phase ηN and
that of the smectic phase ηSm at coexistence between the two
phases are lower for triangular prisms than for spherocylinders.
These results hold regardless whether simulations or FMT cal-
culations are used to obtain the phase diagram. We can make
this observation without a well-motivated shape characteristic
because ηN and ηSm depend only weakly on the particle aspect
ratio. For square prisms (or cuboids),37,38 ηN and ηSm also
decrease compared to the values for spherocylinders. How-
ever, ηN and ηSm depend strongly on the aspect ratio for square
prisms and the decrease of the ηN and ηSm is not as large as
what we observed for triangular prisms.37,38 Clearly, the shape
of the prism base matters.

Future work could attempt to distinguish further between
the effects of the shape of the base and the flat top and bottom
faces compared to the spherical caps of spherocylinders, for
example, by considering cylinders. Since TR-FMT correctly
predicted the decrease of ηN and ηSm, this theory can be used
to perform such an investigation. Furthermore, we will inves-
tigate, by varying the triangular cross section of the particle,
when oblate and biaxial nematic phases become stable and
if the theoretical framework is able to correctly capture the
features of the different order.

Another possible avenue of research as far as the theory
is concerned is an empirical modification of 0D-FMT. How-
ever, 0D-FMT has two desirable properties that other versions
of FMT do not: First, the dimensional reduction through con-
finement is consistent with a direct derivation for the lower
dimensional system. Consequently, the exact description of
quasi-0D and 1D systems (for which the direct derivation leads
to the exact free energy) is obtained automatically. For other
versions of FMT, correct behavior under quasi-0D and 1D
confinement has to be imposed during the derivation. Second,
the excess free energy is correctly invariant under anisotropic
scaling of the entire system (including the shape of the parti-
cles) as used in Ref. 58; in fact, invariance under any linear
transformation should be obeyed and is obeyed by 0D-FMT.
A further exact relation that is obeyed by most versions of
FMT15,17,18 is the scaled particle relation,17,42 which relates
the mechanical work required to insert a macroscopically large
particle in the system to the chemical potential of such a very
large particle. This property can be (partially20) violated when
the functional undergoes empirical modifications19 to improve
the equation of state. Which of these properties is more
important for studies of liquid crystals and phase behavior of
hard particles in general is another possible topic for further
research.
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APPENDIX A: EXPANSION OF THE QA FUNCTIONS

We will calculate QA for A = 12 and A = 222 using an
expansion of the form45

QA(<n) =
∑

~l1,...,~ln

C(~l1,...,~ln)
A

n∏
i=1

q(~li)
αi (<i), (A1)

where the functions q(~l)
αi and the constants C(~l1,...,~ln)

α will be
determined in Subsection 1 of Appendix A for Q12 and Sub-
section 2 of Appendix A for Q222. The QTR

222 function from
TR-FMT has the large advantage that it can be expressed
(exactly) as a finite sum of the form (A1) with coefficients
C(l1,m1,l2,m2,l2,m3)

TR , which are calculated in Subsection 3 of
Appendix A.

Like all numerical methods, the expansions of Q12 and
Q222 (in 0D-FMT) have errors due to the truncation of
the infinite sum at a finite order lmax. The number of terms
in the expansions of Q12 and Q222 scale with l2

max and l5
max

for the general case in 0D-FMT. As we only consider phases
with at least two continuous translational symmetries and one
rotational symmetry, the n(l,m)

α with m , 0 vanish. Therefore,
the number of terms in Q12 scales with lmax and the number of
terms in Q222 scales with l3

max. We used lmax = 64 in this work,
which leads to a numerical error that is negligible in compar-
ison to the difference between the simulations and the theory.
It should be noted that the system we have chosen to study
presents a worse case scenario as the long prisms are strongly
aligned in the smectic phase. This results in a strong align-
ment of the normals to the top and bottom surfaces with the
director and nearly δ-function-like contributions in the aver-
ages over n2 in n12 and ni in n222. As the accurate resolution
of those peaks requires a large number of spherical harmon-
ics, we expect that this is the reason why we needed such high
truncation orders in l and that much less effort is required to
handle most other phases and particles.46

1. Second term: Q12

The expansion proposed for Q12 by Wertheim44 (outside
of the context of density functional theory) uses the observation
that Q12(<1,<2) = Q12(<1, n2) only depends on<2 through
the normal vector n2, such that we can expand Q12 in the
orthonormal spherical harmonics Ym

l (n2), which amounts to
the expansion of the form (A1) with the definitions

q(l,m)
1 (<) =

∫
S2

dn Q12(<, n)Ym
l (n)N0

l , (A2)

q(l,m)
2 (<) = Ym

l
∗ (n(<)

)
/N0

l , (A3)

and C(l1,m1,l2,m2)
12 = δl1,l2δm1,m2 (the latter is a consequence of

symmetry under a rotation of the whole system including the
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density profile and the external potential). We divided q(l,m)
2 by

N0
l =
√

(2l + 1)/(4π) to simplify the expression for q(l,m)
1 with

l = 0, 1 and to recover the usual scalar FMT weighted densities
nα for α = 1, 2: n(0,0)

α = nα.
An analytical form for q(l,m)

1 has been obtained by
Wertheim (who uses a different notation)44 and we will give
his calculation in our notation now.

The conceptually difficult step in the calculations of both

q(l,m)
1 and C(~l1,~l2,~l3)

222 involves parametrizing the normal vectors
in the (innermost) integral using spherical coordinates with
respect to a properly chosen basis {bi} and subsequently using
the property of the spherical harmonics

YT
l (θ ′, φ′) = YT

l (θ, φ)Dl(R), (A4)

where R is the rotation from the lab frame, {ei}, to the basis
{b̂i}, i.e., b̂i = Rei; the angles φ, θ, φ′, and θ ′ are defined by
(cos φe1 + sin φe2) sin θ + cos θe3 = (cos φ′b̂1 + sin φ′b̂2) sin θ ′

+ cos θ ′b̂3; Y l is a (2l + 1)-dimensional (column) vector with
components Ym

l for−l ≤ m ≤ l; andDl is the Wigner D matrix
of order l with components Dl

mn for −l ≤ m, n ≤ l.
For q(l,m)

1 , we write the normal vector n2 as

(cos φ12 vi1 + sin φ12 vii1) sin θ12 + cos θ12 n1, (A5)

that is, we use the basis {bi} = {vi1, vii1, n1}. We obtain (see also
Ref. 44)

Q12(<2) =
(1 − cos θ12)

4π
[H1 − ∆κ1 cos(2φ12)]. (A6)

We will expand this in spherical harmonics, which can be
written as

Ym
l (θ, φ) = im−|m |N |m |l P |m |l (cos θ)eimφ , (A7)

with the prefactor

Nm
l ≡

√
2l + 1

4π
Ñm

l ≡

√
2l + 1

4π
(l − m)!
(l + m)!

. (A8)

The factor im� |m | in Eq. (A7) is just a concise way of writing
(�1)m if m < 0 and im� |m | = 1 if m ≥ 0. Using these defini-
tions, the coefficients in the expansion of the Q12 kernel in
spherical harmonics Ym

l (θ12, φ12) are (after dividing out the

normalization factor N |m |l )

Q̂(l,m)
12 /N |m |l =

∫ ∫
dθdφ sin θ

(1 − cos θ)
4π

× [H1 − ∆κ1 cos(2φ)]
Ym

l
∗(θ, φ)

N |m |l

=

∫ 1

−1
dz [P0

0(z) − P0
1(z)]

×

(
H1

2
δm,0P0

l (z) −
∆κ1

4
[
δm,2 + δm,−2

]
P2

l (z)

)
= H1(δl,0 −

1
3 δl,1)δm,0 −

1
4∆κ1

[
δm,2 + δm,−2

]
×

∫
dz(1 − z)P2

l (z). (A9)

Note that the factor im� |m | is always equal to one here, as m is
always even. The integral over z can be written as∫

dz(1 − z)P2
l (z) =

∫
dz(1 − z)(1 − z2)

d2Pl(z)

dz2

= 4(−1)l −

∫
dz(2 − 6z)Pl(z)

=

{
4(−1)l l ≥ 2,

0 l < 2,
(A10)

where we used partial integration, P0(z) = 1 and P1(z)
= z and the orthogonality of the Legendre polynomials:
∫

1
−1 dzPk(z)Pl(z) = 2δk,l/(2l + 1).

With these expressions and Eq. (A4), we obtain

q(l,m)
1 (<) =

l∑
n=−l

Dl
mn

(
RT (<)

)
W (1)

ln (<), (A11)

where Dl
mn are the Wigner-D matrices, RT (<) denotes the

orientation of the axis system (vi1, vii1, n1) and

W (1)
ln (<1) =




H1
4π δn,0 l = 0

−
H1
4π δn,0 l = 1

−(−1)l∆κ1N0
l N2

l [δn,2 + δn,−2] l ≥ 2

(A12)

with H1 =
1
2 (κi1 + κii1) the mean curvature and∆κ1 =

1
2 (κi1 − κ

ii
1).

Note that both qα transform as the complex conjugates
of the spherical harmonics do under a rotation, i.e., via the
complex conjugate of Eq. (A4).

2. Third term in 0D-FMT: Q222

The remaining Q-function, Q222, only depends on the nor-
mal vectors ni for i = 1,2,3 so that it can also be expanded
in spherical harmonics. The resulting expansion contains
the same functions q(l,m)

2 as for Q12 while the constants
read

C(l1,m1,l2,m2,l3,m3)
222 =

∫
(S2)3

dn3Q222(n3)
3∏

i=1

Ymi
li

(ni)N
0
li

. (A13)

We will calculate these coefficients in this section.
The explicit expression for α(n1, n2, n3) reads

α(n1, n2, n3) = arccos
( G(n1 × n2) · G(n2 × n3)

)
, (A14)

where r̂ = r/|r| is the direction of a vector r. We first perform
the integral C(1)(n1, n2)l3

m3
= 24πN0

l3 ∫
dn3 Q222(n1, n2, n3)

Ym3
l3

(n3) with 8πQ222 = |n1 · (n2 × n3)|
[

2π
3 − α(n1, n2, n3)

]
.

Express the unit vector n3 in the angles θ and φ by

n3 = sin θ(cos φ b̂1 + sin φ b̂2) + cos θ b̂3, (A15)

where b̂2 = Gn2 × n1, b̂3 = n2, and b̂1 = b̂2 × b̂3. As a result
of the transformation (A4) of the Ym

l under a change of basis

from the lab frame {ei} to the aforementioned frame {b̂i},

C(1)(n1, n2)l3
m3
=

l∑
k=−l

Dm3k(R12)C(2)(n1, n2)l3
k , (A16)

where R12 is the rotation defined by b̂i =R12ei (see Eq. (A30)
for an explicit expression). Here, C(2)(n1, n2)l

m equals

N0
l3

∫ ∫
dθ dφ sin θ Q222

(
n1, n2, n3(θ, φ)

)
Ym

l (θ, φ). (A17)
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We can simplify α(n1, n2, n3) by using the two equalities

G(n1 × n2) · G(n2 × n3) = −b̂2 ·
G(b̂3 × n3

)
= − cos φ, (A18)

|n3 · (n1 × n2)| = |sin θ | |sin φ| |n1 × n2 |. (A19)

Subsequently, we use

arcos(−cos φ) = π − |φ| for −π < φ < π (A20)

to write

C(2)(n1, n2)l
m

|n1 × n2 |
= N0

l

∫ π

0
dθ

∫ π

−π

dφ sin2θ |sin φ|

×

(
|φ| −

π

3

)
Ym

l (θ, φ). (A21)

With the expression (A7) for the spherical harmonics, the
integral (A21) becomes

C(2)(n1, n2)l
m = (2l + 1) |n1 × n2 |I

l
mJm (A22)

with the following two integrals:

I l
m ≡

Ñm
l

2

∫ π

0
dθ sin2θ Pm

l (cos θ), (A23)

Jm ≡
1

2π

∫ π

−π

dφ |sin φ|
(
|φ| −

π

3

)
eimφ

=

∫ π

0
dφ sin φ

(
φ

π
−

1
3

)
cos(mφ)

=



− 1
4 m = ±1

1−2(−1)m

3(m2−1)
otherwise

. (A24)

The symmetries of Pm
l (cos(π − θ)) = (−1)lPm

l (cos(θ)) under
θ → π − θ cause the l + m odd θ integrals to vanish and sin θ
= P1

1(cos θ) and the orthogonality of the associated Legendre
polynomials with equal m causes the m = ±1 terms to vanish
for all l , 1.

Now we calculate I l
m for even l + m and m ≥ 0, which can

be simplified using√
1 − x2Pm

l (x) =
1

2l + 1

[
Pm+1

l−1 (x) − Pm+1
l+1 (x)

]
(A25)

and the integral Om
l ≡ ∫

1
−1 dx Pm

l (x),

Om
l = (−1)m2m−1m

Γ
(

l
2

)
Γ

(
1
2 (m + l + 1)

)
Γ

(
l+3
2

)
Γ

(
l−m+2

2

) (A26)

for l + m even and m ≤ l, otherwise the integral is zero. Here,
Γ is the gamma function and we have used the convention
Pm

l (x) = 0 if m > l. The result for I l
m is

I l
m =

Ñm
l

4l + 2

[
Ol−1

m+1 − Ol+1
m+1

]
. (A27)

The behavior of Pm
l (x) under m → −m can be used to calculate

I l
m(x) = (−1)mI l

−m(x) for negative m.
To proceed, we need the explicit form of R12 and we need

to define the Wigner D matrices more precisely: If R(φ, θ,ψ)
is defined as

R(φ, θ,ψ) = Rz(φ)Ry(θ)Rz(ψ), (A28)

where Rz and Ry denote counter-clockwise rotations around
e3 and e1, respectively, then Dl

m,n(R(φ, θ,ψ))=Dl
m,n(φ, θ,ψ)

≡ dl
m,n(θ) exp(−i[mφ + nψ] where dl

m,n(θ) is the Wigner d
matrix.

Subsequently, we introduce another basis ĉi =R(φ2,
θ2, 0)ei, where θ2 and φ2 are the spherical angles of n2 such
that ĉ3 =n2. We express n1 with respect to this basis as
n1 = (cos φ12ĉ1 + sin φ12ĉ2) sin θ12 + cos θ12ĉ3. Then

n2 × n1 = (cos φ12ĉ2 − sin φ12ĉ1) sin θ12, (A29)

which shows that b̂2 can be found by a counter-clockwise
rotation of ĉ2 around ĉ3 by an angle −φ12; therefore,
b̂i = R(φ2, θ2, 0)Rz(−φ12)R(φ2, θ2, 0)−1ĉi = R(φ2, θ2, 0)Rz

(−φ12)ei for all i = 1,2,3. This shows that

R12 = R(φ2, θ2, 0)Rz(−φ12). (A30)

Eq. (A29) also implies that |n2 ×n1 | = sin θ12 as 0 ≤ θ12 ≤ π.
Now we can use Dl3

m3p(R12)=Dl3
m3p(φ2, θ2,−φ12)=Dl3

m3p

(φ2, θ2, 0) exp(ipφ12), and the transformation rule for
the spherical harmonics YT

l1
(n1)=YT

l1
(θ12, φ12)Dl1 (R12) [see

Eq. (A4)] to write

C(3)(n2)l1l3
m1m3

≡ N0
l1

∫
dn1 C(1)(n1, n2)l3

m3
Ym1

l1
(n1)

=

l1∑
p=−l1

l3∑
k=−l3

Dl1
m1k(φ2, θ2, 0)

×Dl3
m3p(φ2, θ2, 0)C(4)

l1,k,pI l3
p Jp,

(A31)

where

C(4)
l1,k,p = N0

l1

∫ ∫
dθ12dφ12 sin2θ12 eipφ12 Y k

l1
(θ12, φ12)

= δk,−p(2l1 + 1)I l1
−p. (A32)

The final integration over n2 in C(~l1,~l2,~l3)
222 reads

C(~l1,~l2,~l3)
222 =

1
8π

∫
dn2 C(3)(n2)l1l3

m1m3
Nm2

0 Ym2
l2

(n2)

= C0
l1l2l3

lmin
13∑

p=−lmin
13

(
l1 l2 l3
m1 m2 m3

) (
l1 l2 l3
−p 0 p

)
I l1
−pI l3

p Jp

≡

(
l1 l2 l3
m1 m2 m3

)
C ′l1l2l3 , (A33)

where lmin
13 = min{l1, l3} and C0

l1l2l3
= 1

8π

∏3
i=1(2li + 1). In

the first step of Eq. (A33), we used N0
l2

Ym2
l2

(θ2, φ2)= 2l2+1
4π

Dl2
m20(φ2, θ2, 0) and we applied the property of the Wigner D

matrices∫ ∫
sin θdθdφDl1

m1,−p(φ, θ, 0)Dl2
m2,0(φ, θ, 0)Dl3

m3,p(φ, θ, 0)

= 4π

(
l1 l2 l3
m1 m2 m3

) (
l1 l2 l3
−p 0 p

)
, (A34)

a special case of the result from Appendix V of Brink and
Satchler.59

The properties of Jm, I l
m (I l

m = 0 if l + m odd), and the
Wigner 3-j symbols cause the C ′l1l2l3 to be zero for all l1, l2,
and l3 where l2 or l1 + l3 is odd or where l1 , l3 = 1 or l3 , l1 = 1.
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3. Third term in TR-FMT: QTR
222

The coefficients C(~l1,~l2,~l3)
TR can be calculated similarly as

above, as expression (12) reads

QTR
222 =

1
48π

[sin θ sin φ sin θ12]2 (A35)

when expressed using the angles defined in Subsection 2 of
the Appendix. The result has the same form as Eq. (A33) with
I l
m and Jm replaced by

(ITR)l
m ≡

Ñm
l

2

∫ π

0
dθ sin3θ Pm

l (cos θ) (A36)

and

(JTR)m ≡
1

2π

∫ π

−π

dφ sin2φ eimφ

=
1
2
δm,0 −

1
4

(
δm,2 + δm,−2

)
, (A37)

respectively, and C0
l1l2l3

replaced by 1
48π

∏3
i=1(2li + 1). For m

= 0, (ITR)l
m is easily calculated as (1� z2) = 2(P0(z)�P2(z))/3.

For m=± 2, we used the technique from Eq. (A10) and
∂2 (1 − z2)

2
/ ∂z2 = 4(1−3z2)= 8P2(z). Inserting these expres-

sions in the integral of (ITR)l
m and again applying the orthog-

onality of the Legendre polynomial lead to

(ITR)l
0 =

2
3

[
δl,0 −

δl,2

5

]
, (A38)

(ITR)l
±2 =

4

5
√

6
δl,2 (A39)

[as (JTR)m = 0 for m < {−2, 0, 2}, the other (ITR)l
m are not

required].

4. Weight functions

It is common in fundamental measure theory to define
weight functions (strictly speaking, most of these are distribu-
tions), which become in our case

40(<) = Q0(<)42(<), (A40)

4
(k)
α = q(k)

α 42(<) for α = 1, 2, (A41)

43(<) =

{
1 r ∈ Bs(0,$)
0 otherwise

, (A42)

where 42 is proportional to a one-dimensional δ-function such
that ∫

dr f (r)42(r, s,$) =
∫
∂Bs(0,$)

f (r) d2p (A43)

for any function f (see Ref. 13 for an explicit expression for the
δ-function). To have a unified notation for all weight functions,

we define n(~0)
α ≡ nα forα = 0, 3 and apply similar definitions for

the weight functions 4α. With these definitions, all weighted
densities have the form of Eq. 15.

APPENDIX B: APPLICATION TO POLYHEDRA

Fundamental measure theory is formulated above for
smooth particles with a well-defined, finite curvature every-
where on their surface. For polyhedra, the particles have to

be smoothened by replacing the edges by cylinder sections
and the vertices by spherical sections.29 The resulting scalar
weight functions 40, 41, 42, and 43 were obtained in Ref. 29
along with the vectorial and tensorial weight functions, which
will be replaced by the 4(l,m)

α in this work. We start by analyti-
cally calculating the Fourier transforms (FTs) 4̂(l,m)

α (k, s,$)
of the weight functions in Eqs. (A40)–(A42). Using these
weight functions and the Fourier transformed density profile
ρ̂(k, s,$), we can efficiently calculate the weighted densities
by performing an inverse Fourier transform on the FT weighted
density

n̂(l,m)
α (k) =

∑
s

∫
d$ 4̂

(l,m)
α (k, s,$) ρ̂(k, s,$), (B1)

where we have used the convolution theorem to write the
convolution in Eq. (15) as a product in Fourier space. For a
polyhedron with species s and orientation $ (we suppress the
dependence on s and$ for brevity), the analytical expressions
for the Fourier transformed weight functions read29

4̂
(l,m)
α (k) =

Nα∑
j=1

ξ(l,m)
α,j δ̂α,j(k), (B2)

where we have divided the polyhedron into N3 irregular tetra-
hedra, {S3,j}, and, consequently, its surface into N2 triangles,
{S2,j}, while N1 is the number of edges, {S1,j}, of the poly-
hedron and N0 is the number of vertices, {S0,j}.47 This sub-
division of the surface and interior of the particle in these
simplices Sα,j allows the following closed form to be derived
for the Fourier transform δ̂α,j(k):

δ̂α,j(k) ≡
∫

Sα,j

e−ik ·rdαr

= α!|Sα,j |

α+1∑
n=1

exp(−ik · rα,j,n)∏α+1
m=1,m,n ik · (rα,j,m − rα,j,n)

, (B3)

where |Sα,j | is 1 for α = 0 and it is equal to the length, area,
and volume of the jth edge, triangle, and irregular tetrahedron
for α = 1, 2, and 3, respectively, of the polyhedron. Also, the
nth vertex of the jth α-simplex is denoted by rα,j,n. The k-
independent ξ(l,m)

α,j consist of scalars

ξ(0,0)
0,j ≡


2π −

Fj∑
k=1

∠j,k


/4π, (B4)

ξ(0,0)
1,j ≡ σjφj/8π, (B5)

ξ(0,0)
2,j ≡ 1, (B6)

ξ(0,0)
3,j ≡ 1, (B7)

which are of course the same as for the previous FMT for
polyhedra29 and spherical-harmonic-like functions

ξ(l,m)
1,j ≡ −σj

φj

8π




〈Dl
m0〉j l = 1

N0
l N2

l [〈Dl
m2〉j + 〈Dl

m2〉j] l > 1
, (B8)

ξ(l,m)
2,j ≡ q(l,m)

2 = Ym
l
∗ (nj

)
/N0

l , (B9)

where ∠j,k is the opening angle of face k of the F j faces joined
at vertex j, φj denotes the angle between the two normals, na

j
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and nb
j of the faces joined in edge j, σj is one (minus one) if

the surface near edge j is locally convex (concave), 〈Dl
m0〉j is

the average of Dl
mn(RT ) over the infinitesimally thin cylinder

section replacing edge j, and finally nj is the normal of face
j. The expressions for ξ(0,0)

3,j and ξ(l,m)
2,j can be found by simply

performing the Fourier integrals in the definition of the 4̂,29

taking into account that the normal of a face is constant. The
scalar ξ(0,0)

0,j was already calculated in Ref. 29 by applying
the Gauss-Bonnet theorem to the spherical section replacing
the vertex to find the integrated Gaussian curvature; we will
not repeat this calculation here. Finally, we will calculate ξ(l,m)

1,j

in Appendix C where also the analytical expression for 〈Dl
m0〉j

is given.
Note that this whole calculation depends on the species s

and orientation $ of the polyhedron such that it has to be
repeated for every distinct polyhedral shape. However, for
different orientations of the same polyhedron, δ̂α,j(k) only
depends on the direction of k in the body-fixed frame of
the polyhedron, while the relation ξ(l,m)

α →
∑l

k=−l D
l
mk(R)ξ(l,k)

α

under a rotation of the polyhedron by R can be used to avoid
having to completely recalculate ξ(l,m)

α for every orientation.

APPENDIX C: CALCULATION OF THE WIGNER
MATRIX AVERAGED OVER AN EDGE

As mentioned above, we replace each edge j by a cylinder
of radius R (see the supplementary material of Ref. 29 for
more details about the procedure). The cylinder section can be
parametrized by an angle γ and a coordinate z along the length
of the cylinder. The γ integrals in ξ(l,m)

j,1 have the form

lim
R→0

R

{
Hj(r)
∆κj

} ∫ φj/2

−φj/2
dγDl

mn
(
RT (γ)

)
, (C1)

where the γ dependence of RT has been made explicit. The
(constant) principal curvatures on the cylinder section read
κI

j = 1/R and κII
j = 0 such that H j = 1/2R and ∆κj = 1/2R. As a

result, the integral above becomes 〈Dl
mn〉j φj/2 with

〈Dl
mn〉j =

1
φj

∫ φj/2

−φj/2
dγDl

mn
(
RT (γ)

)
. (C2)

We define a basis

b1 =
Gna

j + nb
j , (C3)

b2 =
Gnb

j − na
j , (C4)

and

b3 =
Gna

j × nb
j (C5)

such that the orientation (rotation with respect to the lab frame)
RT (γ) can be written as RjRγ, where Rj is the orientation of
the frame b1, b2, b3 and the rotation, Rγ, has Euler angles
ψ = π/2, θ = π/2, and φ= γ. Therefore, we can use the trans-
formation of the Wigner-D matrix under rotations to write
Dl

mn
(
RT (γ)

)
=

∑l
p=−l D

l
mp

(
Rj

)
Dl

pn(Rγ) in Eq. (C1). Due to

the choice of axes, the Wigner-D matrix Dl
pn(Rγ) becomes

Dl
pn(0, π/2, π/2)e−ipγ. As a result, the average Wigner matrix

becomes

〈Dl
mn〉j =

l∑
p=−l

Dl
mp

(
Rj

) 1
φj

∫ φj/2

−φj/2
dγDl

pn(Rγ)

=

l∑
p=−l

Dl
mp

(
Rj

)
Dl

pn(0, π/2, π/2)sinc(pφj/2)/2, (C6)

where sinc(x) = sin(x)/x.
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21M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, and T. Schilling, Phys.

Rev. E 82, 051404 (2010).
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Phys. Rev. Lett. 108, 226101 (2012).
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