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a b s t r a c t 

The analysis of travel mode choice is an important task in transportation planning and policy making 

in order to understand and predict travel demands. While advances in machine learning have led to 

numerous powerful classifiers, their usefulness for modeling travel mode choice remains largely unex- 

plored. Using extensive Dutch travel diary data from the years 2010 to 2012, enriched with variables on 

the built and natural environment as well as on weather conditions, this study compares the predictive 

performance of seven selected machine learning classifiers for travel mode choice analysis and makes 

recommendations for model selection. In addition, it addresses the importance of different variables and 

how they relate to different travel modes. The results show that random forest performs significantly bet- 

ter than any other of the investigated classifiers, including the commonly used multinomial logit model. 

While trip distance is found to be the most important variable, the importance of the other variables 

varies with classifiers and travel modes. The importance of the meteorological variables is highest for 

support vector machine, while temperature is particularly important for predicting bicycle and public 

transport trips. The results suggest that the analysis of variable importance with respect to the different 

classifiers and travel modes is essential for a better understanding and effective modeling of people’s 

travel behavior. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The accurate modeling of travel mode choice is important for

ransportation planning and policy makers to predict travel de-

and and understand the underlying factors ( de Dios Ortúzar &

illumsen, 2011 ). In fact, a large body of literature shows that

ravel mode choice is affected by a variety of factors includ-

ng individual and household characteristics (e.g. Dieleman, Dijst,

 Burghouwt, 2002; Schwanen & Mokhtarian, 2005; Böcker, van

men, & Helbich, 2016 ) as well as the built environment (e.g.

wing & Cervero, 2010; Helbich, 2016 ) and weather conditions (e.g.

öcker, Dijst, & Prillwitz, 2013 ). 

Models of travel mode choice have traditionally been estimated

sing the discrete choice framework, where travel modes rep-

esent mutually exclusive and collectively exhaustive alternatives

 Ben-Akiva & Lerman, 1985 ). The most widely used discrete choice

odel is the multinomial logit (MNL) model ( McFadden, 1973 ). It

s based on the principles of utility maximization and has a math-
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matic structure which eases parameter estimation ( Koppelman &

en, 1998 ). For this reasons it has been widely adopted in trans-

ortation research (e.g. Ewing, Schroeer, & Greene, 2004; Böcker

t al., 2016 ). A limitation of MNL models is that they assume

hat the probabilities of each pair of alternatives are indepen-

ent of the presence or characteristics of all other alternatives

 McFadden, 1973 ). Consequently, the introduction of any alter-

ative has the same proportional impact on the probability of

ach other alternative. Violation of this assumption yields inconsis-

ent parameter estimates and biased predictions ( McFadden, 1973 ).

ther discrete choice models, such as the multinomial probit

odel (MNP), do not make this independence assumption, but

arameter estimation is more difficult than for the MNL model,

hich hampers their usefulness ( Dow & Endersby, 2004 ). 

Methods from the field of machine learning are a promis-

ng alternative to statistical approaches for modeling travel mode

hoice. Instead of making strict assumptions about the data, ma-

hine learning models learn to represent complex relationships in

 data-driven manner (e.g. Bishop, 2006 ). The usefulness of ma-

hine learning models has already been demonstrated for differ-

nt areas in transportation research. For example, machine learn-

ng models are particularly useful for classifying travel modes

http://dx.doi.org/10.1016/j.eswa.2017.01.057
http://www.ScienceDirect.com
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and inferring trip purposes from global position system and ac-

celeration data (e.g. Shen & Stopher, 2014; Gong, Morikawa, Ya-

mamoto, & Sato, 2014; Shafique & Hato, 2015 ). Other examples in-

clude the prediction of railway passenger demand (e.g. Tsai, Lee,

& Wei, 2009 ) and bimodal modeling of freight transportation (e.g.

Tortum, Yayla, & Gökda ̆g, 2009 ). However, machine learning is still

under represented in research of travel mode choice modeling. Ex-

isting studies are limited to a small number of machine learning

methods and do not provide comprehensive model comparisons. 

Cantarella and De Luca (2003) , for example, trained two artifi-

cial neural networks (ANNs) with different architectures to model

people’s travel mode choice behavior. They found that both ANNs

clearly outperform a MNL model. Celikoglu (2006) showed that

ANNs are effective for calibrating the utility function in travel

choice modeling. Zhao, Shao, Li, Dong, and Liu (2010) demon-

strated that the accuracy of probabilistic ANNs is similar to basic

ANNs for travel mode choice prediction, whereas Omrani, Charif,

Gerber, Awasthi, and Trigano (2013) showed that ANNs are more

accurate than the other investigated alternatives. A few studies re-

port less promising results for ANNs in comparison to traditional

models. Hensher and Ton (20 0 0) , for instance, compared the pre-

dictive capabilities of ANNs and nested logit models in the con-

text of commuter mode choice and found no performance advan-

tage for ANNs. Similarly, Sayed and Razavi (20 0 0) reported that the

classification performance of fuzzy ANNs, MNL, and MNP models is

similar. 

Classification trees (CTs) have also been applied for travel mode

choice analysis. Xie, Lu, and Parkany (2003) , for instance, com-

pared CTs and ANNs with MNL models. They conclude that CTs

and ANNs perform better than MNL. Moreover, they state that CTs

are more efficient and provide better interpretability than ANNs.

Rasouli and Timmermans (2014) investigated the relationship be-

tween predictive performance and the number of CTs when using

ensemble learning. They showed that the accuracy increases non-

monotonically with the size of the ensemble. Hierarchical tree-

based regression is used by Zhan, Yan, Zhu, Wang et al. (2016) to

investigate the travel characteristics of Chinese students and to de-

termine variables that affect students’ travel behavior. Tang, Xiong,

and Zhang (2015) used CTs to explore travel mode choice for the

case where the choice is restricted to two modes in order to inves-

tigate people’s mode-switching behavior. They confirmed the supe-

rior predictive capability of a CT to an MNL model. 

Support-vector machines (SVMs) have also been applied in nu-

merous studies. For example, when Zhang and Xie (2008) com-

pared SVM, ANNs, and MNL for modeling travel mode choice,

they found that SVM provided the highest accuracy. By contrast,

Omrani (2015) showed that ANNs are more accurate than SVMs

and MNL models for modeling the travel mode choice behavior of

commuters. Xian-Yu (2011) reported that the performance of SVM

is superior to ANN and nested logit models. 

While the aforementioned studies represent important contri-

butions to the application of machine learning in transportation re-

search, they also have some major limitations. First, these studies

deal only with a limited set of machine learning classifiers, even

though the number of available classifiers is large (e.g. Fernández-

Delgado, Cernadas, Barro, & Amorim, 2014 ). Advanced classifiers

such as random forests or ensemble learners have not been con-

sidered in a comparative study, even though it has been shown

that these classifiers can produce highly accurate results for many

applications (e.g. Fernández-Delgado et al., 2014 ). Second, model

comparisons are not done in a systematically quantitative way us-

ing statistical test procedures which take the sampling variability

into account (see Hothorn, Leisch, Zeileis, & Hornik, 2005 ). Third,

previous studies do not consider characteristics of the built and

natural environment and meteorological conditions, even though

these factors substantially influence travel behavior (e.g. Helbich,
öcker, & Dijst, 2014; Liu, Susilo, & Karlström, 2015 ). Finally, these

tudies do not thoroughly investigate the importance of variables,

articularly with regard to the different models and travel modes,

ven though such an analysis supports the interpretation and un-

erstanding of the results (e.g. Murray & Conner, 2009 ). 

This study addresses the identified shortcomings and adds to

he literature as follows: First, it presents a comprehensive com-

arison of seven machine learning classifiers. Second, the article

ystematically evaluates the classifiers using strict model validation

echniques and test statistics. Third, in addition to individual and

ousehold characteristics, it considers characteristics of the built

nd natural environmental as well as meteorological conditions for

odel building. Finally, the article investigates the importance of

ach variable for each classifier and travel mode in detail. 

The rest of this article is structured as follows: Section 2 out-

ines the data and methods used. Section 3 describes the results,

ollowed by a discussion in Section 4 . Finally, Section 5 closes the

aper with concluding remarks. 

. Materials and methods 

.1. Data 

The primary data source for this study is the Dutch national

ravel survey (NTS) conducted from 2010 to 2012. It is supplied

y Onderzoek Verplaatsingen in Nederland (2014) and is based

n individual travel diaries. The survey participants were asked to

ecord every trip over the course of six days, which have been ran-

omly selected to cover a whole year in order to account for sea-

onal effects. To com pensate for the lower response rates of non-

atives and older participants, both groups were oversampled. In

ddition to trip-specific data (e.g. travel mode and trip distance),

he NTS also provides socio-economic data about the participants

e.g. gender, age, and ethnicity) as well as information on house-

olds (e.g. income, number of cars and bicycles). The present study

onsiders only records of participants aged 18 and over to ex-

lude the distinct travel behavior of younger people. Furthermore,

ecords that contain incomplete or erroneous information are also

xcluded. The resulting sampled data set consists of 69,918 indi-

iduals and a total of 230,608 trips. These trips are spatially dis-

ributed across all regions of the Netherlands and represent the

ravel behavior of the Dutch population as a whole. The NTS data

an be accessed free of charge from DANS (Data Archiving and

etworked Services) through the following link: https://easy.dans.

naw.nl/ui/datasets/id/easy-dataset:54132/tab/1 . 

The data is additionally enriched with environmental data (see

ishman, Böcker, & Helbich, 2015 ). For this purpose, the residen-

ial locations of the participants are geocoded by postal codes us-

ng the nationwide cadastre database (Basisregistraties Adressen en

ebouwen). The locations are then utilized to derive variables that

haracterize the built and natural environments and weather con-

itions. The resulting data set consists of 17 variables, described in

able 1 . The proportion of green space and the land use diversity

re calculated using the Dutch land use model (Landelikj Grandge-

ruiksbestand Nederland 20 08/20 09). The meteorological variables

re derived from the daily reports of the nearest weather station

f the Royal Dutch Meteorological Institute. There are 36 such sta-

ions. Descriptive statistics of each variable are given in Table 2 .

he data set used for this model competition is provided through

he journal’s website. 

.2. Classifiers 

This article compares seven machine learning methods to clas-

ify travel mode choice. These methods have either already been

https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:54132/tab/1
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Table 1 

Description of the variables. 

Variable Description 

Trip 

d istance Total trip distance in km 

w eekend Trip is done at the weekend 

m ode Main travel mode (walk, bike, pt, car). pt refers to public 

transport. 

Individual 

a ge Age of participant in years 

e ducation Education of participant (lower, middle, higher) 

e thnicity Ethnicity of participant (native, western, other) 

l icense Participant owns a driver’s license (yes, no) 

m ale Male participant (yes, no) 

Household 

b icycles Number of bicycles per household 

c ars Number of cars per household 

i ncome Net annual household income in 1,0 0 0€ ( < 20, ≥ 20–40, ≥ 40) 

Build and natural 

environment 

d ensity Address density, aggregated over post codes, in 1, 

0 0 0addresses per km 

2 

d iversity Shannon diversity index of land use classes 

g reen Proportion of green space per post code area in % 

Weather 

p recip Daily precipitation sum in mm 

t emp Daily maximum temperature in °C 
w ind Daily average wind speed in m/s 
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a  
uccessfully used in transportation research or have shown promis-

ng results in other fields (e.g. Xu, Li, & Brenning, 2014 ). The pa-

ameters of each classifier are determined by systematically test-

ng values from a manually specified subspace (e.g. Hsu, Chang,

in et al., 2003 ). For computational reasons, a random sample

without replacement) of 10 0,0 0 0 trips is used for this purpose.

he results can be downloaded from the journal’s website. 
Table 2 

Descriptive statistics of the variables of the trip data set.

Variable Category % 

Trip 

d istance 

w eekend n o 82 .06

m ode w alk 20 .93

b ike 24 .47

pt 2 .31

c ar 52 .27

Individual 

a ge 

e ducation l ow 27 .37

m iddle 38 .29

h igh 34 .33

e thnicity n ative Dutch 87 .40

w estern 7 .70

o ther 4 .88

l icense n o 10 .24

m ale n o 54 .49

Household 

b icycles 

c ars 

i ncome < 20 11 .83

≥ 20–40 42 .12

≥ 40 46 .04

Build and natural environment 

d ensity 

d iversity 

g reen 

Weather 

p recip 

t emp 

w ind 
Because MNL models are frequently used in discrete choice

odeling and classification of travel mode choice ( Ben-Akiva &

erman, 1985 ), they serve in this study as a baseline classifier.

he MNL model is estimated using an ANN-based approach (see

ipley, 2007 ). The ANN used has no hidden layers and is trained

y back propagation with a weight decay constant of 0.01. 

Naive Bayes (NB) is a simple machine learning method that

alculates class probabilities using Bayes theorem while assuming

hat the features are independent. Predictions are then made for

he class with the highest probability. In order to calculate prob-

bilities from continuous features, their probability distributions

ust be estimated. This is typically done using kernel density esti-

ation ( John & Langley, 1995 ). Even though the independence as-

umption of NB rarely holds in practice, the classifier has shown

o be competitive with more advanced classifiers (e.g. Huang &

ing, 2005 ). In this study, kernel density estimation with a Laplace

orrection factor of 0.001 is used. 

SVM is a machine learning method for binary classification. It

lassifies observations by projecting the independent variables into

 high-dimensional feature space, where the classes are linearly

eparable ( Cortes & Vapnik, 1995 ). Since the basic SVM is a binary

lassifier, a one-against-one-approach is used for multiclass classi-

cation. In this approach, k (k − 1) / 2 binary classifiers are trained,

ith each classifier learning to distinguish a different pair of k

lasses. For prediction, the class that receives the most votes from

ll classifiers is chosen. Here, a SVM with a Gaussian kernel is

sed. The cost of constraint violation is set to 1.25 and the kernel

andwidth is set to 0.4. 

Inspired by the biological brain, ANNs consist of a set of

rtificial neurons and directed connections between them (e.g.

ojas, 2013 ). Input data is passed through the network where it

s summarized and processed by the neurons and weighted by

he connections to give a network output. During the training of

n ANN, the weights of the connections are adapted to produce

 desired network output. The prediction of class membership is
 

Min. Max. Mean Std. Dev. 

0 .100 400 .0 0 0 12 .218 23 .546 

6 

5 

3 

6 

6 

18 .0 0 0 98 .0 0 0 47 .661 15 .935 

0 

3 

7 

4 

7 

9 

3 

8 

0 .0 0 0 10 .0 0 0 3 .357 1 .937 

0 .0 0 0 10 .0 0 0 1 .383 0 .822 

2 

3 

4 

0 .002 11 .443 1 .569 1 .593 

0 .0 0 0 2 .828 1 .775 0 .493 

0 .0 0 0 97 .813 54 .939 22 .172 

0 .0 0 0 142 .300 2 .185 4 .675 

−9.0 0 0 35 .900 13 .317 7 .566 

0 .400 16 .300 4 .098 1 .915 
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determined by the neuron with the largest output value.

Hornik, Stinchcombe, and White (1989) showed that ANNs can ap-

proximate arbitrary continuous functions in Euclidean space to any

degree of accuracy. In this study, an ANN with a single hidden

layer of 48 neurons is used. The connection weights are trained

by back propagation with a weight decay constant of 0.1. 

CTs utilize a tree-like data structure for classification. The nodes

of the tree represent binary decision rules which recursively split

the feature space, while the leaves of the tree represent the

classes ( Breiman, Friedman, Olshen, & Stone, 1984 ). Classification

trees are easy to interpret and can effectively deal with nonlinear

relationships and interactions between variables. However, they

are sensitive to noisy data and also have a tendency to overfit

( Quinlan, 2014 ). Tree-based ensemble techniques combine many

classification trees in order to form more stable and accurate clas-

sifiers than single CTs ( Breiman, 1996 ). 

The first tree-based ensemble method selected for comparison

is boosting (BOOST). Here, the general idea is to build a sequence

of CTs, where each successive tree aims to improve the previously

wrong classifications of the preceding trees. Prediction is accom-

plished by a weighted voting among all CTs. Here, the gradient

boosting machine variant ( Friedman, 2001 ) is used. 300 trees are

fitted in total. The shrinkage parameter is set to 0.2 and the inter-

action depth to 48. Additionally, each leaf node must have at least

10 observations. 

Bagging (BAG) is a straight-forward application of an ensemble

of trees, whereby many CTs are trained in parallel using bootstrap

samples of the data. For prediction, class assignment is determined

by majority voting among all trees. In this study, 350 classifica-

tion trees are bagged. Each tree is grown without pruning until

the class assignment at each node is unambiguous. 

RF is another tree-based ensemble method which is closely re-

lated to bagging. While RF also trains many CTs in parallel using

bootstrap samples, each split at the nodes of the trees is deter-

mined by a random subset of variables ( Breiman, 2001 ) Again, for

prediction, a majority vote among all trees determines class mem-

bership. In this study, an RF consisting of 450 trees is used and

three randomly selected variables are considered for each split at

the trees nodes. 

All modeling and analyses is done in the R programming

environment ( R Core Team, 2015 ) using the ‘caret’ package

( Kuhn, 2008 ). The ‘caret’ package provides a common interface for

several modeling packages. The relevant modeling packages for this

study are ‘nnet’ ( Venables & Ripley, 2002 ), ‘klaR’ ( Weihs, Ligges,

Luebke, & Raabe, 2005 ), ‘ipred’ ( Peters & Hothorn, 2015 ), ‘e1071’

( Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2015 ), ‘random-

Forest’ ( Liaw & Wiener, 2002 ), and ‘gbm’ ( Ridgeway, 2015 ). 

2.3. Model comparison 

The performance of each classifier is estimated in this study us-

ing 10-fold cross-validation ( Kohavi et al., 1995 ). This procedure

randomly partitions the data into 10 disjoint subsets. One subset

at a time is then used for testing the model, while the remaining

sets are used to build the model. Consequently, since the testing

and training data sets are independent of each other, bias in per-

formance estimation is reduced (e.g. Kohavi et al., 1995 ). 

The distribution of the dependent variable is imbalanced. For

instance, trips by car are done very frequently, while trips by pub-

lic transport are rare. To account for the class-imbalance, the fol-

lowing procedure is suggested for each training subset of the vali-

dation procedure. First, the mean number of trips per travel mode,

denoted by n , is calculated. Then, for classes which have less than

n cases, observations are sampled with replacement from this class

and added to the data set until the class consists of n cases. For

classes which have more than n cases, observations are randomly
emoved from the data set until the class consists of n cases. Af-

er this procedure, every class is represented by exactly n obser-

ations. Thus, the total size of the data set is not changed by this

rocedure. 

The classification performance is measured using the accuracy

nd sensitivity statistics. Accuracy measures the overall propor-

ion of correctly classified observations, while sensitivity evaluates

he proportion of correctly assigned observations for each class

 Japkowicz & Shah, 2011 ). Hence, sensitivity is particular useful

or evaluating classification performance on imbalanced data sets.

hese statistics are calculated for each model built during the val-

dation procedure and for each repetition. 

To evaluate and compare the different classifiers, it is useful to

ake into account the distribution of the performance statistics (e.g.

othorn et al., 2005 ). Following Hothorn et al. (2005) , this study

valuates the statistical significance of the classifiers’ differences

n accuracy as follows. First, the Kruskal–Wallis test with a 5% sig-

ificance level is used to test the null hypothesis that the perfor-

ance estimates of all classifiers are not systematically different

rom each other. Then, the two-sided Wilcoxon rank-sum test is

pplied to determine the statistical significance of systematic pair-

ise differences between classifiers. To control the false discovery

ate at the 5% level, the p -values are adjusted using the Benjamini–

ochberg procedure ( Benjamini & Hochberg, 1995 ). 

.4. Variable importance 

The assessment of variable importance is generally an impor-

ant analysis task, because it allows variable selection and supports

eaningful interpretation. However, this remains a complex task

ue to interactions and correlations among the variables. Seem-

ngly irrelevant variables may become important only in the con-

ext of others, while redundancies between variables may lead to

n overestimation of importance (e.g. Strobl, Boulesteix, Kneib, Au-

ustin, & Zeileis, 2008 ). In addition, the assessment of variable

mportance depends strictly on the model under consideration.

f a classifier is incapable of modeling a variable’s relationships

ith a response variable, its importance for the classifier is gen-

rally low, while its importance might be high for more powerful

lassifiers. 

Numerous approaches for quantifying variable importance for

ifferent models have been proposed (e.g. Olden, Joy, & Death,

004; Hagenauer & Helbich, 2012; Nathans, Oswald, & Nimon,

012 ). In the RF framework, the importance of a variable is com-

only evaluated by measuring the change in model performance

hen randomly permuting the variable in the test data (e.g.

reiman, 2001; Strobl, Boulesteix, Zeileis, & Hothorn, 2007 ). The

ore the performance decreases under permutation of a variable,

he higher is its importance. This approach can be applied to ar-

itrary prediction models, given that independent test data for

valuation purposes is available (e.g. Knudby, Brenning, & LeDrew,

010; Xu et al., 2014; Goetz, Brenning, Petschko, & Leopold, 2015 ). 

In this study, a permutation-based approach to measure the

verall importance of each variable is used. This is done by per-

uting each variable within the test data 10 times for each fold

nd repetition of the validation procedure and reporting the re-

ulting differences in accuracy. However, in a multiclass classifica-

ion problem such as travel mode choice, the importance of the

ariables for the prediction of different classes is also of interest.

or example, the ownership of a driver’s license might be relevant

or predicting car trips, but might be less relevant for the predic-

ion of other travel modes. This study is the first that uses the

ermutation-based approach for analyzing such importances by re-

orting the differences in sensitivity for each travel mode under

ermutation. 
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Accuracy

Fig. 1. Accuracy for each classifier. 

MNL NB

SVM ANN

BOOST BAG

RF
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walk

bike

pt

car
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bike

pt

car
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bike

pt

car

0.4 0.6 0.8 1.0
Sensitivity

Fig. 2. Sensitivity for each classifier. 

Table 3 

Results of Wilcoxon rank-sum tests for differences in accuracy. Numbers below the 

diagonal are p -values, the numbers above the estimated differences. The false dis- 

covery rate is controlled at 5%. 

MNL NB SVM ANN BOOST BAG RF 

MNL −0.042 −0.265 −0.045 −0.241 −0.346 −0.353 

NB 0 .0 0 0 −0.223 −0.003 −0.199 −0.303 −0.311 

SVM 0 .0 0 0 0 .0 0 0 0 .022 0 .024 −0.081 −0.088 

ANN 0 .0 0 0 0 .257 0 .0 0 0 −0.196 −0.301 −0.308 

BOOST 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 −0.105 −0.122 

BAG 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 −0.008 

RF 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 
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Fig. 3. Overall variable importance. 

f  

S  

s  

s  

c

 

c  

c  

r  

h  

d  

o

 

i  

p  

p  

t  
. Results 

.1. Classification performance 

The accuracy of each classifier is shown in Fig. 1 . With respect

o median accuracy, RF achieved the best results (0.914), closely
ollowed by BAG (0.906). The third and fourth best classifiers are

VM (0.825) and BOOST (0.801). The accuracy of the other clas-

ifiers is substantially lower. The accuracy of ANN (0.606) is only

lightly higher than NB (0.602). MNL has the lowest accuracy of all

lassifiers with 0.561. 

The null hypothesis of no performance differences between the

lassifiers was rejected by the Kruskal–Wallis test at 5% signifi-

ance level. Table 3 shows the results of the two-sided Wilcoxon

ank-sum test with adjusted p -values. For ANN and NB the null

ypothesis that the results are drawn from the same continuous

istributions is not rejected. Hence, these classifiers are the only

nes whose accuracy is not significantly different. 

The sensitivity of the classifiers for each travel mode is shown

n Fig. 2 . Notably, all classifiers, except NB, predict public trans-

ort trips more accurately than other travel modes. NB, however,

redicts car trips slightly more accurately than public transport

rips. Bike trips are generally less accurately predicted than the
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other travel modes, though the absolute sensitivity values of the

classifiers differ. For instance, NB predicts bike trips substantially

less accurately than the other travel modes, while for RF and SVM

the difference in sensitivity between bike and walking trips is only

marginal. Moreover, it can be seen that the sensitivity values of

SVM, BOOST, BAG, ANN, and RF follow the same patterns. That is,

public transport is predicted most accurately, followed by walking

trips. The difference in sensitivity between bike and car trips is

only marginal. By contrast, the sensitivity values of MNL and NB

follow very different patterns. 

3.2. Variable importance 

Fig. 3 shows boxplots of the importance of each variable for

each classifier with respect to accuracy. By far the most impor-

tant variable for all classifiers is trip distance. For the other vari-

ables the ranking of importance is more complex, though address

density, age, number of cars and bicycles per household, and the

possession of a driving license are of importance for most clas-

sifiers. Exceptions are MNL and NB, for which age, address den-

sity, and number of bicycles (only NB) are not important. Gener-

ally, the number of important variables is smaller for NB, MNL,

and ANN than for the other classifiers. For SVM, by contrast, all

variables bear substantial importance. In particular, while educa-

tion and household income are only marginally important for the

other classifiers, these variables are the second and third most im-

portant variable for SVM. In addition, while in general the meteo-

rological variables are more important for SVM than for the other
lassifiers, temperature is generally the most important meteoro-

ogical variable. 

Exemplarily, Fig. 4 depicts the importance of the variables with

espect to sensitivity for MNL (lowest accuracy), Fig. 5 for BOOST

moderate accuracy), and Fig. 6 for RF (highest accuracy). While

rip distance is the most important variable for all travel modes

nd classifiers, there exist numerous notable differences between

lassifiers and travel modes. First, the number of important vari-

bles varies substantially with travel mode. For example, three

ariables are substantially important ( �Sensitivity < −0 . 2 ) for pre-

icting public transport trips by RF (distance, number of cars, age),

ut only a single variable (distance) for predicting other trips by

F. Consequently, and second, some variables are more important

or certain travel modes than others. For instance, while the ad-

ress density is important for predicting public transport trips by

ny classifier, this variable is basically of no importance for predict-

ng car trips. Third, the importance of variables also varies between

lassifiers. For example, in contrast to MNL, BOOST and RF identify

long temperature the proportion of green space as an important

ariable for predicting public transport and bicycle trips. 

. Discussion 

.1. Classification performance 

The tree-based ensemble classifiers performed exceptionally

ell. This indicates that the flexibility which is obtained by com-

ining multiple CTs is particularly useful for modeling travel mode
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Fig. 5. Variable importance for BOOST. 

c  

T  

l  

d  

b  

&  

r  

m  

t  

a  

F  

m  

t

 

s  

fi  

t  

W  

w  

(  

i  

s

 

i  

t  

s  

(  

a  

a  

a  

m

 

v  

w  

a  

a  

t  

t  

fi  

f

4

 

t  

e  

t  

d  

a  

M  

i  

p  

b  

r

 

d  

a  
hoice. The performance of RF is significantly better than BAG.

his difference can be attributed to the larger diversity among the

earned trees of RF, which is a result of the RF’s procedure for ran-

omized splitting at nodes. Generally, ensemble classifiers perform

etter if there is significant diversity among the models ( Kuncheva

 Whitaker, 2003 ). However, the performance of BOOST is infe-

ior to both RF and BAG. One explanation can be that boosting

ethods are primarily designed to minimize model bias and are

herefore more prone to overfitting, while RF and BAG conceptually

im to reduce model variance ( Ganjisaffar, Caruana, & Lopes, 2011 ).

urthermore, because boosting methods try to improve previously

isclassified data iteratively, outliers can have a critical effect on

heir performance ( Rätsch, Onoda, & Müller, 2001 ). 

SVM uses the one-against-one approach for multiclass clas-

ification. This approach generally tends to increase the classi-

er’s variance, because only small subsets of the data are used

o learn to distinguish between each pair of classes ( Lee, Lin, &

ahba, 2004 ). In addition, it can lead to inconsistent results in

hich observations are assigned to multiple classes simultaneously

 Bishop, 2006 ). The similar performance of SVM and BOOST, which

s a true multiclass classifier, indicates that these issues do not

ubstantially effect the performance of SVM. 

The lowest accuracy was provided by MNL, indicating that

ts modeling capabilities are generally less effective for modeling

ravel mode choice and/or that the models’ assumptions are sub-

tantially violated. These findings are in line with previous studies

e.g. Sayed and Razavi, 20 0 0, Xie et al., 2003 , Omrani, 2015 ). The

ccuracy of NB, on the other hand, is significantly higher than MNL

nd close to ANN, indicating that despite the strict independence
 o  
ssumption of NB (e.g. Hand & Yu, 2001 ) it can be useful for the

odeling of travel mode choice. 

The results of the sensitivity analysis allow a more detailed in-

estigation of accuracy results. Overall, RF predicts all travel modes

ith high sensitivity. No classifiers predicts any travel mode more

ccurately than RF. Thus, RF can be considered the most appropri-

te classifier for modeling travel mode choice. In addition, since

he sensitivity of SVM, BOOST, BAG, ANN, and RF basically follow

he same patterns, it can be concluded that neither of these classi-

ers has distinct properties that make it substantially more useful

or predicting certain travel modes. 

.2. Variable importance 

The results of the analysis of variable importance with respect

o accuracy show that the considered classifiers, except SVM, gen-

rally correspond well with regard to the most important variables,

hough the magnitudes of variable importance between classifiers

iffer. In particular, even simple classifiers such as MNL and NB

re able determine the most important variables. However, because

NL and NB do only consider a rather small set of variables as

mportant for classification and their generally low classification

erformance, it can be concluded that more advanced and flexi-

le classifiers are required to model the complex interactions and

elationships of most variables. 

The similar patterns of variable importance of RF and BAG in-

icates that these classifiers model relationships between vari-

bles in a similar manner. However, the magnitude of importance

f some variables is different for RF and BAG, even though both
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classifiers are based on an ensemble of CTs. For instance, address

density is more important for BAG than RF, while the proportion

of green space and education is more important for RF than BAG.

One explanation for these differences can be that RF, in contrast to

BAG, creates CTs on random subsets in order to avoid overfitting

( Ho, 1998 ). 

The results also confirm the findings of Rasouli and Timmer-

mans (2014) , who found that trip distance is the most important

variable and, furthermore, that age is more important than income

or education when classifying travel mode choice using tree-based

ensemble classifiers. While in this article the number of cars is

ranked as the second most important variable by all classifiers, ex-

cept SVM, Rasouli & Timmermans (2014) reported that car avail-

ability is not of substantial importance. A reason for this difference

could be that this article considered the total number of available

cars, while Rasouli & Timmermans (2014) merely considered the

general availability of a car, disregarding the total number of cars

available. 

Previous studies have also identified weather conditions as im-

portant variables for making decision about travel modes (e.g.

Verplanken, Aarts, & Van Knippenberg, 1997; Garvill, Marell, &

Nordlund, 2003; Helbich et al., 2014; Liu et al., 2015 ), which is

confirmed by the results of the present study. However, the results

also show that weather variables do not play a dominating role for

travel mode choice classification and that temperature is generally

more important than precipitation or wind speed. An explanation

for the latter can be that temperature also reflects seasonal effects,
hich are not directly related to weather conditions but neverthe-

ess influence travel mode choice ( Clifton, Chen, & Cutter, 2011 ). 

In addition, the results emphasize the overall importance of ad-

ress density for most classifiers. An explanation for this can be

hat address density is closely related to variables such as parking

osts, distance to public transport stations, and travel time, which

ave been shown to significantly influence the choice of travel

odes (e.g. Frank, Bradley, Kavage, Chapman, & Lawton, 2008;

usilo, Williams, Lindsay, & Dair, 2012 ). 

The analysis of sensitivity allows a more detailed view of the

mportance of the variables for the different classifiers. For in-

tance, the results show that address density is generally more

mportant for the prediction of public transport trips than for the

ther travel modes. Considering that address density is a proxy for

opulation density, these results correspond to Limtanakool, Dijst,

nd Schwanen (2006) , who determined that high population den-

ity is associated with an increased use of public transport. 

Finally, the results also indicate that temperature and propor-

ion of green space are particularly important for predicting bicy-

le trips by RF. This supports the results of Winters, Brauer, Setton,

nd Teschke (2010) and Helbich et al. (2014) , who showed that

he natural and built environment, as well as temperature, sub-

tantially affect bicycle behavior. In addition, the results show that

hese variables are also important for predicting public transport

rips. This is in line with the findings of Nankervis (1999) , who

howed that public transport is a common alternative to cycling,

articularly during bad weather conditions. 
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. Conclusion 

This article presented a systematic comparison of seven differ-

nt machine learning classifiers for travel mode choice prediction

sing Dutch travel diary data from the years 2010 to 2012. For this

urpose, accuracy and sensitivity analyses have been performed

tilizing repeated k -fold cross validation. 

The results showed that among the investigated classifiers,

F produced the most accurate predictions. The performance of

NL, arguably the most common model for analyzing travel mode

hoice, is low. In-depth sensitivity analysis revealed that public

ransport and car trips are predicted with the highest sensitivity by

ll classifiers, while walking and bicycles trips are predicted with

he lowest sensitivity. 

Using a permutation-based approach to measure variable im-

ortance, the article showed that with regard to accuracy the most

mportant variable is trip distance, followed by the number of cars

er household. The importance of the other variables varies with

he applied classifiers. Though generally of little importance, the

eteorological variables are more important for SVM than for the

ther classifiers. Furthermore, a detailed analysis of variable im-

ortance with regard to sensitivity has shown that variable im-

ortance also varies strictly with the travel mode being predicted.

emperature is more important for predicting public transport and

icycle trips than for other travel modes. 

The results suggest that it is necessary to analyze alongside the

verall classification performance the importance of variables for

he different classifiers and travel modes in order to get a better

nderstanding of the relationships within the data and to allow

ffective modeling of travel mode choice. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.eswa.2017.01.057 . 
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