On the Future of Solution Composition in
Software Ecosystems

Zherui Yang!, Slinger Jansen®, Xuesong Gao?, and Dong Zhang?

1Utrecht University, Utrecht, The Netherlands

y.z_ryan@hotmail.com, slinger.Jansen@uu.nl
2Huawei Technologies CO., LTD , Beijing, China

{james.gaoxuesong, zhang.dong}@huawei.com

Abstract. The trend of application stores is currently at a peak. How-
ever, the lack of dynamic composition for complex solutions is the largest
downside of the app store model, since solutions are increasingly created
as compositions of multiple solutions, APIs, and applications. Therefore,
in this vision paper, a superior model, solution composers, is proposed
to the app store model. A conceptual framework is established to illus-
trate the inner workings of solution composers in software ecosystems.
In order to outline that solution composers are significant for the fu-
ture of software development, several industry cases are presented and
compared to support this concept, further indicating that a standard
for solution composition should be considered. In addition, the vision is
evaluated through expert reviews at several leading platform providers
and challenges for practice and implementation are identified.

Keywords: Software ecosystems, AppStores, solution composers

1 Introduction

Software ecosystems are complex networks of organizations, that collaboratively
serve a market [12]. Long value chains are formed in these ecosystems. The actors
in these networks are Software Producing Organizations (SPOs), such as open
source consortia and Independent Software Vendors (ISVs), and end-users, such
as software consumers of mobile apps, or employees at large companies that
require advanced business applications.

Whereas in the past end-users would accept pre-configured monolithic so-
lution bundles in the form of, for example, large Enterprise Resource Planning
applications or complicated mobile apps, increasingly there is a demand for flex-
ible compositions of solutions from end-users that can be changed rapidly and
dynamically. In many cases, even non-technical end-users want to compose such
solutions. Therefore, in order to meet this demand, in this paper, the concept of
a solution composer is proposed and a conceptual framework is presented.

Research and studies from previous period have gained promising and valu-
able results, but have mostly focused on specific aspects of solution composition
or service integration [8,17], which are fragmented and lack of a holistic view

of the concept or the problem [14,4, 6]. Therefore, a more holistic and consol-
idated framework is needed that attributes to the fundamental understanding
of solution composers in terms of concepts, industry practices, innovation and
development direction. This framework is useful and necessary to enhance the
efficiency and effectiveness of solution composer establishment.

There is an emerging need for customization and composition of solutions.
Firstly, there is an increase in interfaces and devices that provide access to
valuable features. Secondly, platforms are increasingly the gateway to large col-
lections of these features, such as Internet of Things (IoTs) platforms [2]. Pre-
composed and configured feature bundles, such as apps in the current AppSotres,
are rapidly losing their value, as these monoliths cannot easily be adapted to
create new solution compositions. One illustration of this development is the
Android Instant Apps platform [19], where apps can be downloaded and acti-
vated based on a set of predefined events, without having to use the Play Store.
This paper focuses on the following research questions:

1. Is there a need for solution composers?

2. Is the proposed solution composer framework valid?

3. What will the industry implications be of the introduction of solution com-
posers?

This paper continues with the research method, i.e., a number of industry
case studies and evaluation interviews. In Section 3, a critical discussion is given
on the current software industry. In section 4, the solution composer concept
is introduced and the proposed framework is described in detail. Moreover, the
implementations of the framework in industry are discussed. Experts were invited
to evaluate the framework in forms of interviews in section 5. Final discussion
is in section 6 and we provided conclusions and an outlook in section 7.

2 Research Method

This research can be seen as a light mixed study based on case study and inter-
views, using design science [24]. First, several industry cases were studied and
compared to establish a conceptual framework for solution composer. Second,
expert interviews were conducted to evaluate both the theoretical and practical
aspects of solution composers.

The design research paradigm focuses on creating and evaluating innovative
IT artifacts that enable organizations to address important information-related
tasks [24]. This paper aims to determine the nature of solution composers. The
research method is deemed appropriate when there is little evidence about a
phenomenon and the researcher seeks answers to research questions [20]. The
authors looked for experts who have a great deal to share about service compo-
sition and software ecosystems.

The cases were selected as representative service composition tools from the
industry. And the interviews were conducted in a semi-structured way. This
method has been used to explore the framework, allowing new ideas to be

brought up during the interview as a result of interviewees’ answers [26]. All
the authors contributed to the interview questions and the interviews were con-
ducted by one of the authors. All the evidence including audio tape, transcripts
and notes from the interview have been kept and these information was used to
compose this report [26].

3 The Limits of AppStores

Jansen and Bloemendal [11] define an AppStore as an online curated marketplace
that allows developers to sell and distribute their products to actors within
one or more multi-sided software platform ecosystems. AppStores have striking
advantages for the software business. They have changed the application industry
significantly [11], introducing new business and deployment models to partners,
and offering end-users the maximum freedom of choosing applications. Also they
provide app developers with a wealth of opportunities to approach new niche
markets with domain specific applications [10].

Despite the advantages AppStores have, the AppStore model is increasingly
inflexible. Software applications in AppStores are monolithic collections of fea-
tures that aim to solve problems for end users, whether it is to book a train
ticket or to provide fun through a game. The downside of functionally compos-
ing such features into a collection is that end-users do not have the flexibility to
break down those features and compose them into novel solutions. End-users are
burdened with the job of carrying over content from one application to the next
manually and are tired of the lack of dynamic composition for complex solutions.
It appears AppStores have reached their peak. It is time for the “mini-monoliths”
in the AppStore to be decomposed and offered as separate features to solution
composers.

4 Solution Composers

The state of the practice introduces four types of software composition frame-
work: developer platforms, API composers, SOA composers and orchestrators,
and end-user service composers. After learning from and comparing with these
frameworks, a conceptual framework of solution composers is proposed, high-
lighting necessary elements in any successful solution composer. Subsequently,
several cases are presented and analyzed as the implementations of the proposed
framework in industry.

4.1 State of the Practice

The following four types of software composition frameworks are identified that
contain elements of solution composers.

Developer Platforms Developer platforms [23] are platforms that enable de-
velopers to create complex solutions on top of existing platforms, typically with
a rich set of developer tools to enable quick adoption of the platform. In the
context of solution composers, they enable developers to integrate services from
the ecosystem into their solutions, however, the facilitation of such composition
is typically through regular programming.

FExample: Force.com is Salesforce’s developer platform, that enables devel-
opers to create domain specific solutions on top of Salesforce.com. In Force.com
we find that developers integrate services from the platform and other APIs
manually. It has an AppStore for end customers, but this does not enable au-
tomatic or supported composition of services and developers simply address the
APIs of the apps.

API Composers API composers help to manage APIs to fast, affordably and
scalably communicate between all the values that have already been built down
and the new projects that are building for today, analyzing API data and han-
dle the IoT. In the context of solution composer, they allow separate functions
to communicate with each other but they do not provide internal or external
services for solutions composition.

Example: Apigee is an API composer, which allows end-users to secure,
manage, analyze and connect all APIs. Although it enables end-users to manip-
ulate APIs and provides API management to store all compositions, there is no
service index in Apigee for end-users to choose available services from.

SOA Composers and Orchestrators At a very high level, a crucial aspect of
Service Oriented Architecture (SOA) is service orchestration. Enterprise systems
and integration projects designed according to SOA principles depend on suc-
cessful service orchestration. In the context of solution composer, SOA composer
is a web-based application that helps to build new applications with granular
and reusable software components, but it lacks the flexibility and agility to dy-
namically compose and integrate smaller units of services.

Ezxample: Oracle SOA Composer allows users to work with Oracle Busi-
ness Rules dictionaries and tasks for deployed applications. Moreover, Oracle
SOA Composer provides a platform with enhanced service orchestration capa-
bilities to ease the integration challenges, but still not flexible enough for dynamic
complex solution composition.

End-user Service Composers End-user service composers are platforms or
web services that aggregates many other web services or applications into one
place and can then perform actions given a certain set of criteria. End-users may
therefore create customized criteria and perform the action as desired. Because
of the customization character, end-user service composers might be the most
similar one to solution composers, nevertheless, they are too user-friendly for
developers to integrate and compose more complex solutions.

(Service Providers]

Payment Processing and Business Model

Solution Composer Platform

Compo_sition
Solution || Solution Runtime
Designer || Proposer

Runtime
Composition Index Monitoring

s19s() pug

Solution Creators

Fig. 1. The Solution Composer Framework

Example: IFTTT.com is a free web-based service that allows users to cre-
ate chains of simple conditional statements, called "recipes”, which are triggered
based on changes to other web services such as Gmail, Facebook and Instagram.
It has the necessary elements for solution composer, but it is way too immature
for higher level of solution composition to be performed on.

4.2 The Solution Composer Framework

By learning from and combining with the software composition frameworks, a
conceptual framework of a solution composer platform is proposed in Figure 1,
in order to create a better understanding of how solution composer performs.

From the top, left and right sides of the figure, the different actors within the
framework are modeled, respectively the service providers, the solution creators
that might be end-users or consultants in the companies, and the end-users.

The communication between actors and the core of solution composer in
Figure 1 is payment processing and business model. When solution composer is
carried into practice, the business model will therefore connect the theoretical
framework to the industry.

In the center of this framework, solution composer represents how it works
in detail with features as service index, solution designer, solution proposer and
composition index. Service index stores all available services and presents to end-
users in a certain form such as Library or Service Catalog. End-users can select
a range of services or applications for the need of integrating and composing
services according to their specific need. Solution designer is where end-users
can get their selected services and applications designed in some pattern which
is suitable for the final solution while Solution proposer is an entity providing
solution propositions. The composition index is created to store compositions
and benchmarks of solutions. The compositions are required to provide a list of
solutions that have been created in the past and can now be reused. The solution
benchmarks are especially useful for larger solution compositions where some
knowledge is required about how the solution is going to perform in the future. In

the field of Software Defined Networking, for instance, bringing together different
parts of a solution is challenging, as little may be known about the performance
of (a combination of) services. Having a set of benchmarks can remedy this
situation to bring some predictability in the process of solution composition.

We separate solution composer and platform because solution composition is
the phase where service composition is designed and proposed while composition
run-time is the phase where the service composition is installed in the run-time
environment and executed. When the service composition platform enables the
selection process of individual services at deployment time, usually the com-
position from composition index can be re-configured. Moreover, the run-time
monitoring will monitor and analyze how the service composition is executed
and get as much performance evaluation as possible.

4.3 Implementations of the Solution Composer Framework in
Industry

Nowadays, business and technology can turn an idea into a potential product, a
new service or a better experience in a blink. With such fast growing, customers
find it more difficult to get satisfied outcomes about market placement and de-
velopment strategy [5], along with the related risk issues [13]. Also, as different
SPOs attempt to produce complex combination of software systems and hard-
ware (9], there is a need for manual-automatic-combined solution composition.

Different from applications from AppStores, where apps work as individ-
ually separate collections of features, the process of the solution composition
and integration will require communications and interactions between features.
Enterprise application integration has traditionally relied on software-based mid-
dleware, such as Service Oriented Architecture (SOA) middleware solutions [16].
Disadvantages of SOA middleware, such as the lack of standards, high cost and
the inflexibility [3], make solution composers more appealing. Based on the ideals
of middleware, solution composers provide an open, standards-based approach
to integration. Unlike its predecessor, the Application Programming Interfaces
(APIs) used in solution composers is not a piece of software. Instead, it is a fully
functioning integration point. An API is much more flexible and agile than any
existing set of routines, protocols, and tools for the purpose of connection [7].

As the possibilities to create service compositions become more complex,
more technically oriented resources are required to create new solutions. Further-
more, as third parties will probably also provide basic APIs that are compatible
with the platform, advanced mechanisms are required such as service indexes
and semi-automatic service composition. Both of these lead to intricate value
chains and software ecosystems with many participants in them.

For solution composers to present solutions to customers, four different ways
are observed as manually through code (Manually), through a composition studio
(Composition Studio), through a composition proposer (Composition Proposer),
and hybrid (Hybrid) combinations of these three.

These four ways may be in different combinations to support end-users and
composers optimally. In the first way, developers compose solutions with code,

Table 1. Implementations of the service providers, the Solution Composer, and End-
users in Industry. ISV stands for Independent Software Vendor, IoT stands for Internet

of Things.
Party

Company Online Service Providers Solution Composers End Users
Android API Providers APP and API provider| End users
APIGEE API provider Developers| Everyone
Azure Cloud service provider|Cloud solution provider/developers|Companies
HP SDN ISVs/HP open source HP Consultants|Companies
IFTTT.com IoT/API providers End-users| End-users
Pipemonk ISVs Developers/End-users|Companies
Salesforce.com ISVs Consultants|Companies
We-wired web IoT/Web apps End-users| End-users
X-Formation Connect IoT/API providers developers| End-users
Zapier IoT/API providers End-users| End-users

for instance by programming against APIs from third parties and combining
them to create innovative solutions. In the second way, a complete composition
studio is offered that enables developers, technical consultants, and even end-
users to create new service configurations to create the best fitting solution.
The third way does not actually lead to a configuration, but proposes a solution
beforehand, which for instance enables benchmarking and comparison of different
service configurations. The fourth way is a combination of the first two, where
simple configurations can be created, but more advanced solutions still have to
be coded traditionally.

In Table 1, several tools are introduced for comparative analysis. The tools
evaluated were selected using a Google search for service composition tools.
The tools needed to satisfy the following criteria: (1) Enable the composition of
services to create a solution, (2) have a service index for the creation of solutions,
(3) be exemplary in the industry, and (4) be commercially available. We grouped
the API aggregation platforms, as there are many new entrants to the market.

In Table 2, cases are further compared based on the four different features
in solution composers: service indexes, solution designers, solution proposers,
and composition indexes. These four features define the character of a solution
composer. Service and composition indexes indicate where users can find all
services and composition available on the platform. The main features of solution
composers are solution designer and proposer.

As for an example, IFTTT allows end-users to create, integrate and combine
services into solutions and store these chains of simple conditional statements
as recipes, or as we call it here composition index. Thus, IFTTT consists of
service index (channels), solution designer (interface), solution proposer (end-
users themselves) and composition index (recipes), which makes it actually one
of the first to fully implement a solution composer. Also, Zapier shares the same
construction with full implementation of a solution composer. However, with a
more extensive service index and more flexible solution design patterns, Zapier,
to an extent, is even one step closer to the ideal implementation of a solution
composer.

Table 2. Solution composer features observed in industry

Party
Case Service Solution Solution Composition
Index Designer Proposer Index
Mashup [15] UDDI Service Catalog| Mashup environment None None
FEATUREHOUSE [1] Tree index None None None
Android APP Store None None None
APIGEE None| Customer’s own IDE None|API management
Azure Runbook gallery| Microsoft Powershell| End-users/None None
HP SDN SDN APP Store None None None
IFTTT.com IFTTT.com Channels IFTTT interface| End-users/None Recipes
Pipemonk Shopify AppStore Pipemonk interface|End-users/None QuickBooks
/Amazon Sellers
Salesforce.com AppExchange App developer IDE None None
‘We-wired web Service Catalog|Visual wiring diagrams|End-users/None None
X-Formation Connect| Application drop-list Connect interface|End-users/None None
Zapier Library Zapier interface|End-users/None Zaps

For some tools, such as Pipemonk, We-Wired Web and X-formation Connect
are more or less like IFTTT or Zapier. They share the idea of service integration
automation and solution composition. What is different is that these tools do
not have a handy composition index for end-users.

For the rest of the cases, they all miss some essential elements, but each of
them contains significant part(s) of a solution composer. APIGEE is a API man-
agement platform, focusing more on the designer and composition index part.
Microsoft Azure is a growing collection of integrated cloud services. It provides
cloud services for the need of end-users but it does not have a composition in-
dex. HP SDN allows end-users to select from a range of SDN Applications that
allow to program network to align with business needs. But HP SDN only has
an AppStore for the selection, and arranging consultants to help with all the
solution. There is no reference solution or relevant database for composed solu-
tions. Salesforce.com is a developer platform. It only provides service index and
solution designer.

After an extensive literature study, a couple of scientific frameworks were se-
lected by conducting snowballing procedure [25]. Snowballing refers to using the
reference list of a paper or the citations to the paper to identify additional papers.
The FEATUREHOUSE framework [1] provides a method for software composition
using superimposition. The framework, however, only concerns the composition
of systems from different languages and does not provide tooling for suggestion
of fitting solutions, nor does it provide an index of composed solutions. Another
framework that was added is the Mashup framework [15], which is a mechanism
for enabling end-users to create mashups from a UDDI registry of services, using
drag and drop tools.

5 Evaluation

Based on learning and results from the industry cases, an interview question
protocol was drawn. In the second phase of this study, semi-structured interviews

Table 3. The background of interviewees

Background and occupations|Interviewee
CEO of the company

CTO and scientist innovator
Product manager ecosystem
Cooperation manager
Senior developer

ZoQw

were conducted. During interviews, experts were asked to provide insight on the
concept of solution composers and to evaluate the proposed framework. The
interviews were recorded, after which all the records were transcribed.
Interviewees’ Backgrounds - Interviewee A owns a company and is the CEO
of the company for three years. The projects he has been working on based mostly
on the idea of service composition. Interviewee B works as scientist innovator in a
project based national company for almost 4 years and he may join a new project
regarding service composition. And interviewee C works as a product manager
ecosystem in a software company for nearly two years. While interviewee D
works in a mobile company and is handling a project closely related to solution
composers. And interviewee E is an developer in a e-commerce company with
experience in the filed of web service. All backgrounds are indicated in Table 3.
Interview Analysis - Due to the wide range selection of questions, not all
of the interviewees were able to answer 100% of the questions listed. However,
the authors were able to combine and compare the information among all the
interviews and draw conclusions about the validity of the proposed framework
and the two-sides of solution composers. In this section, a thorough discussion
and analysis is provided.

The need of solution composers During interviews, interviewees indicated
that there indeed is a need for solution composer in the software industry that
will fulfill the need of end-users. Solution composer has further affected the
software ecosystem by providing standards and creating a new market. Currently,
some significant big shots in the software industry have started developing similar
services, such as Android Instant Apps platform.

Solution composers will offer standards and protocols to support the commu-
nication among component services. However, current service composition envi-
ronments barely have productivity support tools which is similar to what modern
Integrated Development Environments (IDEs) provided, such as code searching
or debugging [14]. Solution composer could therefore benefit from environments
with productivity techniques, for example, services index discovery and services
integration. As interviewee B also confirmed in the interview, ”there is a lack
of standards”. Thus, solution composer that provides standards is needed for
services integration and composition.

Moreover, there is a market need for solution composer. With regards to
the effect of solution composer, interviewee A, when asked about the impact
on software ecosystem, replied:” Its going to create a whole new way of apps

Table 4. The need, advantage, challenge and validity of solution composers: Quotes
from the Evaluation Interviews

On the need for solution composers Inter-
viewee

”Change the industry”; ” Offer completely new market place”.

7Tt will create a profitable market for whoever is in part of this revolution”.

7Tt can reach out to many fields and can be used in many ways. The ICT area will be affected”.

L)

A
B
”Obviously, there is a need for end-users”; ”its really getting there already”. C
D
”Bring in new concept”; ”a big innovation”; ”will actually build healthier software ecosystems”.|E

On the advantage of solution composers Inter-

”Dont think of Apps anymore”; "make it easier for the users to get functions they need”.

A

”Making it easier for the end-users”. B
” Allow end-users to customize”; ”can make business around it”. C
D

?First, it includes a service consultancy. Secondly, it provides end-users with an experiential

environment”; ”attainability”.

”The standardization and the attempt of customization”;

”divide two phases of the design and the run-time”. E

On the challenges of solution composers Inter-
viewee

”Privacy is maybe still an issue. ’Do you want it?’”. A

”Practical problems”; "need well-defined APIs and standardized”. B

”Standardization”; ”even without standardization, you will need to build an ecosystem”;

790% of what you need is person (manual work)”. C

”The technique support”; "how to simulate the environment”. D

”How you can persuade people to use”. E

On the validity of the framework Inter-
viewee

”Could work for the business”;
” (will need to) customize their daily operations and the new technical infrastructure”.

” Architecture for a framework that has not been implemented”;
” A lot of manual work to get everything to work on their platform”.

”This is a good idea”; "will add value”.

A
B
71t sounds technical and detailed”; ”can already be valuable now”. (@]
D
E

”Quite clever”; ”will make things easier and smoother”.

(services) and not only apps”. He also suggested that some of the big companies
with their own ecosystem have got hands on this field already, ” Google, for
example, is already creating this alternative AppStore”)’ its just about the first
party who gets in the market as fast as possible”. In the meanwhile, interviewee
B agreed on this point.

Solution composer is more like a trend, rather than a tool needed to be
developed or introduced to the industry. We foresee that the trend of composing
software from small units of functionality will continue.

The advantages of solution composers Solution composer focuses on single
applications no more. To some extent, solution composer represents a higher
level of functionality and service composition. The idea of service composition
indicates the future of software industry, which is to meet the need of end-users.
This is also the most important aspect of software development. Thus, thinking
of the end-users is the main advantage of solution composer, as interviewees all
agreed.

Moreover, regarding the aspect of solution composer operation, interviewee
D pointed out that solution composer can provide end-users with an experien-
tial environment, allowing end-users to sense the final product they are going
to purchase. In this way, a solution is proposed in advance before it is carried
out into practice. Therefore, benchmarking and comparison of different service
configuration are enabled. ” If the end-users could have the access to a trial prod-
uct with consultant and specialist’s advice, they may feel they’ve reached closely
to their goal”. This approach to present composed solution can soon meet end-
users requirement and satisfy end-users expectation. For end-users, the actual
outcome helps to make their finally decision.

The challenge of solution composers Nevertheless, challenges of the solu-
tion composer exist. The main concern addressed from interviewees is whether
solution composer can successfully attract customers in the current market. As
a matter of fact, with such a strong idea colliding with the AppStore nowadays,
it is reasonable to have concerns over the result of solution composer reshaping
the industry.

The interviewees reflected that standardization, which was also implied as
predefined manual work, would cost a lot of time and labor. In addition, inter-
viewee C brought up that implementing solution composer within an ecosystem
is also something needed to be concerned. Nevertheless, solution composers need
to be built on top of an existing ecosystem.

The validity of the proposed framework In the framework, we defined
solution composer and platform as separated phases because they have different
focuses. During the interview, Interviewee E agreed on this separation.

Furthermore, the proposed framework provides a standard for service com-
position that the current industry is lack of. 7T would say there is a lack of
standards”, said interviewee B, ” While some are very similar services but they
just have different APIs and there are some much work to implement that specific
API”. The problem interviewee B brought up is what the solution composer is
about to fix. We proposed service index in order to form a standardized interface
for end-users, gathering all the services together rather than a whole bunch of
scattered APIs. In addition, the composition index brings convenience as well.
It allows end-users to easily look up composed solutions. interviewee E said that
the composition index could be very interesting.

In the framework, besides the technical side, we also included payment pro-
cessing and business model in order to make it valid for business that will be the
work in the future.

Moreover, interviewee B suggested how we should make the framework more
valid or more advanced. ” If you have well-defined services”, he gave suggestions
on how the solution composer could support semi-automatic composition, ”if
you have some precondition and some post condition, output and input then you
could create an engine to do this”.

However, interviewee B also addressed his concerns as the payment process-
ing and business model being in the center of the framework. He said:” If you
are saying business models and payment processing, then you are talking about
something in companies or back-ends.” In the meanwhile, interviewee A also had
the same concerns about whether there is an appropriate ecosystem or a business
background to support such framework, to bring it into practice and to make it
profitable in the market.

6 Discussion

Implications for the Industry. In order to validate the framework for prac-
tical implementations in software industry, protocols and standards are needed
for services to communicate. Within an environment for solution composer, dif-
ferent requirements in terms of component models are needed [14]. Since every
service works differently, it will be quite a burden if there is no protocol for
communications among services and consequently, it will increase the difficulty
in the solution composition process. For a simple example, booking tickets for
flight, every website is different. If there is standardized interface for travel in-
formation, it will make things much easier. Nowadays, some very similar services
have different APIs and there will be abundant of manual work to implement
specific APIs if there is no unified protocol.

Moreover, software services should be simplified to only focus on core fea-
tures. With clear and distinguishable core features and without unnecessary
communications among redundant functions, it is easier for services to follow
the standardized protocol and for solution composer to perform concisely. Inter-
viewees B also expressed the urge for the industry to simplify software services.

In the meanwhile, automation is also needed. Nowadays, enterprises are in-
creasingly looking for new chances to cooperate with other enterprises by offering
and performing integrated services and solutions [21]. However, the development
pace of solution composer that requires a considerable effort of low-level program-
ming has not kept up with the rapid growth of available opportunities. Besides,
the number of services to be integrated and composed may be huge, so even
with a standard protocol for component communication, involving significant
amount of manually coding work is inadequate considering the scale of solution
composition. Therefore, solution composers call for automation.

In addition, when automation is included and manual work is reduced, more
time and effort could be devoted into the main useful functional part of solution
composer, which is solution composition and service integration. Also with a
standardized protocol and simplified core service features, it will therefore make
consultancy easier and consequently will enable rapid system integration.

Last but not least, in order to facilitate the development of solution composer,
a healthy existing ecosystem is significant, either basing solution composer on
an ecosystem, or building an ecosystem around solution composer. Only within
an ecosystem, solution composer can be made the best use of, nourishing the
health of the ecosystem.

Research Validity. This paper brings up with a new concept of solution com-
poser. In order to further investigate the nature of it, we used exploratory re-
search based on case studies from the industry [22] and interviews from ex-
perts [18].

With regards to internal validity, evaluating the framework with interviews
was a pragmatic decision, since the implementation and testing of the framework
in practice requires years of research. We do plan to implement the framework,
however, over the course of the next years at several industry research partners.

Regarding external validity (generalizability), it refers to the extent to which
the framework of this study can be generalized in industry. As observed in the
interviews, this framework has been evaluated in a variety perspectives and the
model can be applied to different parts of the software industry, such as the ser-
vices business or the Internet of Things business, as platforms like IFTTT.com
illustrate. Moreover, to minimize the external validity, we also analyzed practi-
cal cases from industry in order to show the general practice of the proposed
framework.

In terms of construct validity, the interviews were prepared with an extensive
interview protocol, consisting of a structure for the interview, but also definitions
for the solution composer and its parts. Using this definition list, interviewees
were sure to understand the concepts in the same way as other interviewees.
The semi-structured interviews were conducted as part of the case study. An
interview protocol was defined with questions including status quo in enterprise
AppStore and service composition, the impact of solution composer on software
ecosystem, and the future of service composition and software ecosystems. The
interviews were recorded, and transcribed. The results were analyzed to extract
observations, improvement suggestions, and conclusions.

7 Conclusion

From the industry cases and expert interviews suggested in the previous sections,
it is clear that solution composers can be a major game changer in shaping and
reshaping the complete software ecosystem. One of the main observations drawn
from this study is that there is an undoubted need for the development of so-
lution composers, which provide end-users with more relevant and satisfactory
solutions. Furthermore, the proposed framework was considered useful for in-
dustry practice, according to the experts from related fields.

This paper functions as an exploratory study into solution composers and
as a call for practitioners and researchers to further investigate solution com-
posers in practice. The industry cases illustrate that current SPOs are working
towards solution composers. According to the proposed framework, most of the
participants of this evolution movement for service composition have not yet
developed into maturity. Only a few have made the first baby steps towards
solution composers, yet still need abundant guidance and instructions to fully
grow into the real ones. Also the cases demonstrate, by performing solution com-
position, SPOs are actually benefiting and gaining market. In the meanwhile,

the scientific frameworks from previous works indicate the implementability of
solution composers.

In addition, expert interviews provide insight and evaluation from practical
side and help to evaluate the research results. Interviewees expressed that there
is a need for solution composers and the main advantages focus on customization
for end-users and the new way to discover and connect software in the wider soft-
ware ecosystem. However, most of the challenges brought up were from technical
and practical side, which present directions for future research.

First, both industry cases and interviews suggest that in order to establish
a robust solution composer, predefined standard will be needed, for instance,
the standard protocol for component services to communicate with each other
while composing solutions. Secondly, despite the need from market, solution
composers will suffer pressures from other existing big shots in the industry.
Whether thrive or not, depends largely on how solution composer will be un-
veiled by whom. Thirdly, persuading end-users to join this software evolution
will encounter obstacles and barriers, because end-users may not realize how
eager they need the existence of solution composer. However, we will leave these
to future research and studies.

References

1. Sven Apel, Christian Kastner, and Christian Lengauer. Language-independent and
automated software composition: The featurehouse experience. Software Engineer-
ing, IEEE Transactions on, 39(1):63-79, 2013.

2. Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787-2805, 2010.

3. Afkham Azeez, Srinath Perera, Dimuthu Gamage, Ruwan Linton, Prabath Siri-
wardana, Dimuthu Leelaratne, Sanjiva Weerawarana, and Paul Fremantle. Multi-
tenant soa middleware for cloud computing. In 2010 IEEE 3rd International Con-
ference on Cloud Computing, pages 458—465. IEEE, 2010.

4. Jeppe Brgnsted, Klaus Marius Hansen, and Mads Ingstrup. A survey of service
composition mechanisms in ubiquitous computing. In Workshop on Requirements
and Solutions for Pervasive Software Infrastructures, volume 2007, pages 87-92,
2007.

5. Ronni Colville, Patricia Adams, and Debra Curtis. It service dependency mapping
tools provide configuration view. Gartner Research News Analysis. Gartner, 2005.

6. Mohamad Eid, Atif Alamri, and Abdulmotaleb El Saddik. A reference model for
dynamic web service composition systems. International Journal of Web and Grid
Services, 4(2):149-168, 2008.

7. Lee Garber. The lowly api is ready to step front and center. Computer, 46(8):14-17,
2013.

8. John Garofalakis, Yannis Panagis, Evangelos Sakkopoulos, and Athanasios Tsaka-
lidis. Web service discovery mechanisms: Looking for a needle in a haystack. In
International Workshop on Web Engineering, volume 38, 2004.

9. Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software
engineering. Prentice Hall PTR, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Sami Hyrynsalmi, Tuomas Mékilé, Antero Jarvi, Arho Suominen, Marko Seppénen,
and Timo Knuutila. App store, marketplace, play! an analysis of multi-homing in
mobile software ecosystems. Jansen, Slinger, pages 5972, 2012.

Slinger Jansen and Ewoud Bloemendal. Defining app stores: The role of curated
marketplaces in software ecosystems. In Software Business. From Physical Products
to Software Services and Solutions, pages 195-206. Springer, 2013.

Slinger Jansen, Michael A Cusumano, and Sjaak Brinkkemper. Software Ecosys-
tems: Analyzing and Managing Business Networks in the Software Industry. Ed-
ward Elgar Publishing, 2013.

Slinger Jansen and Wilfried Rijsemus. Balancing total cost of ownership and cost
of maintenance within a software supply network. In proceedings of the IEEE
International Conference on Software Maintenance (ICSM2006, Industrial track),
Philadelphia, PA, USA, 2006.

Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. Web service com-
position: A survey of techniques and tools. ACM Computing Surveys (CSUR),
48(3):33, 2015.

Xuanzhe Liu, Yi Hui, Wei Sun, and Haiqi Liang. Towards service composition
based on mashup. In Services, 2007 IEEE Congress on, pages 332—-339. IEEE,
2007.

Qusay H Mahmoud. Service-oriented architecture (soa) and web services: The road
to enterprise application integration (eai). Retrieved November, 16:2005, 2005.
Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for web
services. IBM developer Works, 1, 2002.

Nick Midgley, Sally Parkinson, Joshua Holmes, Emily Stapley, Virginia Eatough,
and Mary Target. did i bring it on myself? an exploratory study of the beliefs
that adolescents referred to mental health services have about the causes of their
depression. Furopean Child € Adolescent Psychiatry, pages 1-10, 2016.

Emil Protalinski. Google unveils android instant apps that launch immediately, no
installation required. http://venturebeat.com/2016,/05/18/google-unveils-android-
instant-apps-that-launch-immediately-no-installation-required/. Accessed: 2016-
05-18.

Per Runeson and Martin Host. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131-164,
20009.

Quan Z Sheng, Boualem Benatallah, Marlon Dumas, and Eileen Oi-Yan Mak.
Self-serv: a platform for rapid composition of web services in a peer-to-peer envi-
ronment. In Proceedings of the 28th international conference on Very Large Data
Bases, pages 1051-1054. VLDB Endowment, 2002.

Robert A Stebbins. Faxploratory research in the social sciences, volume 48. Sage,
2001.

Joey van Angeren, Carina Alves, and Slinger Jansen. Can we ask you to collab-
orate? analyzing app developer relationships in commercial platform ecosystems.
Journal of Systems and Software, 113:430—445, 2016.

R Hevner von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS quarterly, 28(1):75-105, 2004.

Claes Wohlin. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the 18th International Con-
ference on Evaluation and Assessment in Software Engineering, page 38. ACM,
2014.

R.K. Yin. Case study research: Design and methods, volume 5. Sage Publications,
Incorporated, 2008.

