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ABSTRACT

The recently introduced Gene-pool Optimal Mixing Evo-
lutionary Algorithm (GOMEA) family, which includes the
Linkage Tree Genetic Algorithm (LTGA), has been shown
to scale excellently on a variety of discrete, Cartesian-space,
optimization problems. This paper shows that GOMEA can
quite straightforwardly also be used to solve permutation
optimization problems by employing the random keys en-
coding of permutations. As a test problem, we consider
permutation flowshop scheduling, minimizing the total flow
time on 120 different problem instances (Taillard bench-
mark). The performance of GOMEA is compared with the
recently published generalized Mallows estimation of distri-
bution algorithm (GM-EDA). Statistical tests show that re-
sults of GOMEA variants are almost always significantly
better than results of GM-EDA. Moreover, even without
using local search, the new GOMEA variants obtained the
best-known solution for 30 instances in every run and even
new upper bounds for several instances. Finally, the time
complexity per solution for building a dependency model to
drive variation is an order of complexity less for GOMEA
than for GM-EDA, altogether suggesting that GOMEA also
holds much promise for permutation optimization.

CCS Concepts

•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies → Planning and
scheduling; Search methodologies;
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1. INTRODUCTION
The need to exploit problem structure in evolutionary al-

gorithms (EAs) to ensure efficient performance has long been
a cornerstone of the field, from its theoretical underpinnings
that show that in the worst case, exponential-time scale-up
is obtained for problems that are polynomial-time solvable
(see, e.g., [16]), to the building of specific variation opera-
tors for specific problems (see, e.g., [11]), to the design of
methods and techniques capable of detecting and exploit-
ing problem structure automatically, during optimization
(see, e.g., [4, 14]). The latter is a key characteristic of a
specific type of EAs, Estimation-of-Distribution Algorithms
(EDAs), that estimate probability distributions and subse-
quently sample these distributions to generate new solutions,
thereby respecting the structure captured in the estimated
distribution (see, e.g., [14]). EDAs can be seen as a specific
interpretation of the more general notion of model-based
EAs (MBEAs) in which a model is used to drive varia-
tion. Such models, that need not be probabilistic, can be
tuned during optimization. Especially this property makes
MBEAs particularly important when considering optimiza-
tion problems that require taking a Black Box Optimiza-
tion (BBO) perspective. In BBO, little is assumed to be
known about the problem being solved, except, e.g., the
domain of the variables. Many real-world problems, when
modeled to a practically-relevant level of detail, are of this
form, sometimes providing only simulations for objective
functions. Making the plausible assumption then that the
problem being solved has some exploitable structure, find-
ing and exploiting this structure leads to more efficient op-
timization than when operators are used that do not exploit
problem structure.

Most research on MBEAs is focused on either discrete
variables or continuous (real-valued) variables. Moreover,
the search spaces are considered to be Cartesian, i.e. each
variable has its own domain and can be assigned any value
from that domain. Interestingly, state-of-the-art MBEAs
(e.g., hBOA [13], DMSGA-II [10] and LTGA/LT-GOMEA [4]
for the discrete case and AMaLGaM [2], NES [17], and
CMA-ES [7] for the continuous case) are often considered to
be the most powerful EAs for their respective domains, being
able to efficiently solve a large class of optimization problems
that exhibit some form of exploitable structure. Many real-
world optimization problems are however permutation-based,
particularly in logistics such as (vehicle) routing, timetabling,
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and scheduling. These are important, societally-relevant
problems that may well require taking a BBO perspective
when modeled to include (many) real-world details. The so-
lution space for these problems however is non-Cartesian,
being formed by all permutations of length ℓ, where ℓ is
the number of problem variables. Consequently, specialized
variation operators or solution encodings are required that
ensure that offspring solutions are permutations.
Likely due to the added difficulty of permutation spaces

being non-Cartesian, there are considerably fewer results on
MBEAs for permutation problems. The Generalized Mal-
lows Estimation-of-Distribution Algorithm (GM-EDA) is a
a recent, state-of-the-art MBEA [5]. The GM-EDA uses a
model that could be considered the Gaussian-distribution
equivalent in permutation space. To estimate it, a cen-
tral permutation and a notion of variance around this per-
mutation needs to be computed. Sampling then ensures
that new solutions are permutations. Having a probabilistic
model that is specifically meant for permutations allows the
GM-EDA to outperform earlier permutation MBEAs that
are mostly (ad-hoc) adjusted EDAs originally designed for
discrete or continuous real-valued Cartesian search spaces.
A downside of GM-EDA is that, similar to many state-
of-the-art EDAs, the computational complexity of building
and sampling the model every generation is relatively high.
Specifically, it is O(ℓ2n) where n is the population size. Be-
cause n solutions are generated and evaluated every gener-
ation, the computational complexity per solution is O(ℓ2).
In this paper, we focus on a specific type of MBEA that

was recently introduced: the Gene-pool Optimal Mixing
Evolutionary Algorithm (GOMEA) family, which includes
the Linkage Tree Genetic Algorithm (LTGA) [4]. Different
from EDAs, models in this type of MBEA are focused at cap-
turing linkage information, which is often also called depen-
dency information, i.e. a notion of which variables together
have a positive synergistic effect on fitness and therefore
should be treated jointly during variation to prevent dis-
rupting important partial solutions that have been evolved
so far. Especially when the linkage tree is used for the link-
age model in GOMEA, state-of-the-art performance is ob-
tained on a variety of discrete, Cartesian-space, optimiza-
tion problems, including well-known benchmark problems
and real-world applications [4, 12]. Another advantage is
that powerful linkage models can be built at relatively low
computational cost. For instance, the computational com-
plexity of building a linkage tree is O(ℓ2n). Although this is
the same complexity as the GM-EDA requires, in GOMEA
linkage information is exploited far more intensively, lead-
ing to O(ℓn) function evaluations per generation. Thus, the
model-related computational complexity per evaluated solu-
tion is actually an order of complexity less: O(ℓ).
The advantages of GOMEA are interesting, but so far

EAs in this family have only been designed and used for
discrete Cartesian search spaces. Therefore, an interesting
question is whether the GOMEA family can be expanded
to also efficiently tackle problems in permutation spaces.
Here, we take a first approach to achieving this using a well-
known encoding of permutations, called random keys, that
was introduced to ensure that classical, well-known crossover
operators always generate feasible permutations [1]. Since
random keys form a Cartesian search space, we find that
GOMEA can be combined quite straightforwardly with this
encoding to solve permutation optimization problems.

The remainder of this paper is organized as follows. In
Section 2 we briefly summarize GOMEA for discrete Carte-
sian spaces, after which, in Section 3, we indicate what
changes we applied to make GOMEA work well with ran-
dom keys. In Section 4 we then briefly discuss a well-known
permutation optimization problem that we use in our exper-
iments: permutation flowshop scheduling. We compare the
results of our newly designed GOMEA variants with GM-
EDA in Section 5 and draw our final conclusions in Section 6.

2. GOMEA FOR CARTESIAN SPACES
As in any EA, a population P of n = |P| solutions is used

in GOMEA. Typically, these solutions are initialized ran-
domly, especially when taking a BBO perspective, but this
is not required. In the following, we describe specific details
of GOMEA, including a practical implementation that no
longer requires manually setting the population size.

2.1 Encoding
Solutions x = (x0, x1, . . . , xℓ−1) are encoded using ℓ dis-

crete variables. The domain of variable i is Di and the full
search space is their Cartesian product, i.e. x ∈ ×ℓ−1

i=0Di. A
classical case is given by binary strings, i.e. Di = {0, 1}.

2.2 Model Building
In every generation, a model is built, based on P, to drive

variation. The model in GOMEA is a linkage model that
captures dependencies between problem variables. Such de-
pendencies are encoded using the mathematical concept of
Family of Subsets (FOS), sometimes also referred to as the
FOS model. Let L be the set of all variable indices, i.e.,
L = {0, 1, . . . , l − 1}. A FOS F is a set containing subsets
of L, i.e. F is a subset of the powerset of L, i.e., F ⊆ ℘(L)

and can be written as F = {F 0,F 1, . . . ,F |F|−1}, where
F i ⊆ {0, 1, . . . , l−1}. A subset F i, also called a linkage set,
identifies variables that exhibit a degree of joint dependency
and should thus be handled together during variation.

The most commonly used variant of the FOS model is
the linkage tree (LT) (see Figure 1). The corresponding
GOMEA variant, LT-GOMEA, is also known as the Link-
age Tree Genetic Algorithm (LTGA) [4]. A key property
that makes the LT-FOS a highly effective linkage model is
that it captures both low-order dependencies and higher-
order dependencies by hierarchically decomposing a notion
of dependency between variables. Specifically, an LT can
be learned by use of agglomerative, or bottom-up, hier-
archical clustering. There exists an efficient implementa-
tion that combines 1) the so-called Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) that extends a
notion of pairwise dependency to groups of variables, with
2) the so-called reciprocal nearest-neighbor chain technique,
that builds an LT for ℓ variables from a data set of size n in
O(ℓ2n) time [6]. For details we refer the interested reader
to the literature. Conceptually, F is initialized with ℓ sin-
gleton linkage sets F i, i ∈ {0, 1, . . . , ℓ − 1}. Subsequently,
a notion of dependency between linkage sets is calculated.
The two most dependent linkage sets F i and F j are merged
into a new linkage set F i ∪ F j , which is then added to F .
The dependency values between the new linkage set and the
remaining linkage sets are then updated. F i and F j are
not discarded, but they are also not considered for merg-
ing anymore. The two most dependent linkage sets continue
to be merged until a single set containing all variables has
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been constructed. An LT contains 2ℓ − 1 linkage sets. In
GOMEA, the notion of dependency between two variables
that is used, is the information-theoretic concept of mutual
information (for more details, see, e.g. [4]).
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Figure 1: Example of a linkage tree for 10 variables.

2.3 Selection and Variation
Selection and variation are intertwined in a single operator

called Gene-pool Optimal Mixing (GOM). GOM is used to
transform every parent solution p ∈ P into an offspring
solution o ∈ O through iterative mixing events that are
guided by F . Once every solution has been transformed,
the current population P is replaced by the offspring O.
For every parent solution p, GOM has 2 phases. In phase

1, the FOS is iterated over in a random order (different order
for every parent). For every linkage subset F i, a donor solu-
tion d is randomly picked from P and the values for the vari-
ables identified by F i are copied from d to p. If this results
in solution p not becoming worse, the change is accepted,
otherwise the change is reverted. Phase 2 is the so-called
forced-improvements (FI) phase. Phase 2 is only entered if
a solution was not changed during phase 1, or if the best
solution in the population has not improved for a number of
subsequent generations (called the no-improvement-stretch
(NIS)). The latter is required because changes are also ac-
cepted in phase 1 if the solution maintains the same fitness
level. To prevent GOMEA from becoming stationary on a
fitness plateau, if the NIS is larger than 1+⌊10log(n)⌋, phase
2 is also entered. Phase 2 is similar to phase 1, but instead
of using a random donor, the best solution in the population
is used. Moreover, now only strict fitness improvements are
accepted and as soon as an improvement occurs, phase 2 is
stopped. If at the end of phase 2 a solution still has not
changed, the offspring becomes a copy of the best solution.
If, either in phase 1 or in phase 2, a linkage set is encoun-

tered that contains all variables (i.e., set L), such as the root
node of the linkage tree, this set is disregarded because it im-
plies that all problem variables should be copied together,
which would yield no new offspring but would only corre-
spond to additional diversity-reducing selection pressure.

2.4 Population Sizing Scheme
A crucial parameter of any EA is the population size n.

If set too small, premature convergence occurs. If set too
large, convergence takes overly long. Determining the opti-
mal value of n to reach, e.g., the optimal value or a cer-
tain approximation ratio, is theoretically interesting, but
does not solve the practical issue of how to best set n when
tackling a new problem. Therefore, we employ a previously
published scheme that prevents having to specify n by inter-
leaving multiple instances of an EA with different popula-
tion sizes [8]. Although perhaps somewhat counter-intuitive,
when combined with GOMEA, the number of evaluations
required to solve various benchmark problems is typically
increased only by a factor of 1 to 4.

In this scheme, GOMEA is started with a small popu-
lation size, nbase. Every 4th generation, a single genera-
tion is executed of a GOMEA instance with a population
size twice as large. Recursively, for every 4th generation
of that instance, a single generation is executed of yet an-
other GOMEA instance with a population size again twice as
large, and so on. This exponentially grows the largest popu-
lation size over time, while still allowing GOMEA instances
with smaller population sizes to converge faster, performing
twice as many evaluations. In this paper, we use nbase = 1.

If at the end of a generation of any GOMEA instance,
the average fitness is found to be smaller than the average
fitness of a GOMEA instance with a larger population size,
it is deemed to have been overtaken and it is stopped. Also,
every other GOMEA instance with a smaller population size
is then stopped. GOMEA instances are furthermore also
stopped if no diversity remains (all solutions are the same).

Finally, whereas in the original implementation of this
scheme all EA instances were completely independent, in
GOMEA we make one small adjustment: the best-ever eval-
uated solution is shared by all populations and is used in
phase 2 of GOM as the donor, rather than the best solution
in the population. However, the conditional statement used
to detect whether phase 2 should be entered, still uses the
best solution in each individual population.

3. GOMEA FOR PERMUTATION SPACES

USING RANDOM KEYS
A key strength of GOMEA is testing partial solutions

within other solutions to see if improvements occur, making
each mixing event optimal in its own right (hence the name
optimal mixing). To maintain this strength when expanding
to permutation spaces, either variation needs to be revised
to sensibly work with permutations, or encoding needs to be
revised so that variation does not need to change (much). In
this paper, we consider the latter approach. In the following,
we explain the required changes, as compared to Section 2.

3.1 Encoding
The random keys encoding for permutations is an encod-

ing of permutations of (0, 1, . . . ℓ − 1) in an ℓ–dimensional
real-valued Cartesian space [1]. Specifically, the permuta-
tion encoded by ℓ real-valued variables r = r0, r1, . . . , rℓ−1

is obtained by sorting them (in ascending order). In other
words, the integer permutation x that is encoded by r is
the permutation that corresponds to the sorting order of r,
i.e. such that rx0

< rx1
< . . . < rxℓ−1

holds. For example,
for r = (0.57, 0.93, 0.12, 0.43) we have x = (2, 3, 0, 1). A
big advantage of random keys is that crossing over partial
solutions always results in an encoding of a permutation, so
any form of crossover, or in our case, optimal mixing, can
straightforwardly be used. Although random keys may in
principle take any value, we restrict their values to [0, 1].

3.2 Model Building
To build a linkage tree with the method specified in Sec-

tion 2.2 a numeric quantification of dependency between two
variables is needed. The stronger the dependency, the larger
the value should be. For permutations, we use a symmetric
notion of dependency that is composed of two factors, i.e.:

δ(j, i) = δ(i, j) = δ1(i, j)δ2(i, j) (1)
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The first factor focuses on dependency in terms of so-
called relative-ordering information. Intuitively, we need a
notion of certainty about the ordering of two integers. For
this, we use an information-theoretic measure, meant to con-
vey similar information as the mutual information measure
used in the discrete Cartesian case. Specifically, we compute
the entropy of the probability that integer i appears before
integer j, or equivalently, that random key ri is smaller than
random key rj . Entropy is maximum (with a value of 1) if
one ordering is just as probably as the reverse (a sign of
weak dependency) and minimum (with a value of 0) if one
ordering is much more probable. We negate the entropy
value and add a value of 1 to invert its meaning and make
it correspond to the required notion of dependency, i.e.:

δ1(i, j) = 1−{−[pij log2(pij)+(1.0−pij)log2(1.0−pij)]} (2)

where

pij =
1

n

n−1
∑

k=0

{

1 if rki < rkj
0 otherwise

and rki is random key i of population member k.
Relative-ordering information is not the only type of in-

formation that is potentially of importance in permutation
optimization. Consider for instance the traveling salesman
problem. The fact that one city is visited before another
becomes increasingly important if the proximity of the two
cities in the permutation is small, to the point where one
city is followed directly by the other. This is also known
as adjacency information. To convey this notion of depen-
dency, we compute the average squared difference between
two random keys. This value lies in [0, 1]. Because a larger
difference indicates weaker dependency, we negate this value
and add a value of 1 to invert its meaning and make it cor-
respond to the required notion of dependency, i.e.:

δ2(i, j) = 1−
1

n

n−1
∑

k=0

(rki − r
k
j )

2 (3)

3.3 Random Rescaling
Even if variable dependencies are successfully detected,

mixing the associated partial solutions using the GOM oper-
ator does not necessarily guarantee that they are combined
properly. This is especially the case if (weak) dependen-
cies exist between partial solutions, which is quite likely for
permutation problems. There may for instance be 5 inte-
gers that need to appear in a specific sequence, but together
they must also appear before (or after) 5 other integers.
Mixing the partial solutions pertaining to the random keys
for these integers does not help to ensure this because every
random key may have any value in [0, 1]. Hence, the larger
linkage sets are, the larger the chance that they will end
up mixed because the largest random key in the one par-
tial solution is larger than the smallest random key in the
other partial solution. For this reason we consider an addi-
tional operator, called random rescaling, that increases the
chance that partial solutions are combined properly in case
dependencies between partial solutions exist. This operator
was previously introduced for a model-based EA named ICE
(Iterated density-estimation evolutionary algorithm Induced
Chromosome Elements Exchanger) [3]. In ICE, crossover
points are identified based on probabilistic modeling. These
crossover points are used on random-keys encoded permuta-
tions. Without random rescaling, a hard problem based on
overlapping sub-functions could not be solved with ICE.

With random rescaling, a block of random keys that is
transferred to an offspring is scaled to a randomly selected
sub-interval of [0, 1] with probability p̺. For instance, if
(0.1, 0.2, 0.3) is scaled to [0.9, 0.95], we get (0.9, 0.925, 0.95).
Note that this does not change the sub-permutation that is
encoded, thus respecting the relative ordering of the partial
solution. We adhere to the settings that led to the best re-
sults obtained with ICE and use p̺ = 0.1 and ℓ equidistantly
sized sub-intervals of [0, 1] for random rescaling.

3.4 Re-encoding
Even with random rescaling, the diversity in the popu-

lation may still be reduced quickly because the GOM op-
erator combines solutions extensively, especially if the link-
age tree is used as the linkage model. Moreover, random
rescaling only has an impact if mixing leads to an improve-
ment. Hence, the permutations that can be constructed
are severely dependent on the random-key values generated
upon initialization. To combat this potential lack of diver-
sity, we consider a second operator that we call re-encoding.
With this operator, at the beginning of each generation, the
entire population and the overall elitist (i.e. best-ever evalu-
ated, in any population) solution are re-encoded using newly
sampled random keys encodings. To re-encode a permuta-
tion x, first a vector s of ℓ random values ∈ [0, 1] is gen-
erated. Next, the (ascending) sorting orders of both x and
s are determined. Denoting these orders by σ(x) and σ(s)
respectively, the new, random keys encoding r for x is ob-
tained by setting rσ(x)i = sσ(s)i , for all i ∈ {0, 1, . . . , ℓ− 1}.

3.5 Selection and Variation
Because of the random keys encoding, in principle no

changes are needed for the variation procedure as defined
in Section 2.3 to work. However, the Forced Improvement
(FI) threshold for the NIS of ⌊1 + log10(n)⌋ has been es-
tablished based on benchmark results for Cartesian-space
discrete optimization problems. Although forced improve-
ments improve convergence speed, diversity drops quickly.
Given that the size of permutation search spaces grows fac-
torially with ℓ, which is faster than the exponential growth of
Cartesian spaces, the importance of maintaining diversity in
permutation spaces is likely greater. Even more importantly,
we proposed to study the added use of random rescaling in
Section 3.3 because we argued that mixing blocks of random
keys may not be enough to exploit certain types of depen-
dency. Random rescaling however acts much like a mutation
operator, which may require more time to be effective than
the typical fast convergence of GOMEA allows for.

Partially, the need to maintain diversity longer is addressed
by re-encoding (Section 3.4). However, re-encoding only in-
creases genotypic diversity, not phenotypic diversity (i.e. the
actual integer permutations). We therefore also consider
postponing the FI phase. It is typically during this time
that mutation-like operators need some time to have a pos-
itive impact. As a first, simple, experiment, we therefore
consider the impact of using a FI threshold that requires
the NIS to be 10 times longer, i.e.: 10 + 10⌊1 + log10(n)⌋.

3.6 Population Sizing Scheme
The termination of GOMEA instances with smaller pop-

ulations is not necessarily beneficial in the case of random
keys. For similar reasons as in the case of the FI threshold
(Section 3.5), pertaining to diversity maintenance and the
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manner in which solutions are combined and improved, more
generations may be required to find improvements than in
the case of discrete Cartesian search spaces. Therefore, even
if the average fitness of a smaller population is overtaken by
that of a larger population, there is a good chance that the
smaller population may still generate promising solutions.
This would mean that it may not be beneficial to termi-
nate smaller populations prematurely. Therefore, we will
study the impact of not adopting this criterion in our im-
plementation of the population sizing scheme. In that case,
a population is only terminated if all diversity is lost, i.e. it
has converged to all the same solutions. Because of the FI
phase in GOMEA, such convergence happens efficiently.

4. BENCHMARK PROBLEM: PERMUTA-

TION FLOWSHOP SCHEDULING
We consider a well-known permutation-based optimiza-

tion problem: the permutation flowshop scheduling problem
(PFSP). In the following, we present a definition of PFSP,
instances used for benchmarking, performance measures to
compare EAs with and the allowed computing budget.

4.1 Problem Definition
Solving PFSP involves optimizing a job processing se-

quence for J jobs on M machines. Each job i requires
M uninterrupted operations following the same order j =
1, 2, . . . ,M , and operation j can only be processed on ma-
chine j. Each machine can process the corresponding opera-
tion of only one job at a time. If operation j of job i needs to
be processed, but machine j is running another job, then job
i will need to wait until machine j finishes its current work.
Let p(i, j) be the processing time of job i on machine j. A
job-processing sequence π is given by π = {π1, π2, . . . , πJ},
where π1 indicates the first job and πJ indicates the last job.
The completion time c(πi, j) of the i-th job on machine j,
i.e., the duration from the time that the i-th job is started on
the first machine until the time that the i-th job is finished
on machine j, can be computed as follows (see, e.g. [9]):

c(π1, 1) = p(π1, 1)

c(π1, j) = c(π1, j − 1) + p(π1, j), for j = 2, . . . ,M

c(πi, 1) = c(πi−1, 1) + p(πi, 1), for i = 2, . . . , J

c(πi, j) = max{c(πi−1, j), c(πi, j − 1)}+ p(πi, j),

for i = 2, . . . , J ; j = 2, . . . ,M

(4)

The completion time of the i-th job on the last machine
M , i.e. c(πi,M), is called the flow time of the i-th job. The
total flow time (TFT) of a sequence π can now be computed
by summing the flow times of each job:

TFT (π) =

J
∑

i=1

c(πi,M) (5)

The objective that we consider to define PFSP is to find
the job-processing schedule π∗ that minimizes TFT (Equa-
tion 5). This is a commonly used objective, but it should be
noted that various objectives are used in literature.

4.2 Problem Instances for Benchmarking
A well-known set of PFSP instances, often used for bench-

marking purposes, are the so-called Taillard instances [15].
There are 120 such instances, consisting of 10 instances for
each of 12 different combinations of J jobs × M machines:

20×5, 20×10, 20×20, 50×5, 50×10, 50×20, 100×5, 100×10,
100×20, 200×10, 200×20, and 500×20. The optimal solutions
for these instances are unknown. Only the best-known up-
per bound per instance is available (i.e. the TFT of the best
solution ever found). Here, we adhere to the upper bounds
as presented in a recent major publication on PFSP targeted
at minimizing the TFT [5].

4.3 Performance Measures
For each problem instance in the Taillard benchmark and

for each EA, N = 20 independent runs are performed, sim-
ilar to the publication on GM-EDA in which also 20 runs
were used [5]. Studies on PFSP often use the average rel-
ative percentage deviation (ARPD) to base the comparison
of algorithms on:

ARPD =
1

N

N
∑

i=1

100(TFT i − UB)

UB
(6)

where TFT i is the total flow time of the best solution
found in the i-th run and UB is the best-known upper bound
of the problem instance being considered. Using the aver-
age to compare the performance of algorithms using common
statistical significance tests implies that the TFT i have to be
normally distributed, which is typically not true. Therefore,
we propose that, in addition to average, the median of the
relative percentage deviations (MRPD) should also be inves-
tigated as it can be used for the use of statistical hypothesis
tests that do not assume normality (see Section 5.2), i.e.:

MRPD = median

(

n−1
⋃

i=0

{

100(TFT i − UB)

UB

}

)

(7)

4.4 Computing Budget
For fair comparison, each EA should be assigned the same

computing budget. Since configurations of computers can
vary widely, instead of execution time we use the total num-
ber of solution evaluations as the computing budget. More-
over, note that GOMEA could still be sped up substantially,
requiring less time or being able to evalute more solutions in
the same time, by using partial evaluations (i.e. computing
only the change in fitness that results from changing only a
subset of variables in GOM). We do not use this possibility
here however for fairness and because we approach problems
from a black-box perspective. Because we will compare the
performance of GOMEA with GM-EDA, we use the same
total number of evaluations as reported to have been used
in the publication on GM-EDA applied to PFSP [5]. These
numbers are reproduced in Table 1.

J jobs × Maximum J jobs × Maximum
M machines evaluations M machines evaluations

20× 5 182224100 100× 5 235879800
20× 10 224784800 100× 10 266211000
20× 20 256896400 100× 20 283040000
50× 5 220712150 200× 10 272515500
50× 10 256208100 200× 20 287728850
50× 20 275954150 500× 20 260316750

Table 1: Computing budget, taken from [5].

5. RESULTS
In this section we present results of solving 120 Taillard

PFSP instances with GOMEA and GM-EDA.
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5.1 GOMEA Variants and Configurations
To study the impact of changing the FI threshold and of

not prematurely terminating smaller populations (see Sec-
tions 3.6 and 3.5) we consider 3 GOMEA configurations:

1. The original configuration of GOMEA as defined for
Cartesian search spaces.

2. Not prematurely stopping smaller populations, but still
using the original FI threshold of 1 + ⌊10log(n)⌋.

3. Not prematurely stopping smaller populations as well
as using the new FI threshold of 10 + 10⌊10log(n)⌋.

We have furthermore introduced two additional operators
that potentially improve performance: random rescaling (X)
and re-encoding (R) (see Sections 3.3 and 3.4). To study the
impact of these two operators, we performed all experiments
with four GOMEA variants:

• O-O: without re-encoding and without rescaling.

• O-R: with re-encoding and without rescaling.

• X-O: with rescaling and without re-encoding.

• X-R: with rescaling and with re-encoding.

5.2 Comparing Algorithm Outcomes
Outcomes are tabulated in Tables 2 and 3. For each prob-

lem instance, the EA that obtains the smallest MRPD value
(i.e., the median) is considered to be the best and its re-
sults are typeset in boldface. For reference, ARPD values
(i.e., the average) are also presented, in parentheses. We
have used the Mann-Whitney-Wilcoxon statistical hypothe-
sis test for equality of medians with p < 0.05 to see whether
the best EA performs statistically significantly better than
the other EAs. We select this test because it requires only
the assumption that the shape of distribution underlying
these outcomes is the same and the outcomes here are all
the result of running an EA. Although more general pairwise
tests exist (e.g., Kolmogorov Smirnov) that do not require
this assumption, these tests are also less specific, i.e. weaker.
Because we perform multiple pairwise tests, we must account
for the increase in probability of making at least one statisti-
cal error. Hence, we employ the Bonferroni correction, which
implies that the value of p is divided by m−1 where m is the
number of EAs that the best one is compared with. Results
for an instance that are statistically significantly worse than
the best result are shaded in gray. Finally, new best values
found with GOMEA for a problem instance are underlined.

5.3 Initial Results for Configuration Selection
To find the best GOMEA configuration, we first perform

experiments on a subset of ten 50×5 PFSP Taillard instances.
We do not use the smaller 20×M Taillard instances because
they are quite easy to solve for any GOMEA variant, making
it harder to draw any conclusions.
The results presented in Table 2 clearly show that the ad-

ditional operators of random rescaling and re-encoding have
a positive impact on performance. In its Cartesian-space
configuration (configuration 1), the obtained solutions of all
four GOMEA variants are far from the best-known upper
bounds. Moreover, we observed that population sizes up to
219 were initialized when the computing budget was spent
(i.e., 220712150 evaluations for 50×5 PFSP instances). This

indicates that many smaller populations were quickly ter-
minated because variation did not generate better solutions
quickly enough. All GOMEA variants in configuration 1
clearly perform worse than GM-EDA.

However, when the termination criterion of small popu-
lations is omitted (i.e., configuration 2), the results of all
GOMEA variants substantially improve. Results are com-
parable to, or even better than, those obtained with GM-
EDA. Results are even better for configuration 3. In 9 out of
10 problem instances, the new FI threshold brings about ex-
cellent performance, which is also statistically significantly
better than virtually all results of GOMEA variants in con-
figurations 1 and 2 (almost all cells for these configurations
are gray shaded). These results experimentally confirm our
conjecture that enhanced diversity preservation has a posi-
tive effect on the performance of the random-keys GOMEA.
Based on these initial results, we deem GOMEA in con-
figuration 3 to be the most suitable for a full-benchmark
comparison, which we turn to in the next Section.

5.4 Full Benchmark Comparison
The results obtained by all four GOMEA variants on all

120 PSFP Taillard instances are shown in Table 3. For the
purpose of comparison, the results of GM-EDA are repro-
duced here from their original publication [5].

On the 30 smallest problem instances (20×5, 20×10, 20×20),
all four GOMEA variants reach the best-known solutions in
every run (i.e., the ARPD is 0), performing statistically sig-
nificantly better than the state-of-the-art GM-EDA that did
not always find the best-known solution in every run. In or-
der to achieve this, GM-EDA must be combined with vari-
able neighborhood search (VNS), which is a type local search
that has been shown to be highly effective for PFSP [5].

In general, GOMEA variants, particularly X-O and X-R,
almost always significantly outperform GM-EDA, except for
the instances of size 200×10 and 200×20. For the 200×10
instances, while GM-EDA does obtain better results on av-
erage, in most cases the difference with the results obtained
by various GOMEA variants is not statistically significant.

On the largest problem instances, in the set 500×20, the
results obtained by any GOMEA variant is not only sta-
tistically significantly better than the results obtained by
GM-EDA, but the difference is also substantial. The me-
dian/mean distances from the results of GOMEA to the
best-known upper bounds are 6 times smaller than those
from the results of GM-EDA. Although not shown here, the
results of GOMEA variants are even better than the results
obtained by the aforementioned hybridized version of GM-
EDA with VNS (see [5]). One reason for this may be that the
population size of GM-EDA was fixed to 10×J in [5], where
J is the number jobs. This may not be the optimal popu-
lation size. However, this population size was determined
with careful consideration. Also, GM-EDA was allowed to
restart upon convergence, as long as the computing budget
was not used up yet, which reduces somewhat the need for
selecting an optimal population size. At the same time, al-
though the population-management scheme that renders all
GOMEA variants in this paper free of the population size
parameter, presents a big practical advantage, the simul-
taneous operation of multiple populations of different sizes
always induces some degree of inefficiency. Even with this
inefficiency, GOMEA still manages to outperform GM-EDA
on a majority of the Taillard instances, even when consider-
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ing only a single GOMEA variant (e.g., X-R). On a side note,
we argue that the inefficiency of the population-management
scheme can easily be justified by the great added value in
terms of usability, allowing practitioners to use GOMEA
without the need for any time-consuming parameter tuning.
While the O-O variant (i.e., without re-encoding and with-

out random rescaling) already works fairly well on all PFSP
instances (in configuration 3), even when solving the biggest
instances (set 500×20), the results still leave room for im-
provement. The random-rescaling operator (X-O) appears
to be have a bigger positive impact on performance than
the re-encoding operator (O-R), especially when the size of
instances increases. The combination of both re-encoding
and random rescaling (X-R) improves the positive effect of
random rescaling for some cases, but it also degrades the
performance (of X-O) in several cases. Hence, comparing
the performance of the X-O and X-R variants yields alter-
nating results, depending on the problem instance. For the
largest instances (set 500×20), the X-R variant appears to
be the best, but the obtained results are not statistically sig-
nificantly different from those obtained by the X-O variant.
Finally, considering the best-known results as reported in

the latest major publication on PFSP [5] in which besides
GM-EDA, also various local search algorithms and hybrid
EAs were tested, our GOMEA variants found new best-
known solutions (i.e. new upper bounds) for 2 problem in-
stances in the set 50×5 (underlined in Tables 2 and 3). This
further underlines the promise and potential of GOMEA,
both for discrete Cartesian and permutation spaces, because
it is very difficult for a black-box, general-purpose solver
(i.e. without the use of specialized (local search) operators)
to obtain solutions of higher quality than those found by
state-of-the-art problem-specific algorithms. Given this ex-
cellent basis, combining GOMEA with powerful, problem-
specific, local search is a worthwhile future extension.

6. CONCLUSIONS
In this paper, for the first time, we proposed a Gene-pool

Optimal Mixing Evolutionary Algorithm (GOMEA) for per-
mutation optimization problems. We did so by making use
of the random-keys encoding so that the known strengths
of GOMEA for solving discrete Cartesian-space optimiza-
tion problems can be harnessed effectively. We further em-
ployed a population-management scheme that eliminates the
need for manually setting a population size and two specific
additional operators, random rescaling and population re-
encoding, to maintain diversity longer and to increase the
chance of effectively processing dependencies between par-
tial solutions. Using the linkage tree for the linkage model,
the performance of the novel GOMEA for permutation op-
timization problems was tested on 120 problem instances
of the permutation flowshop scheduling problem (PFSP),
targeted at minimizing total flow time. Results confirmed
that the excellent performance of GOMEA that was previ-
ously observed for discrete Cartesian search spaces, is re-
tained. Even though no (problem-specific) local search was
employed, GOMEA reliably obtained high-quality solutions,
significantly outperforming the recent state-of-the-art gen-
eralized Mallows estimation-of-distribution algorithm (GM-
EDA), and even finding new best-known solutions for two
problem instances. Altogether, the proposed novel
GOMEA based on random keys may be considered to be
a promising new EA for permutation optimization.
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Configuration 1 Configuration 2 Configuration 3
Best O-O O-R X-R X-R O-O O-R X-O X-R O-O O-R X-O X-R
64803 4.08 (4.11) 4.10 (4.10) 3.79 (3.74) 3.75 (3.74) 0.34 (0.32) 0.22 (0.27) 0.13 (0.17) 0.18 (0.21) 0.11 (0.12) 0.09 (0.09) 0.10 (0.09) 0.06 (0.07)
68062 4.77 (4.76) 4.66 (4.65) 4.15 (4.13) 4.22 (4.15) 0.52 (0.51) 0.46 (0.45) 0.32 (0.31) 0.35 (0.36) 0.27 (0.27) 0.21 (0.19) 0.16 (0.15) 0.18 (0.16)
63162 4.90 (4.89) 4.90 (4.87) 4.80 (4.73) 4.67 (4.65) 1.29 (1.33) 0.91 (0.91) 1.23 (1.22) 1.06 (1.09) 0.83 (0.81) 0.62 (0.62) 0.86 (0.87) 0.71 (0.75)
68226 4.75 (4.73) 4.71 (4.68) 4.47 (4.42) 4.49 (4.46) 1.04 (1.04) 0.88 (0.92) 0.68 (0.76) 0.85 (0.86) 0.85 (0.87) 0.80 (0.79) 0.25 (0.29) 0.67 (0.66)
69392 4.16 (4.15) 4.07 (4.06) 3.96 (3.93) 4.03 (3.94) 0.73 (0.68) 0.58 (0.62) 0.53 (0.59) 0.58 (0.62) 0.44 (0.47) 0.36 (0.37) 0.32 (0.33) 0.25 (0.26)
66841 4.09 (4.08) 4.08 (3.99) 3.81 (3.79) 3.80 (3.82) 0.41 (0.43) 0.44 (0.45) 0.39 (0.45) 0.46 (0.45) 0.27 (0.23) 0.28 (0.28) 0.28 (0.25) 0.31 (0.31)
66253 4.21 (4.19) 4.12 (4.11) 3.97 (3.93) 4.04 (4.00) 0.56 (0.60) 0.43 (0.43) 0.47 (0.49) 0.41 (0.41) 0.25 (0.25) 0.37 (0.36) 0.12 (0.11) 0.18 (0.20)
64359 4.48 (4.39) 4.45 (4.42) 4.04 (4.03) 4.13 (4.08) 0.49 (0.50) 0.29 (0.28) 0.48 (0.47) 0.37 (0.34) 0.31 (0.31) 0.32 (0.29) 0.36 (0.35) 0.23 (0.22)
62981 4.36 (4.36) 4.28 (4.23) 4.03 (4.04) 4.11 (4.07) 0.68 (0.70) 0.48 (0.44) 0.43 (0.47) 0.42 (0.43) 0.31 (0.34) 0.26 (0.27) 0.28 (0.31) 0.26 (0.25)

5
0
×

5

68853 4.48 (4.41) 4.31 (4.32) 4.32 (4.24) 4.08 (4.06) 0.81 (0.80) 0.73 (0.69) 0.82 (0.84) 0.81 (0.78) 0.49 (0.48) 0.34 (0.35) 0.37 (0.40) 0.44 (0.40)

Table 2: Results of GOMEA variants on selected PFSP Taillard instances. For details on formatting, see
Section 5.2.

Best O-O O-R X-O X-R GM-EDA Best O-O O-R X-O X-R GM-EDA
14033 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.19 (0.18) 253713 1.02 (0.95) 0.60 (0.62) 0.86 (0.83) 0.56 (0.58) 0.83 (0.82)
15151 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.40 (0.48) 242777 1.20 (1.21) 0.85 (0.88) 0.51 (0.53) 0.62 (0.63) 1.00 (1.00)
13301 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.48 (0.50) 238180 1.51 (1.53) 1.06 (1.10) 0.59 (0.63) 0.73 (0.76) 0.78 (0.80)
15447 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.43 (0.43) 227889 1.46 (1.45) 1.13 (1.11) 0.45 (0.53) 0.69 (0.74) 0.78 (0.78)
13529 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.21) 240589 1.19 (1.20) 1.05 (1.05) 0.58 (0.60) 0.73 (0.71) 0.82 (0.80)
13123 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.08) 232936 1.83 (1.79) 1.22 (1.24) 1.11 (1.10) 1.04 (1.03) 0.79 (0.80)
13548 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.75 (0.79) 240669 1.43 (1.43) 0.80 (0.78) 0.59 (0.63) 0.75 (0.77) 1.01 (1.00)
13948 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.14 (0.18) 231428 1.92 (1.94) 1.54 (1.54) 0.59 (0.66) 0.94 (1.02) 0.88 (0.90)
14295 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.18) 248481 1.59 (1.61) 1.24 (1.16) 0.98 (1.04) 1.12 (1.06) 0.92 (0.87)

2
0
×

5

12943 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.46 (0.46)

1
0
0
×

5

243360 1.44 (1.44) 1.01 (1.01) 0.65 (0.69) 0.95 (0.91) 0.92 (0.96)
20911 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.53 (0.45) 299431 2.00 (2.00) 1.88 (1.80) 1.85 (1.83) 1.61 (1.61) 1.71 (1.69)
22440 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.53 (0.54) 274593 1.56 (1.63) 1.06 (1.22) 1.38 (1.31) 1.24 (1.17) 2.06 (2.07)
19833 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.22 (0.31) 288630 1.73 (1.68) 1.46 (1.45) 1.32 (1.25) 1.06 (1.09) 1.68 (1.71)
18710 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.66 (0.75) 302105 1.83 (1.73) 1.52 (1.43) 0.90 (1.08) 1.28 (1.27) 1.96 (1.89)
18641 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.39 (0.35) 285340 2.00 (1.94) 1.78 (1.85) 1.05 (1.03) 1.57 (1.62) 1.72 (1.73)
19245 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.59 (0.77) 270817 1.31 (1.39) 1.38 (1.39) 1.35 (1.39) 1.35 (1.31) 1.59 (1.70)
18363 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.46 (0.48) 280649 1.30 (1.29) 0.81 (0.84) 1.08 (1.07) 0.70 (0.75) 1.48 (1.51)
20241 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.41 (0.47) 291665 1.88 (1.90) 1.08 (1.12) 1.57 (1.61) 1.17 (1.10) 1.83 (1.88)
20330 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.08 (0.27) 302624 1.51 (1.48) 1.19 (1.23) 1.13 (1.22) 0.93 (0.96) 1.80 (1.76)

2
0
×

1
0

21320 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.07 (0.24)

1
0
0
×

1
0

292230 1.83 (1.82) 1.32 (1.40) 1.32 (1.22) 1.31 (1.35) 1.46 (1.50)
33623 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.57 (0.65) 367267 1.90 (1.91) 1.97 (1.98) 1.09 (1.08) 1.56 (1.53) 2.04 (2.03)
31587 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.22 (0.29) 374032 1.11 (1.18) 0.75 (0.78) 0.90 (0.94) 0.82 (0.84) 1.79 (1.80)
33920 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.04) 371417 1.93 (1.88) 1.74 (1.74) 1.68 (1.70) 1.82 (1.77) 1.97 (1.93)
31661 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.24 (0.28) 373822 1.75 (1.86) 1.88 (1.92) 1.06 (1.12) 1.92 (1.78) 1.89 (1.86)
34557 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.33 (0.26) 370459 1.90 (1.94) 1.04 (1.08) 1.31 (1.33) 1.10 (1.09) 1.76 (1.77)
32564 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.30) 372768 2.21 (2.12) 2.15 (2.07) 1.66 (1.65) 2.14 (2.08) 2.20 (2.17)
32922 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.58 (0.61) 374483 2.03 (1.92) 1.86 (1.84) 1.10 (1.10) 1.58 (1.69) 1.90 (1.90)
32412 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.58 (0.52) 385456 1.82 (1.86) 1.61 (1.66) 1.35 (1.41) 2.04 (1.82) 1.96 (1.96)
33600 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.33 (0.56) 376063 1.90 (1.84) 1.92 (1.98) 1.89 (1.76) 1.77 (1.72) 1.85 (1.82)

2
0
×

2
0

32262 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.18 (0.41)

1
0
0
×

2
0

379899 1.94 (1.84) 1.58 (1.68) 1.66 (1.72) 1.68 (1.55) 2.09 (2.05)
64803 0.11 (0.12) 0.09 (0.09) 0.10 (0.09) 0.06 (0.07) 0.74 (0.79) 1047662 1.97 (1.95) 1.39 (1.37) 1.83 (1.80) 0.99 (1.07) 1.16 (1.19)
68062 0.27 (0.27) 0.21 (0.19) 0.16 (0.15) 0.18 (0.16) 0.88 (0.94) 1036042 2.72 (2.70) 2.47 (2.45) 2.07 (1.99) 2.12 (1.95) 1.47 (1.46)
63162 0.83 (0.81) 0.62 (0.62) 0.86 (0.87) 0.71 (0.75) 1.32 (1.34) 1047571 2.21 (2.13) 1.80 (1.76) 1.29 (1.33) 1.17 (1.18) 1.13 (1.12)
68226 0.85 (0.87) 0.80 (0.79) 0.25 (0.29) 0.67 (0.66) 1.18 (1.27) 1032095 2.06 (2.06) 1.69 (1.59) 1.20 (1.21) 1.24 (1.19) 1.13 (1.13)
69392 0.44 (0.47) 0.36 (0.37) 0.32 (0.33) 0.25 (0.26) 0.84 (0.89) 1037053 2.19 (2.18) 2.04 (1.98) 1.42 (1.45) 1.47 (1.44) 1.31 (1.32)
66841 0.27 (0.23) 0.28 (0.28) 0.28 (0.25) 0.31 (0.31) 0.80 (0.82) 1006650 2.06 (2.14) 1.71 (1.78) 1.49 (1.47) 1.26 (1.28) 1.36 (1.39)
66253 0.25 (0.25) 0.37 (0.36) 0.12 (0.11) 0.18 (0.20) 0.99 (0.96) 1053390 2.15 (2.16) 1.95 (1.94) 1.73 (1.70) 1.29 (1.37) 1.18 (1.17)
64359 0.31 (0.31) 0.32 (0.29) 0.36 (0.35) 0.23 (0.22) 0.95 (0.97) 1046246 2.07 (2.02) 1.92 (1.83) 1.39 (1.43) 1.50 (1.43) 1.25 (1.26)
62981 0.31 (0.34) 0.26 (0.27) 0.28 (0.31) 0.26 (0.25) 0.84 (0.81) 1025145 1.96 (1.95) 1.77 (1.86) 1.21 (1.36) 1.14 (1.16) 1.13 (1.11)

5
0
×

5

68853 0.49 (0.48) 0.34 (0.35) 0.37 (0.40) 0.44 (0.40) 0.93 (1.00)

2
0
0
×

1
0

1031176 2.40 (2.42) 1.92 (1.88) 1.61 (1.47) 1.45 (1.44) 1.32 (1.29)
87207 0.76 (0.84) 0.64 (0.69) 0.75 (0.78) 0.62 (0.67) 2.16 (2.10) 1226879 2.05 (2.08) 2.00 (1.92) 1.63 (1.56) 1.59 (1.62) 1.60 (1.59)
82820 0.69 (0.64) 0.51 (0.56) 0.63 (0.61) 0.53 (0.50) 2.41 (2.45) 1241811 2.32 (2.26) 2.24 (2.22) 1.55 (1.71) 2.18 (2.12) 1.46 (1.45)
79987 0.48 (0.46) 0.37 (0.36) 0.56 (0.56) 0.43 (0.41) 1.78 (1.84) 1266153 2.15 (2.13) 1.72 (1.81) 1.60 (1.59) 1.67 (1.73) 1.35 (1.33)
86581 0.99 (1.00) 0.71 (0.68) 0.48 (0.47) 0.58 (0.64) 1.78 (1.83) 1237053 2.38 (2.30) 2.13 (2.24) 1.49 (1.51) 2.04 (2.10) 1.47 (1.43)
86450 0.48 (0.54) 0.52 (0.55) 0.41 (0.45) 0.45 (0.47) 2.09 (2.01) 1223551 2.21 (2.14) 2.12 (2.13) 2.27 (2.23) 2.17 (2.14) 1.61 (1.64)
86637 0.44 (0.44) 0.33 (0.34) 0.33 (0.39) 0.28 (0.29) 1.48 (1.55) 1225254 2.22 (2.26) 2.29 (2.24) 2.17 (2.32) 2.19 (2.06) 1.51 (1.52)
88866 0.94 (0.89) 0.78 (0.79) 0.55 (0.57) 0.57 (0.62) 1.94 (1.97) 1241847 1.98 (1.95) 1.82 (1.80) 1.83 (1.78) 1.67 (1.62) 1.27 (1.27)
86824 0.91 (0.88) 0.61 (0.63) 0.62 (0.68) 0.75 (0.69) 1.95 (2.03) 1240820 2.30 (2.36) 1.81 (1.89) 1.52 (1.62) 2.00 (1.92) 1.55 (1.57)
85526 1.00 (1.02) 0.70 (0.69) 0.66 (0.72) 0.63 (0.67) 2.09 (2.10) 1229066 2.41 (2.28) 2.27 (2.25) 1.70 (1.74) 1.90 (1.93) 1.47 (1.48)

5
0
×

1
0

88077 0.66 (0.62) 0.52 (0.53) 0.69 (0.73) 0.65 (0.62) 2.00 (2.00)

2
0
0
×

2
0

1247156 2.14 (2.14) 2.01 (1.97) 1.61 (1.57) 1.85 (1.91) 1.47 (1.44)
125831 0.46 (0.50) 0.52 (0.54) 0.69 (0.70) 0.54 (0.51) 1.71 (1.76) 6708053 2.11 (2.08) 1.60 (1.60) 1.57 (1.51) 1.49 (1.49) 9.11 (8.90)
119259 0.24 (0.26) 0.16 (0.14) 0.47 (0.54) 0.15 (0.18) 1.55 (1.58) 6829668 1.89 (1.83) 1.55 (1.48) 1.56 (1.56) 1.50 (1.47) 8.45 (8.58)
116459 0.71 (0.68) 0.64 (0.61) 0.58 (0.60) 0.58 (0.54) 2.17 (2.24) 6747387 2.11 (2.06) 1.68 (1.68) 1.56 (1.47) 1.49 (1.50) 8.57 (8.46)
120712 0.52 (0.54) 0.44 (0.50) 0.67 (0.62) 0.53 (0.49) 1.79 (1.92) 6787054 1.91 (1.88) 1.51 (1.50) 1.50 (1.49) 1.43 (1.46) 8.78 (8.75)
118184 0.77 (0.79) 0.72 (0.73) 0.99 (0.96) 0.72 (0.73) 2.38 (2.30) 6755257 1.89 (1.92) 1.54 (1.52) 1.55 (1.59) 1.29 (1.32) 8.78 (8.72)
120703 0.65 (0.63) 0.49 (0.57) 0.55 (0.57) 0.39 (0.40) 1.81 (1.78) 6751496 2.01 (1.99) 1.64 (1.53) 1.47 (1.53) 1.41 (1.42) 8.32 (8.58)
122962 1.11 (1.06) 0.96 (0.96) 0.95 (0.92) 1.05 (1.03) 2.06 (2.10) 6708860 2.08 (2.09) 1.71 (1.67) 1.63 (1.61) 1.63 (1.64) 9.25 (9.15)
122489 0.82 (0.84) 0.70 (0.74) 0.94 (0.97) 0.69 (0.65) 2.26 (2.24) 6769821 2.18 (2.17) 1.73 (1.67) 1.72 (1.74) 1.58 (1.55) 8.54 (8.62)
121872 0.48 (0.54) 0.37 (0.50) 0.36 (0.41) 0.38 (0.41) 1.78 (1.79) 6720474 1.99 (1.98) 1.53 (1.51) 1.58 (1.67) 1.43 (1.45) 8.81 (8.69)

5
0
×

2
0

124064 1.09 (1.08) 1.06 (1.01) 0.63 (0.63) 1.07 (1.03) 1.98 (1.95)

5
0
0
×

2
0

6767645 1.97 (2.00) 1.64 (1.63) 1.66 (1.63) 1.45 (1.46) 8.60 (8.51)

Table 3: Results of GOMEA variants (in configuration 3) and GM-EDA on all PFSP Taillard instances. For
details on formatting, see Section 5.2.
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