
Consistent Inconsistency Management:
A Concern-Driven Approach

Jasper Schenkhuizen1, Jan Martijn E.M. van der Werf1(B), Slinger Jansen1,
and Lambert Caljouw2

1 Department of Information and Computing Science,
Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{j.schenkhuizen,j.m.e.m.vanderwerf,slinger.jansen}@uu.nl
2 Unit4, Papendorpseweg 100, 3528 BJ Utrecht, The Netherlands

lcaljouw@unit4.com

Abstract. During the development of a software system, architects deal
with a large number of stakeholders, each with differing concerns. This
inevitably leads to inconsistency: goals, concerns, design decisions, and
models are interrelated and overlapping. Existing approaches to support
inconsistency management are limited in their applicability and useful-
ness in day to day practice due to the presence of incomplete, informal
and heterogeneous models in software architecture. This paper presents
a novel process in the form of a lightweight generic method, the Concern-
Driven Inconsistency Management (CDIM) method, that is designed to
address limitations of different related approaches. It aims to aid archi-
tects with management of intangible inconsistency in software architec-
ture.

1 Introduction

Inconsistency is prevalent in software development and software architecture
(SA) [7]. Although inconsistency in software architecture is not necessarily a
bad thing [18], undiscovered inconsistency leads to all kinds of problems [17,20].
Inconsistency is present if two or more statements made about a system or its
architecture are not jointly satisfiable [9], mutually incompatible, or conflicting
[3]. Examples of inconsistency are: failure of a syntactic equivalence test, non-
conformance to a standard or constraint [9], or two developers implementing a
non-relational and a relational database technology for the same database, to
name a few.

In SA, inconsistency has a wide range of dimensions, such as inconsistency
in code, inconsistent requirements, or model inconsistency. We refer to these
types of inconsistency as ‘tangible’ inconsistency. On the contrary, an ‘intangi-
ble’ inconsistency is often denominated as a conflict, still being undocumented or
unspecified: inconsistent design decisions or concerns. In architecture, a conflict
between concerns occurs if their associated design decisions are mutually incom-
patible, or negatively affect each other. That is, a conflict (intangible inconsis-
tency) can potentially manifest itself as a tangible inconsistency. Thus, if design
c© Springer International Publishing AG 2016
B. Tekinerdogan et al. (Eds.): ECSA 2016, LNCS 9839, pp. 201–209, 2016.
DOI: 10.1007/978-3-319-48992-6 15



202 J. Schenkhuizen et al.

decisions are conflicting (intangible inconsistency), they are mutually incom-
patible [3], and can lead to tangible inconsistency. This corresponds with the
view to see architectural design decisions as first-class entities [14]. Adopting
the definition that a software system’s architecture is the set of principal design
decisions about the system [3], we see that inconsistency in SA – even though it
may be intangible (undocumented) at early stages – already emerges if design
decisions are inconsistent or contradictory. At early stages in the architecting
process, architects deal with coarse-grained models and high-level design deci-
sions, which are usually recorded and documented using more informal notations
[3]. As a result, related formal and model-checking approaches for inconsistency
management (IM) are less applicable.

Traditional approaches are based on logic or model-checking. The former
uses formal inference techniques to detect model inconsistency, which makes
them difficult to scale. The latter disposes model-verification algorithms that are
sufficiently suited to detect specific inconsistencies, but do not fit well to other
kinds of inconsistency [2]. Currently, no appropriate infrastructure is available
that is capable of managing a broad class of inconsistency [9].

To address the limitations of related approaches and to support the architect
in the difficult process of IM, this paper proposes a simple, lightweight method,
enabling the architect to systematically manage inconsistency: the Concern-
Driven Inconsistency Management (CDIM) method. CDIM identifies important
concerns of different stakeholders, as these are a source of inconsistency [19],
and utilizes a matrix to discuss overlapping concerns to find and manage diverse
types of inconsistency. CDIM consists of a 7-step cyclic process, based on the
Plan Do Check Act (PDCA) cycle [11], work of Nuseibeh [20], Spanoudakis [24],
and related architecture evaluation methods. The reader is referred to [23] for a
detailed overview of the construction of the CDIM and its design decisions.

The remainder of this paper is structured as follows: Sect. 2 provides a short
overview of inconsistency management in practice. The CDIM method is briefly
demonstrated in Sect. 3, followed by a conclusion and directions for future work
in Sect. 4.

2 Inconsistency Management in SA

An important task of the software architect is inconsistency management (IM):
identifying inconsistency, preserving it when acceptable, and deferring or solving
it when required [5,20]. Spanoudakis and Zisman [24] propose a framework for
IM, based upon [6] and [20], consisting of six activities: (1) detection of overlaps,
(2) detection of inconsistencies, (3) diagnosis of inconsistencies, (4) handling of
inconsistencies, (5) tracking of findings, and (6) specification of an IM policy. A
critical component in IM is identifying overlap, as it is a precondition for incon-
sistency [6]. Concerns have overlap when associated design decisions influence
each other. Overlap emerges due to different views, assumptions, and concerns all
being interrelated because they are related to the same system [17]. The presence
of such interrelations introduces the potential for inconsistency [24]. Techniques



Consistent Inconsistency Management: A Concern-Driven Approach 203

that focus on detection of overlaps do this based on for example representation
conventions, shared ontologies, or similarity analysis [24]. Techniques for detec-
tion of inconsistencies are logic-based approaches, model-checking approaches,
specialized model analyses, and human-centered collaborative approaches [24].
Inconsistency diagnosis is concerned with the identification of the source, cause
and impact of an inconsistency [24]. Handling inconsistency is concerned with
the identification and execution of the possible actions for dealing with an incon-
sistency. Tracking refers to recording important information of the inconsistency
in a certain knowledge base [24].

Applicable approaches in the context of informal models are stakeholder-
centric methods for inconsistency management. These involve human inspection
of overlap, and human-based collaborative exploration [24] (e.g. Synoptic [4]
or DealScribe [21]). These techniques assume that detection of inconsistency
is the result of a collaborative inspection of several models by stakeholders
[24]. Approaches like Synoptic [4] and DealScribe [21] solely focus on model
inconsistency, and therefore, cannot be used for other types of inconsistency,
such as inconsistent design decisions. Synoptic requires stakeholders to specify
conflicts in so-called ‘conflict forms’ to describe conflicts that exist in models.
In DealScribe, stakeholders look for ‘root-requirements’ in their models. Root
requirements are identified for concepts present in the models, and pairwise
analysis of possible interactions between root requirements results in a list of
conflicting requirements. A limitation of this approach is that pairwise sequen-
tial comparison is time-consuming and labour-intensive.

Inconsistency arises inevitably due to the fact that SA is concerned with
heterogeneous, multi-actor, multi-view and multi-model activities [19]. Conse-
quently, this heterogeneity and the diverse context of software architecture causes
IM to be inherently difficult [20]. In addition, a lot of architectural knowledge is
contained in the heads of involved architects and developers [13]. Though IM is
needed, the possibilities for managing inconsistency in software architecture are
limited [17], and architects thus benefit from methods that aid in management
of inconsistency.

3 Concern-Driven Inconsistency Management

As a means to address several limitations of related approaches this paper
presents the CDIM method, to systematically identify and keep track of intangi-
ble inconsistency, based on concerns and perspectives. CDIM is developed using
the Method Association Approach (MAA) [16] together with input from experts
through semi-structured interviews. MAA takes existing methods into account to
methodically assemble a new method for use in new situations [16]. IM is a part
of the process of verification and validation [9]. Verification and validation of an
architecture is done with the use of architectural evaluation methods (AE) meth-
ods, which is why several AE methods are used as a basis for CDIM. Many different
AE methods have been developed over the past decade, and many of them have
proved to be mature [1]. Due to space limitations, we refer the reader to e.g. [1] for



204 J. Schenkhuizen et al.

Fig. 1. This figure describes the 4 phases of the CDIM, with the 7 corresponding
activities. The activities are performed in cyclic manner. Each of the activities consists
of different sub steps.

a discussion on and comparison of various AE methods, and to [23] for a technical
report documenting the design and development of the CDIM method.

The method is based on the inconsistency management process as intro-
duced by Spanoudakis [24] and Nuseibeh [20], combining several AE methods
and IM techniques with the traditional iterative phases Plan, Do, Check, and
Act (PCDA) cycle [11]. Figure 1 depicts these 4 phases. They are divided in
7 activities: each of the activities contains multiple steps. Concerns form the
drivers of the CDIM. The following section motivates the use of concerns as
central elements, and the subsequent section briefly describes the four phases of
the CDIM.

3.1 Concerns and Concern-Cards

It is cost-effective to discover inconsistency early in the process [9]. One of the first
elements that an architect needs to consider, are concerns [10]. Furthermore, con-
cerns are the driving force of building an architecture and designing the system
[14]. Concerns express the aspects that should be relevant to a software system in
the eyes of a software architect [14]. According to [22] a concern about an archi-
tecture is a requirement, an objective, an intention, or an aspiration a stakeholder
has for that architecture”. Software architects benefit from inconsistency discovery
and management at an early stage, as principal decisions are often hard to reverse.
Conflicts in these decisions can lead to tangible inconsistency, which emphasizes
the value of focusing on concerns and design decisions.

The use of templates to capture information makes methods more consistent
across evaluators [12]. To ease IM, we propose the use of concern-cards, a tem-
plate that enables reasoning about a concern. Such a template makes methods
more consistent across evaluators [12]. Additionally, the use of cards in software
development is not unusual (such as planning poker [8] used by many SCRUM
teams [15]). Concern-cards are collected and kept in a concern-card desk. A
concern card consists of:



Consistent Inconsistency Management: A Concern-Driven Approach 205

1. a unique identifier,
2. a short, concise name,
3. a comprehensive definition and explanation of the concern,
4. the concern’s priority,
5. related stakeholders that have an interest in the concern,
6. the perspective or category to which the concern belongs, and
7. possible associated architectural requirements, which can be used during

discussion.

During the execution of the CDIM, concern-cards are used to assist the architect
in collecting and understanding the different concerns, by making these explicit.

3.2 Plan Phase

The Plan phase consists of two activities initiate and construct. During ini-
tiate the architect develops an action plan containing the goal of the CDIM
cycle, the scope of the architecture under analysis, the organization’s situational
factors, and which stakeholders are needed during the CDIM cycle. During con-
struct, the architect selects perspectives and collects concerns from stakeholders.
A perspective enables the architect to categorize the concerns gathered and to
analyze the architecture from a certain angle. For each perspective, the architect
collects important and relevant concerns, and documents these as concern cards.
The Plan phase results in an action plan, a concern-card desk, and a prioritized
matrix of concerns.

3.3 Do Phase

The Do phase consists of two activities: identify and discover. In identify the
architect tries to identify possible conflicts through a workshop with the relevant
stakeholders. Input of the workshop is the previously constructed matrix. The
principal idea behind the cells of the matrix is that these provide the hotspots:
areas in the architecture where concerns could possibly overlap or conflict. Mul-
tiple overlaps or conflicts may be contained in each cell, as visualized in Fig. 2.
The “hotspots” are discussed by the architect and stakeholders. Their role is
to aid the evaluator with deciding on how conflicts affect the architecture or
possibly could affect the architecture, and which conflicts could be problematic.
The outcome is a completed matrix, presenting the architect the important areas
where inconsistencies may arise.

In discover, the architects go through the existing architecture to discover
whether these are actual inconsistencies, possibly together with relevant stake-
holders. The architect uses a combination of his expertise and knowledge of the
system, to systematically search for important inconsistencies, using the conflicts
identified in the matrix. Given the deliberate simplicity of CDIM, and the com-
plexity of a software architecture context, the steps in this phase are inevitably
one of judgment rather than quantifiable assessment. The drawback is that this
approach is less explicit and more based on subjective factors as intuition and
experience. The advantage is that this is easier and more flexible. The main
outcome of this activity is a list of important inconsistencies in the architecture.



206 J. Schenkhuizen et al.

Fig. 2. A tool can be beneficial to the extent that the architect can use an overview
of the amount of inconsistencies that are still open (red), that are carefully ignored
(bright yellow), tolerated (cream yellow), or that have been solved (green) to indicate
what needs to be done. (Color figure online)

3.4 Check Phase

Once the matrix is completed, and possible inconsistencies in the architecture
have been discovered, the architect determines the type and cause of the incon-
sistency, and subsequently classifies the inconsistency. Classification is done on
the basis of four aspects: impact, business value, engineering effort, and the indi-
vidual characteristics of the inconsistency (such as the type and cause). Impact
refers to an inconsistency’s consequences, business value to whether the incon-
sistency is perceived as critical by the business, engineering effort addresses the
effort of solving an inconsistency and the availability of design alternatives, and
characteristics addresses factors related to the inconsistency itself such as the
type or cause of the inconsistency. These factors are context-specific but should
be considered as well [20]. The output is a classification in terms of these fac-
tors. Despite being still conceptual, results from the matrix could be visualized
as presented in Fig. 2.

3.5 Act Phase

In the final phase of CDIM, the architect creates and executes handling actions
for each inconsistency if needed (execute), and determines how to proceed (fol-
low up). In execute, the architect handles discovered inconsistency based on
five actions for settling inconsistencies: ‘resolve’, ‘ignore’, ‘postpone’, ‘bypass’,
and ‘improve’. It is important to note that handling an inconsistency is always
context-specific and requires human insight. ‘Resolving’ the inconsistency is rec-
ommended if the impact is high, the business value is high, regardless of the
engineering effort. Solving an inconsistency could be relatively simple (adding
or deleting information from a description or view). However, in some cases



Consistent Inconsistency Management: A Concern-Driven Approach 207

resolving the inconsistency relies on making important design decisions (e.g.
the introduction of a complete new database management technology) [6,20].
‘Ignoring’ the inconsistency is recommended if the potential impact is low, the
business value is low, and the engineering effort is high. ‘Postponing’ the deci-
sion is recommended when both impact and business value are relatively low,
and engineering effort is relatively high. Postponing provides the architect with
more time to elicit further information [20]. ‘Bypassing’ is a strategy in which the
inconsistency is circumvented by adapting the architecture in such a way that
the inconsistency itself still exists, but not touched upon. It is recommended
when the current impact is low and the business value and engineering effort
are relatively high, in which case continuity is important. ‘Improving’ on an
inconsistency might be cost-effective in other situations, in which time pressure
is high, and the risk is low. To improve on an inconsistency, inconsistent models
can be annotated with explanations, in order to alleviate possible negative con-
sequences of the inconsistent specification. The main outcome are the actions
referring to how and when to settle the inconsistency, possibly with requests for
change on the architecture, code or any other specifications that are important.

In follow up, the architect assesses the impact of the chosen actions, and
adds gained knowledge to a knowledge base and determines how to proceed. The
architect checks (a) whether a handling action intervenes with other actions; (b)
whether a handling action affects existing concerns; and (c) whether a handling
action results in new concerns. The architect decides whether a new cycle is
needed, or iteration to previous steps is needed.

4 Conclusions and Future Work

Managing inconsistencies in software architecture consistently and systemati-
cally is a difficult task. This paper presents CDIM, an inconsistency management
method that aims to support software architects in managing and detecting
intangible inconsistencies and conflicts in software architecture. Through con-
cern cards, the architect can discover and document relevant concerns. Using the
CDIM matrix, overlapping and conflicting concerns, and thus (undocumented)
inconsistent design decisions can be detected as well as it helps architects to
search for inconsistency in informal models. The method still needs careful and
thorough evaluation. Initial results show that the method is simple to use, and
offers the desired flexibility in combination with fast, practical results. As the
method yields design solutions and concrete suggestions for architectural design,
we envision the use of CDIM as a tool for communication and documenting
design rationale as well. As the proof of the pudding is in the eating, we plan
to build tool support to aid the architect, and evaluate the method in large case
studies.



208 J. Schenkhuizen et al.

References

1. Babar, M.A., Zhu, L., Jeffery, R.: A framework for classifying and comparing soft-
ware architecture evaluation methods. In: 15th Australian Software Engineering
Conference, pp. 309–319. IEEE Computer Society (2004)

2. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: 30th International Conference on
Software Engineering, pp. 511–520. ACM (2008)

3. Dashofy, E.M., Taylor, R.N.: Supporting stakeholder-driven, multi-view software
architecture modeling. Ph.D. thesis, University of California, Irvine (2007)

4. Easterbrook, S.: Handling conflict between domain descriptions with computer-
supported negotiation. Knowl. Acquis. 3(3), 255–289 (1991)

5. Finkelstein, A.: A foolish consistency: technical challenges in consistency manage-
ment. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873,
pp. 1–5. Springer, Heidelberg (2000). doi:10.1007/3-540-44469-6 1

6. Finkelstein, A., Spanoudakis, G., Till, D.: Managing interference. In: 2nd Interna-
tional Software Architecture Workshop (ISAW-2) and International Workshop on
Multiple Perspectives in Software Development, pp. 172–174 (1996)

7. Ghezzi, C., Nuseibeh, B.: Guest editorial: introduction to the special section -
managing inconsistency in software development. IEEE Trans. Softw. Eng. 25(6),
782–783 (1999)

8. Grenning, J.: Planning Poker or How to Avoid Analysis Paralysis While Release
Planning, vol. 3. Renaissance Software Consulting, Hawthorn Woods (2002)

9. Herzig, S.J.I., Paredis, C.J.J.: A conceptual basis for inconsistency management in
model-based systems engineering. Procedia CIRP 21, 52–57 (2014)

10. Hilliard, R.: Lessons from the unity of architecting. In: Software Engineering in
the Systems, Context, pp. 225–250 (2015)

11. Johnson, C.N.N.: The benefits of PDCA. Qual. Prog. 35(3), 120 (2002)
12. Kazman, R., Bass, L., Klein, M.: The essential components of software architecture

design and analysis. J. Syst. Softw. 79(8), 1207–1216 (2006)
13. Kruchten, P., Lago, P., Vliet, H.: Building up and reasoning about architectural

knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006). doi:10.1007/11921998 8

14. Lago, P., Avgeriou, P., Hilliard, R.: Guest editors’ introduction: software architec-
ture: framing stakeholders’ concerns. IEEE Softw. 27(6), 20–24 (2010)

15. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: The use and
effectiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ
2016. LNCS, vol. 9619, pp. 205–222. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30282-9 14

16. Luinenburg, L., Jansen, S., Souer, J., van de Weerd, I., Brinkkemper, S.: Designing
web content management systems using the method association approach. In: 4th
International Workshop on Model-Driven Web Engineering, pp. 106–120 (2008)

17. Muskens, J., Bril, R.J., Chaudron, M.R.V., Generalizing consistency checking
between software views. In: 5th Working IEEE/IFIP Conference on Software Archi-
tecture, pp. 169–180. IEEE Computer Society (2005)

18. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency
checking and smart link generation service. ACM Trans. Internet Technol. 2(2),
151–185 (2002)

19. Nuseibeh, B.: To be, not to be: on managing inconsistency in software development.
In: 8th International Workshop on Software Specification and Design, p. 164. IEEE
Computer Society (1996)

http://dx.doi.org/10.1007/3-540-44469-6_1
http://dx.doi.org/10.1007/11921998_8
http://dx.doi.org/10.1007/978-3-319-30282-9_14
http://dx.doi.org/10.1007/978-3-319-30282-9_14


Consistent Inconsistency Management: A Concern-Driven Approach 209

20. Nuseibeh, B., Easterbrook, S.M., Russo, A.: Making inconsistency respectable in
software development. J. Syst. Softw. 58(2), 171–180 (2001)

21. Robinson, W.N., Pawlowski, S.D.: Managing requirements inconsistency with
development goal monitors. IEEE Trans. Softw. Eng. 25(6), 816–835 (1999)

22. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakehold-
ers Using Viewpoints and Perspectives. Addison-Wesley, Reading (2012)

23. Schenkhuizen, J.: Consistent inconsistency management: a concern-driven app-
roach. Technical report, Utrecht University (2016). http://dspace.library.uu.nl/
bitstream/handle/1874/334223/thesisv1 digitaal.pdf

24. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
survey and open research issues. Handb. Softw. Eng. Knowl. Eng. 1, 329–380 (2001)

http://dspace.library.uu.nl/bitstream/handle/1874/334223/thesisv1_digitaal.pdf
http://dspace.library.uu.nl/bitstream/handle/1874/334223/thesisv1_digitaal.pdf

	Consistent Inconsistency Management: A Concern-Driven Approach
	1 Introduction
	2 Inconsistency Management in SA
	3 Concern-Driven Inconsistency Management
	3.1 Concerns and Concern-Cards
	3.2 Plan Phase
	3.3 Do Phase
	3.4 Check Phase
	3.5 Act Phase

	4 Conclusions and Future Work
	References


