A Genetic Approach to Architectural Pattern Discovery

Joeri Peters, Jan Martijn E.M. van der Werf
Department of Information and Computing Sciences
Utrecht University
Princetonplein 5, 3584 CC Utrecht, The Netherlands

{j.g.t.peters, j.m.e.m.vanderwerf }@uu.nl

ABSTRACT

Architectural patterns represent reusable design of software
architecture at a high level of abstraction. They can be used
to structure new applications and to recover the modular
structure of existing systems. Techniques like Architecture
Compliance Checking (ACC) focus on testing whether re-
alised artefacts adhere to the architecture. Typically, these
techniques require a complete architecture as input.

In this paper, we present a genetic approach to express
and discover architectural patterns based on the allowed
and disallowed dependencies between the pattern elements.
Through static ACC, we validate the genuineness of the
found instances. Initial validation shows the potential of
the approach.

CCS Concepts

eSoftware and its engineering — Software reverse en-
gineering; eComputing methodologies — Genetic al-
gorithms;

1. INTRODUCTION

Technical debt has many different causes, one of them
being outdated architectural documentation [2]. Due to
various reasons, realised software units (SUs) drift apart
from the intended architecture, thus creating architectural
erosion [13]. For many Software Producing organisations
(SPOs) [3] this is a clear risk, as they need to update and
improve their software products constantly to stay in busi-
ness. However, due to many external constraints, such as
time-to-market, proper architectural documentation comes
at the bottom of the list. Consequently, many of these or-
ganisations have outdated documentation [12]. Thus the
risk of technical debt is high for such organisations [25].

Architecture Compliance Checking (ACC) has the poten-
tial to support organisations in maintaining up-to-date doc-
umentation by determining whether the realised SUs adhere
to the documented architecture [10], often referred to as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ECSAW 16, November 28-December 02, 2016, Copenhagen, Denmark

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4781-5/16/11...$15.00

DOL: http://dx.doi.org/10.1145,/2993412.3003393

intended architecture. Current state-of-the-art ACC tech-
niques base themselves on a given mapping between SUs
and (static) architectural elements (AEs), and construct a
dependency graph from the SUs to check whether there are
no violating dependencies [6,19]. Many of the software prod-
ucts delivered by SPOs can be categorised as Very Large
Software Systems (VLSSs) [27], for which this approach has
several important drawbacks that prevent these techniques
from being used in practice [19], including;:

1. Insufficient architectural documentation;
2. The mapping between SUs and AEs is infeasible; and
3. The dependency graphs become too large to analyse.

Instead of creating a complete architectural definition, de-
velopers adopt a certain architectural style [24], defining al-
lowed and disallowed dependencies. Hence, mapping all SUs
to AEs is not possible since (a) the appropriate AEs are not
defined, and (b) as VLSSs contain many millions of lines of
code, so the number of elements to map becomes too large.
In case no appropriate architectural documentation exists,
Software Architecture Reconstruction (SAR) can be used to
derive documentation [4] [11]. Many SAR techniques base
themselves on the dependency graph, which again becomes
infeasible for very large software products. Another issue
with SAR is to determine the appropriate level of abstrac-
tion to be of value for VLSSs.

The contribution of this paper is twofold. First, we pro-
pose a definition of architectural patterns in terms of allowed
and disallowed dependencies (Section 3). This gives the ar-
chitect the opportunity to specify the architectural solution
and constraints on a high level, without having to specify all
details of the design. Second, we present a genetic algorithm
that searches for genuine instances of these architectural pat-
terns among the realised software units (Section 4). A gen-
uine instance of a pattern is defined as a mapping between
SUs and AEs such that the number of violations against
the pattern is minimal. We show the applicability of the
approach in Section 5. Section 6 concludes the paper.

2. COMPLIANCE & RECONSTRUCTION

Software architecture entails the set of structures needed
to reason about the system, which comprise software ele-
ments, relations among them, and properties of both [2].
One can distinguish three types of structure within software
architecture (static, dynamic and allocation) [2], or look at a
categorisation based on views and viewpoints, such as func-
tional, development, and concurrency [21]. This paper is re-

Remainder

1 Controller |

Figure 1: The MVC pattern where interaction with
the Remainder is only via the Controller.

stricted to static, technical architectures, the branch of soft-
ware architecture that looks at the arrangement of source
code into modules such as components and layers (i.e. the
module view).

Architecture Compliance measures to which degree the
realised software units conform to the intended architec-
ture [10]. ACC intends to bridge the gap between the high-
level abstraction of the software architecture and the realised
software. Static ACC focuses on the static aspects of the ar-
chitecture.

Most static ACC approaches build upon dependency anal-
ysis: “the process of determining a program’s dependen-
cies” [17]. ACC tools like HUSACCT [20] check whether
the realised dependencies do not violate the dependencies
defined by the architectural documentation.

ACC can only be applied if some architectural documenta-
tion exists. In case no such documentation exists, Software
Architecture Reconstruction (SAR), tries to re-engineer the
architecture of an already realised system. It is “an interpre-
tive, interactive, and iterative process involving many activ-
ities; it is not automatic” [2]. In other words, SAR focuses
on understanding the software architecture of a software sys-
tem from the realised software units, which is rather difficult
to do even if the system is relatively small.

For a systematic literature review on architecture recon-
struction, we refer the reader to [6].

In essence, SAR and ACC are two sides of the same coin:
in ACC, the existing architectural documentation can be
seen as the hypothesis to validate on the implemented soft-
ware units, whereas in SAR a hypothesis is generated from
the software units and then validated. This observation is
key to the approach we present in this paper.

3. ARCHITECTURAL PATTERNS

In larger software systems, architects typically adopt a
certain architectural style [24], such as a layered design, a
Model-View-Controller or a Service-Oriented Architecture.
Such styles guide the architects in the system design. Choos-
ing a style means that the design applies some architec-
tural pattern. Such patterns prevent software architects
from reinventing the wheel in much the same way as design
patterns do for developers. They establish the relationship
between a context, a problem and a solution [2].

Architectural patterns are not as precisely defined as the
Gang-of-Four design patterns [7]. The main characteristic
of design patterns is that they are designed for solving re-

Table 1: This legend presents the different rule types
for the provisional diagram notation used here.

************ > “Is allowed to use”

X—— “Is not allowed to use”
— 00— “Is only allowed to use”
il oy e
****** I--—-=> “Must use”

current problems on the level of the detailed design, e.g.
source code, whereas architectural patterns exist on a system
level. Consequently, design patterns appear more frequently
within the same system, deal with far more specific concepts
and are meant not to have any rule violations at all. Archi-
tectural patterns tend to focus more on which dependencies
are not allowed. Design patterns specify the dependencies
that should be implemented. As such, design patterns are
more fit to be used as detailed design techniques similar to
the tactics described by Bass et al. [2].

Inspired by the definition of Semantically Rich Modular
Architectures [18], we define a dependency-based architec-
tural pattern language. It consists of architectural elements,
the special element called the Remainder, and 5 dependency
rule types, shown in Table 1. Additionally, rules can have
exceptions. The Remainder is an element used to define
how the pattern interacts with architectural elements not
touched by the pattern. It is a module outside of the pat-
tern and thus represents the rest of the architecture.

As an example, consider the MVC pattern depicted in
Figure 1. Not that, in this depiction, conflicting rules imply
exceptions to those rules, which allows us to use these spe-
cific rule types. It can be specified with three architectural
elements: the Model, the View and the Controller. To specify
that communication with other architectural elements can
only be performed via the Controller, we add two rules that
specify that the Remainder can be used in the Controller,
and that the Remainder can use the Controller. This results
in the following set of rules:

1. Controller must use Model.

2. Controller must use View.

3. View must use Model.

4. Model is not allowed to use Controller.
5. Model is not allowed to use View.

6. View is not allowed to use Controller

Rules 5 and 6 often have exceptions for change updates
and user actions, respectively, in practice. The above set

Model

Communication

>x

|

|

| Controller
!

Figure 2: A combination of the MVC pattern and
a 3-Layered pattern, which fails to isolate the lower
Model layers.

implies that all communication with the Remainder happens
via the Controller.

Making the interaction with Remainder explicit allows us
to combine patterns, and to reason about their interactions.
As an example, Figure 2 shows an architecture containing
two patterns: the main pattern is the MVC pattern, where
the Model uses a 3-Layered pattern. Notice that, as the
3-Layered Pattern uses the “is only allowed to use” rules,
the Remainder, i.e. the View and Controller elements, are
allowed to use elements within each of the 3 layers. For a
more elaborate discussion on the pattern language, we refer
the reader to [14] [15].

4. GENETIC DISCOVERY OF PATTERNS

The advantage of defining a partial architecture in terms
of allowed and disallowed dependencies, is that we can use
existing ACC tools to validate whether the realised software
units adhere to the patterns. Consequently, if we provide a
mapping of software units to the architectural elements of
the pattern, the ACC tools provide information about how
many and which dependencies are violated, and how many
are adhered to. This gives us valuable insights in whether
the mapping adheres to the pattern.

In this way, ACC can assist us in finding a best mapping
between software units and architectural elements: by test-
ing each possible mapping, we obtain a best match. For in-
stance, software dependencies from a Ul layer to a business
logic layer comply perfectly with the traditional 3-layered
architecture; but the reverse, dependencies from the mid-
dle to the upper layer, is not allowed in the case of strict
layering.

Based on this observation, we propose a genetic approach
to discover genuine instances of an architectural pattern.
Based on how well the mapping fits, we can define muta-
tions of and cross-overs between different mappings to guide
the search towards a best candidate mapping. We base our-
selves on the open-source tool HUSACCT [20]. Its ACC
functionality allows us to judge whether software dependen-
cies derived from source code are legal according to a specific
pattern. The output of HUSACCT can then be used to de-

Remainder Model View Cam‘3ral/5r

= R
J

Gene (software unit) 1 415|678

[\V]
w

Allele (pattern module) |1 |2 |2 [0[0| 2| 3|3

Figure 3: The mapping of a pattern candidate

fine the fitness of the mapping compared to the architectural
pattern.

4.1 Fitness

In order to compare several mappings with each other, it
is necessary that there be a fitness score. Such a score can
express the “goodness” of a particular mapping of software
units (groupings of source code) to pattern modules. To
calculate this score, a fitness function has to be defined as
part of our discovery algorithm. To our knowledge, there
is no single function that would be ideal for this purpose
and we have considered several formulae for this purpose.
One function might tend towards one type of solution, such
as large patterns with few dependencies, another function
might have a bias towards another, like small patterns with
low coupling.

We selected a fitness function inspired by the F-measure
(the harmonic mean of precision and recall [23]), as we also
have two measures to optimise. Our variables, the values of
which are determined by HUSACCT, are as follows: D € N
is the number of dependencies between the pattern modules
and with the Remainder, M € N is the number of depen-
dencies between pattern modules that are in line with that
pattern’s “Must use” rules (these are essential dependencies,
since these are the ones that are explained by the existence
of the pattern) and V ¢ N is the number of violating depen-
dencies. Violation of a “Must use” rule implies that M = 0
for that particular rule.

There are two ratios to be optimised. One is the num-
ber of dependencies explained by the pattern relative to the
total number of dependencies of that candidate (4£), which
should be maximised. The other is the number of viola-
tions relative to the number of dependencies that are not
explained by the pattern (ﬁ)

f(D,V, M, B) :(1+ﬁ2) (1—%{}1),%

TV L M
B2-(1- =)+ B

(1)
_ o U5
f(D,V7 M, 1) 2

B (1- D‘—/I\/I)+%

The variable 8 € R controls the relative importance of one
ratio over the other by controlling the relative weight of one
expression in the mean. To establish this fitness function
with both ratios equally valuable, take § = 1. Since we
have no reason to emphasise one measure over the other,
this is the value we chose.

During the evaluation of this function, we apply a heuris-

tic that states that a violation of a “Must use” rule, i.e.
when there are no dependencies between pattern modules
that ought to be connected, the fitness is automatically min-
imised. Architectural patterns should explain certain depen-
dencies, so their absence is a dead give-away that a partic-
ular candidate is unlikely to be a genuine instance of that
pattern.

4.2 Brute Force Search Space

Given a mapping between software units and architectural
elements, we can use the output of HUSACCT to calculate
a score using the aforementioned fitness function. What re-
mains is an algorithm for the discovery process. As a base-
line approach, we take an exhaustive search of all possible
mappings of software units to pattern modules, the brute
force approach.

The number of pattern candidates, i.e. the different map-
pings, grows rapidly with the number of software units n
and the number of architectural elements k. Exactly how
rapid depends of two factors: Aggregation and Remainder.

Aggregation allows multiple software units to be mapped
to the same architectural element within the pattern. For
example, if software units are merely Java code classes, it is
more than reasonable to assume that multiple software units
ought to be mapped to a particular architectural element of a
pattern, such as a layer. If the software units are grouped in
e.g. packages or namespaces, these can be used as software
units, instead of the individual classes. This limits the search
space drastically.

As explained in the previous section, the Remainder is
used to represent those software units that are not mapped
to any specific architectural element within the pattern. It
is useful to allow for such a classification, particularly if the
architectural pattern is not intended to be the completely
encompassing structure of the system under analysis [14].
Especially for larger systems in which a pattern is applied
on a subset of the software units, it is beneficial to allow for
a Remainder. Unfortunately, having a Remainder has the
drawback that the algorithm allows for mappings in which
some of the software units are not mapped. The exact def-
inition of architectural patterns using the tool-specific lan-
guage can run into ambiguities due to this Remainder. For a
more elaborate discussion on the function of the Remainder,
see [14].

Given the values of n and k, the number of candidates
equals in the non-aggregation case:

N(n,k) =kl (7) (2)

The existence of a Remainder is simply implied if n > k. Al-
lowing for aggregation implies a faster growth of the number
of pattern candidates to be evaluated in a brute force ap-
proach, namely according to:

Ne(n,k) =k!-{3} = Ekl(—l)k’jj"ﬁ (3)

Jj=0

where {Z} denotes the Stirling Number of the Second Kind,
the number of ways n objects can be distributed over k un-
labelled baskets.

Finally, allowing for a Remainder in addition to aggrega-

Table 2: The number of pattern candidates for var-
ious values of n when k = 3, in all three cases.

|k [N [N | N7 |
3,3 [[6 6 6
4,3 || 24 36 60
5,3 || 60 150 390
6,3 || 120 | 540 2,100
7,3 || 210 | 1,806 10,206
8,3 || 336 | 5,796 16,620
9,3 |[504 | 18,150 204,630
10,3 [720 | 55,980 874,500
15,3 [990 | 14,250,606 1,030,793,406

20,3 || 1,320 | 3,483,638,676 | 1,089,054,420,300

tion results in an even more explosive expression:
]\fﬂal:(n7 k) = k!. {Z} + (k + 1)| . {kil}
— k—q ™ k! (k+1)! n (4)
a Jgo ((_1) T ((kw - m)) +(k+1)

In order to provide an illustration of how quickly these num-
bers grow to be unwieldy, consider Table 2. This table sug-
gests that a brute force approach to our ACC-based pat-
tern discovery method may be a reasonable solution only
when dealing with relatively low numbers of n and k = 3.
Since many architectural patterns consist of only a few mod-
ules, typically three (3-Layered, MVC, Broker pattern), it
strongly depends on the number of software units whether
this approach can be feasible in a reasonable amount of time.
Regardless, though, such a process would still be faster than
any human could do the same by hand, thereby already mak-
ing it a useful solution despite its inefficiency.

4.3 Genetic Algorithm

After completing the brute force approach as a baseline
algorithm, we proceeded to produce a more sophisticated
approach. One would expect that several of the myriad
of pattern candidates that are considered in a brute force
search are actually hopelessly poor candidates. Evaluating
the fitness score for such candidates is essentially wasteful,
although this seems unknowable beforehand. However, as
an attempt to circumvent this issue, we implemented a rudi-
mentary genetic algorithm for this pattern discovery process.
Genetic algorithms, a subset of evolutionary algorithms, al-
low for the optimisation of specific search problems by rely-
ing on heuristics aimed at mimicking natural selection, find-
ing a useful solution to a problem by allowing some kind of
genetic code to evolve [8]. This requires a population of in-
dividuals, programmed chromosomes that code for specific
solutions to the problem at hand. Using our fitness func-
tion, we allow some of these chromosomes to reproduce and
randomly mutate. It makes more sense to attempt pattern
candidates that are similar to those with good fitness scores,
since shuffling a few software units around might produce an
even better solution. This can eventually lead to local op-
tima and possibly the global optimum in a shorter timespan
than an exhaustive brute force search would. Hill-climbing
algorithms that do not take this genetic approach are gen-
erally more likely to get stuck in such a local optimum.

Our chromosomes are simple arrays of integer genes, the
values (alleles) of which refer to pattern modules. The first
integer refers to the mapping of the first software unit, the

Figure 4: The Java packages in the root of Sweet-
Home3D.

second integer to the mapping of the second software unit,
and so on. An integer value of 0 means the software unit is
assigned to the Remainder, a value of 1 means an assignment
to pattern module 1, etc. The reverse, genes referring to
pattern modules and their allele-values referring to software
units, may seem more intuitive, but this would result in an
unnecessary increase in the complexity of the genes’ data
type when these chromosomes are to allow for aggregation.

Figure 3 shows the relation between a chromosome and
the pattern candidate for which it is a representation. The
chromosome describes a mapping of several software units,
with dependencies linking them to one another, to the mod-
ules of an MVC-pattern. Evidently, this is a case where both
aggregation and a Remainder are allowed. The dependencies
between the software units may or may not be in accordance
with the specified rules of the MVC-pattern. Therefore, this
chromosome has a particular fitness score. Changing on of
the integer values in the chromosome changes the mapping
of the software units, thereby creating a new pattern candi-
date.

An existing library for genetic algorithms, JGAP (Java
Genetic Algorithms Package) was chosen, due to its modu-
lar nature and accessible documentation'. JGAP provides
a basic genetic framework in which only the essentials have
to be implemented: the fitness function and the specifica-
tion of chromosomes. JGAP requires these two classes to
be written, but allows for many more aspects of its config-
uration to be changed or expanded. The fitness function
has been implemented using HUSACCT. The specification
of chromosomes represents the mapping between software
units and architectural elements. JGAP provides basic sup-
port for mutations and cross-overs in the form of random
mutations and cross-overs within the population. More so-
phisticated mutations and cross-overs based on the output
of HUSACCT are possible, but remain future work.

S. INITIAL EVALUATION

To evaluate our approach, we applied it to the open-source
Java application SweetHome3D. Its package hierarchy, de-
picted in Figure 4, shows eight root packages. None of them
have any sub-packages, although each of them has a pletora
of individual classes. Based on the developer’s forum we dis-

!The JGAP website: http://jgap.sourceforge.net,/.

End evolution iteration 29

Total evolution time: 424834 ms

Presenting the ordering of software units mapped in the
chromosomes :

com.eteks.sweethome3d.applet
com.eteks.sweethome3d.io
com.eteks.sweethome3d.j3d
com.eteks.sweethome3d.model
.eteks.sweethome3d.plugin
com.eteks.sweethome3d.swing
com.eteks.sweethome3d.tools
com.eteks.sweethome3d.viewcontroller

©® T o0 WN e
Q
o
2

The best (and unique) chromosomes are printed here. If their
number is particularly small, it is because the population
contained many duplicates.

This would mean that the algorithm has converged on a small
number of solutions. These should indicate at least local
optima, if not the global optimum.

Chromosome 1:

01320323

Fitness value: 0.971235879278368

Placing best candidate in defined architecture...
Best candidate was successfully mapped and validated.
Elapsed time: 424.991 seconds.

Figure 5: A genetic (with Remainder) run on Sweet-
Home3D’s packages for the Centralised Layering
pattern.

Remainder Layer 1 Layer 2 Layer 3
1 2 3
Aopplet Tools | jad
O< Swing
o . Model]
Plugin
Viewcontroller

Figure 6: The best candidate discovered (GA) for
the centralised layering architecture. Dependencies
with the Remainder are excluded.

till that its architecture is a combination of 3-Layered with
MVC 2. The overall style is a 3-Layered architecture in which
the middle layer is called by both of the other layers, com-
bined with a specialization of the MVC pattern: the Model-
Viewcontroller pattern where the View and Controller are
contracted, and Model does not have any outgoing depen-
dencies) distributed over the business logic and presentation
layer. The layered pattern is not difficult to find because of
the relatively large numbers of dependencies along the lines
of the “Must use” rules. A high number of “Must use” affir-
mations results in good fitness score, as it explains all these
dependencies with the existence of a pattern.

Figure 5 shows the output of the genetic algorithm to find
the centralised layering described above. It depicts a solu-
tion similar to the one we anticipated (except for the place-
ment of Tools). The main difference is that Layer 1 is Layer
3 and vice versa. As Layer 1 and Layer 2 are independent,
because of the way the pattern is defined, this does indeed
seem just as reasonable. Without semantic constraints, this

*http://www.sweethome3d.com /support /forum/
viewthread_thread,3067

End evolution iteration 29

Total evolution time: 109273 ms

Presenting the ordering of software units mapped in the
chromosomes :

: com.eteks.sweethome3d.applet
: com.eteks.sweethome3d.io
com.eteks.sweethome3d.]3d
com.eteks.sweethome3d.model
: com.eteks.sweethome3d.plugin
com.eteks.sweethome3d.swing
: com.eteks.sweethome3d.tools

® 9o s W N e

: com.eteks.sweethome3d.viewcontroller

The best (and unique) chromosomes are printed here. If their
number is particularly small, it is because the population
contained many duplicates.

This would mean that the algorithm has converged on a small
number of solutions. These should indicate at least local optima,
if not the global optimum.

Chromosome 1:
21212210

Fitness value: 1.0

Placing best candidate in defined architecture...
Best candidate was successfully mapped and validated.
Chromosome 2:

20010201

Fitness value: 1.0
Chromosome 3:
20001010

Fitness value: 1.0
Chromosome 4:
20110010

Fitness value: 1.0
Chromosome 5:
21200010

Fitness value: 1.0

Chromosome 6:
21211000
Fitness value: 1.0

Chromosome 69:

21000200

Fitness value: 1.0

Elapsed time: 109.399 seconds.

Figure 7: Partial output of a genetic run on Sweet-
Home3D’s packages for the Model-View-Controller
pattern.

sort of confusion is to be expected. The mapping is illus-
trated in Figure 6.

The MVC pattern is more difficult to find, due to the
large number of equally good candidates. Without seman-
tic input, it is very difficult to discover the pattern. As the
output, of which an excerpt is shown in Figure 7, shows,
there are many candidates that satisfy the criteria of the
specialised MVC pattern. To select the appropriate candi-
dates, the semantic or nomenclature of the software units
need to be considered as well.

Defining novel patterns is essential to our approach, be-
cause any partial architecture can be thought of as a “pat-
tern” and subsequently used in the same way. When we
combine the two found architectural patterns and search for
the result, we obtain the architecture as depicted in Figure 8.

6. CONCLUSIONS AND FUTURE WORK

Architectural patterns and styles allow the architect to
partially describe an architecture. In this paper, we pre-
sented an approach to define architectural patterns in terms
of allowed and disallowed dependencies. This allows us to
use ACC tools to discover whether a set of realised soft-
ware units adhere to some given architectural pattern. We
define a fitness function that calculates the score of a map-
ping between software units and the architectural elements
within a pattern. Using a genetic algorithm, we explore the
search space of all possible mappings to identify genuine in-
stances of the pattern. The approach is implemented using
JGAP and HUSACCT. Initial validation on the open-source
Java application SweetHome3D shows the potential of the

Layer1 Layer 3
. view- .
10 ‘ ‘ j3d ‘ controller ‘ swing ‘ .
I —-=> plugins

K T T I i K
X ! ! X! X
1 V V : 1

i

|

Layer 2
Remainder
Sweethome3D

Figure 8: Sweethome3D’s architecture

approach.

SAR based on dependency analysis is not new. Exam-
ples include a pattern-based clustering and graph matching
technique [22], as well the state machine-based DiscoTect
system [28]. Architectural style representations have been
used in reverse engineering using style and query libraries [9].
An framework has been extended by including patterns (ar-
chitectural, design and code patterns). This relies on “hot-
spots”, heuristic indicators of a pattern [16].

Methods that are primarily aimed at design patterns must
not be neglected, even if problems are to be expected on a
system level. Methods exist based on class metrics [1] and
heuristics like inheritance [26]. We refer the reader to two
SLRs: [5] and [6].

The genetic approach chosen in this paper has several
drawbacks. For example, parametric architectural patterns,
such as the N-layered pattern, or the Peer-to-Peer pattern
cannot be expressed using the proposed dependency-based
architectural pattern language. Due to the unknown num-
ber of architectural elements, the metaphor of genetic algo-
rithms cannot be applied.

By defining specialised mutations and cross-overs, the pop-
ulation generation can be guided. For example, based on
the ACC outcomes, not only the complete mapping can be
evaluated, also parts of the mapping can be compared. A
simple crossover would take from the two mappings the best
elements, and create a new mapping from those. Similarly,
mutations can be defined using the outcomes of the ACC
tool. Defining more advanced mutations and crossovers re-
main future work for now.

Another element for future work is the fitness function.
As it only considers dependencies, genuine instances can be
found that from a semantic point of view make no sense.
Hence, the fitness function should take semantics and nomen-
clature of the software units into account to obtain more
useful results.

Initial evaluation shows the potential of the approach.
However, as the proof of the pudding is in the eating, we
require tool support for the architects to define their own
architectural patterns to be able to evaluate the approach
in larger case studies.

Acknowledgements

The authors would like to thank Leo Pruijt and Jurriaan
Hage for the fruitful discussions, and the anonymous review-
ers for their valuable feedback and suggestions.

7.
[

[13]

[14]

[15]

[16]

REFERENCES

G. Antoniol, R. Fiutem, and L. Cristoforetti. Design
pattern recovery in object-oriented software. In , 6th
International Workshop on Program Comprehension,
1998. IWPC' ’98. Proceedings, pages 153-160, June
1998.

L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Series in Software
Engineering. Addison Wesley, Reading, MA, USA,
2012.

S. Brinkkemper and X. Lai. Concepts of product
software. Furopean Journal of Information Systems,
16(5):531-541, 2007.

E. J. Chikofsky and J. H. Cross II. Reverse
engineering and design recovery: a taxonomy. [FEE
Software, 7(1):13-17, Jan 1990.

J. Dong, Y. Zhao, and T. Peng. A review of design
pattern mining techniques. International Journal of
Software Engineering and Knowledge Engineering,
19(06):823-855, Sept. 2009.

S. Ducasse and D. Pollet. Software Architecture
Reconstruction: A Process-Oriented Taxonomy. I[EEE
Transactions on Software Engineering, 35(4):573-591,
July 2009.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Abstraction and Reuse of
Object-Oriented Design. In ECOOP ’93 -
Object-Oriented Programming, number 707 in Lecture
Notes in Computer Science, pages 406-431. Springer
Berlin Heidelberg, July 1993. DOI:
10.1007/3-540-47910-4_21.

D. E. Goldberg and J. H. Holland. Genetic Algorithms
and Machine Learning. Machine Learning,
3(2-3):95-99, Oct. 1988.

D. R. Harris, H. B. Reubenstein, and A. S. Yeh.
Reverse Engineering to the Architectural Level. In
Proceedings of the 17th International Conference on
Software Engineering, ICSE 95, pages 186-195, New
York, NY, USA, 1995. ACM.

J. Knodel and D. Popescu. A comparison of static
architecture compliance checking approaches. In
Working IEEE/IFIP Conf. on Software Architecture,
pages 12-21. IEEE, 2007.

R. Krikhaar. Software Architecture Reconstruction.
PhD dissertation, Univ. of Amsterdam, 1998.

G. Lucassen, J. M. E. M. van der Werf, and

S. Brinkkemper. Alignment of software product
management and software architecture with discussion
models. In 8th IEEE International Workshop on
Software Product Management, IWSPM 2014,
Karlskrona, Sweden, August 26, 2014, pages 21-30.
IEEE Computer Society, 2014.

D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, 1992.

J. Peters, J. M. E. M. van der Werf, and J. Hage.
Architectural pattern definition for semantically rich
modular architectures. In WICSA-Young Researchers.
IEEE, 2016.

J. G. T. Peters. An Approach to Discovering
Architectural Patterns in Software, 2016. MSc thesis.
M. Pinzger and H. Gall. Pattern-supported

(17]

(18]

(19]

20]

21]

(22]

23]

[24]

[25]

[26]

27]

28]

architecture recovery. In 10th International Workshop
on Program Comprehension, 2002. Proceedings, pages
53-61, 2002.

A. Podgurski and L. A. Clarke. A formal model of
program dependences and its implications for software
testing, debugging, and maintenance. IEFE
Transactions on Software Engineering, 16(9):965-979,
1990.

L. Pruijt and S. Brinkkemper. A metamodel for the
support of semantically rich modular architectures in
the context of static architecture compliance checking.
In Proceedings of the WICSA 2014 Companion
Volume, Sydney, NSW, Australia, April 7-11, 2014,
pages 8:1-8:8. ACM, 2014.

L. Pruijt, C. Képpe, and S. Brinkkemper.
Architecture compliance checking of semantically rich
modular architectures: A comparative study of tool
support. In IEEFE International Conference on
Software Maintenance, pages 220-229. IEEE, 2013.

L. J. Pruijt, C. Koéppe, J. M. E. M. van der Werf, and
S. Brinkkemper. HUSACCT: Architecture compliance
checking with rich sets of module and rule types. In
Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE
"14, pages 851-854, New York, NY, USA, 2014. ACM.
N. Rozanski and E. Woods. Software Systems
Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley, 2011.
K. Sartipi. Software architecture recovery based on
pattern matching. In International Conference on
Software Maintenance, 2003. ICSM 2003. Proceedings,
pages 293-296, Sept. 2003.

M. Sokolova, N. Japkowicz, and S. Szpakowicz.
Beyond Accuracy, F-Score and ROC: A Family of
Discriminant Measures for Performance Evaluation. In
AT 2006: Advances in Artificial Intelligence, number
4304 in Lecture Notes in Computer Science, pages
1015-1021. Springer Berlin Heidelberg, Dec. 2006.
DOI: 10.1007/11941439_114.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy.
Software Architecture: Foundations, Theory, and
Practice. John Wiley & Sons, 2010.

R. Terra, M. T. Valente, K. Czarnecki, and R. S.
Bigonha. Recommending refactorings to reverse
software architecture erosion. In Furopean Conference
on Software Maintenance and Reengineering, pages
335-340. IEEE, 2012.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design Pattern Detection Using
Similarity Scoring. IEEE Transactions on Software
Engineering, 32(11):896-909, Nov. 2006.

E. J. Weyuker. Evaluation techniques for improving
the quality of very large software systems in a
cost-effective way. Journal of Systems and Software,
47(2-3):97-103, 1999.

H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and

R. Kazman. DiscoTect: A System for Discovering
Architectures from Running Systems. In Proceedings
of the 26th International Conference on Software
Engineering, ICSE 04, pages 470-479, Washington,
DC, USA, 2004. IEEE Computer Society.

