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ABSTRACT: We theoretically study the impact of solvent
evaporation on the dynamics of isothermal phase separation of
ternary polymer solutions in thin films. In the early stages we
obtain a spinodal length scale that decreases with time under the
influence of ongoing evaporation. After that rapid demixing occurs
at a well-defined lag time, a morphology emerges of which the
compositions of the coexisting phases rapidly approach the
binodal values. We find that the type of morphology, which can
be either bicontinuous or dispersed, strongly depends on the
evaporation rate if the solubility of the two solutes in the common
solvent differs. We derive expressions that relate both the lag time and length scale characterizing the emerging morphology to all
relevant physical parameters. These include the tracer diffusivities, the interaction parameters, the degrees of polymerization, the
blend composition, and the evaporation rate. In agreement with our numerical results, we find the latter to scale with a one-sixth
power of the evaporation rate. Following the lag time, a new length scale appears that increases with time due to coarsening. If
evaporation is sufficiently slow, this length increases with the conventional one-third power of time. For rapid evaporation
deviations from that may occur, especially if the solvent compatibility of the solutes differ. Our model calculations suggest that
the characteristic features of the final dry-film morphology is dictated by the quench depth as well as the time available for
coarsening, which are both determined by the rate of evaporation.

■ INTRODUCTION

State-of-the-art organic and hybrid thin-film electronic devices
usually contain at least one layer based on a blend of polymeric
or small molecular species, whose individual electronic
properties cooperatively give rise to a specific functionality.1−4

Such blend films have a thickness of the order of a hundred
nanometers and are typically deposited via solution casting, e.g.,
spin coating, under evaporative conditions. Optimal device
performance often requires the blend components to phase
separate. Examples of such devices include organic solar
cells,1−4 organic memory diodes,5−8 and transistors.9,10 More-
over, outside of organic electronics thin-film polymer blends are
relevant to membrane technology,11−13 nanoporous implants
for controlled drug delivery,14 and scaffolds for tissue
engineering.15

A frequently observed mode of phase separation, notably
observed for ferroelectric diodes5−8 and organic solar cells,16,17

is solution-stage spinodal decomposition and coarsening.
During this process, the blend components spontaneously
demix once solvent evaporation has caused the composition to
be pushed from the single-phase region into the unstable part
of the miscibility gap of the ternary phase diagram. This
isothermal destabilization by solvent evaporation has been
loosely dubbed a “solvent quench” in order to set it apart from
the more usual temperature quench. In both, demixing as well

as coarsening principally determines the predominant length
scale of structural features in the phase-separated morphology.
However, in solvent quenching ongoing evaporation causes the
viscosity to increase up to the point where mass transport
arrests, essentially “freezing” the morphology in the dry film.
Several experimental studies have shown faster evaporation

to lead to smaller features in the dry-layer morphology.16−21

However, the question whether, or under what conditions, early
stage demixing or late-stage coarsening dominates the
determination of these feature sizes has so far been left
unanswered. This is somewhat surprising, as it is well-known
that the device performance strongly depends on the
morphology. Note also that we cannot rely on what is known
about structure development in temperature-quenched systems,
which has been studied extensively over the past 50 odd years.
What is missing is the development of theory that addresses the
coupling between evaporation and structure development in
chemically complex mixtures. That this must be the case, we
deduce from a number of theoretical studies considering a time-
dependent overall composition, e.g., due to reversible chemical
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conversion,22,23 polymerization,24 or evaporation from a single-
polymer solution.25

In this work, we account for this deficit by presenting a
theoretical study that identifies how evaporation significantly
alters the dynamics of both early stage demixing and late-stage
coarsening in solvent-borne polymer blends. We perform
numerical as well as approximate analytical calculations
focusing on diffusive dynamics, specifically aiming at comparing
blends relevant to organic photovoltaics to idealized model
systems. As we shall see, evaporation causes the spinodal length
scale to become time dependent and after a lag time to lead to
rapid demixing into domains with solute concentrations that
are virtually identical to those in equilibrium. However, because
evaporation is ongoing, these concentrations evolve as a
function of time. This affects the coarsening kinetics, in
particular if the mixture is off-critical. It turns out that the lag
time and associated predominant length scale can be predicted
as a function of all relevant physical parameters, such as the
molecular weight of the solutes and their solubilities in the
common solvent. Finally, we compare our calculations with the
experimentally observed evaporation-rate dependence of the
predominant length scale of the dry-film morphologies of
photoactive layers in organic solar cells.
The remainder of this article is arranged as follows. We first

present a two-dimensional generalized diffusion equation that
includes solvent evaporation and discuss under what conditions
the assumption of a quasi-two-dimensional model is valid.
Subsequently, we provide input-parameter sets describing six
different mixtures. Three of these find application in organic
photovoltaics and are characterized with a difference in
solubility of the two solutes in the solvent. The other three
are idealized model mixtures, for which we set the solubility of
both solutes equal for comparison. We present ternary phase
diagrams for all six and for one discuss results of dynamical
calculations by way of example. Next, we show that the early
stage dynamics is in some sense universal and hence covers all
six of our mixtures. In the late stages this seems also to be true
albeit only if evaporation is sufficiently slow. In that case, the
structure of the phase-separated mixture remains unaltered, that
is, dispersed droplets of one phase in the other or bicontinuous.
Coarsening then follows the prediction of classical theory.
Deviation from classical theory may occur if evaporation is not
slow. Droplets that form under slow evaporation need not form
under conditions of fast evaporation, where instead initially a
bicontinuous structure may emerge that later on breaks up into
droplets. We end our paper with a discussion and conclusions.
In our discussion we compare our findings with experimental
dry-layer morphologies and their dependence on the
evaporation rate. We argue that these must be predominantly
determined by the late-stage coarsening in the slow-evaporation
limit.

■ GENERALIZED DIFFUSION MODEL WITH
EVAPORATION

To investigate evaporation-induced phase separation, we make
use of coupled generalized diffusion equations for a ternary
polymer solution, i.e., two polymers that we denote A and B in
a solvent S. We include a prescription for steady solvent
evaporation, which increases the concentration of the solutes
and hence their interaction that in our model drives phase
separation of the unlike solutes. Solvent evaporation is on the
one hand fast enough for nucleation not to play a role when
traversing the metastable regime between the binodal and

spinodal branches,26 and hence that phase separation takes
place via spinodal decomposition. On the other hand, it is also
slow enough so that stratification does not play a role and a
quasi-two-dimensional description suffices.25,27−29 This descrip-
tion is valid under conditions of weak interface adsorption and
fast diffusion that counteracts the accumulation of material near
the surface due to evaporation. The latter applies if the Biot
numbers for the two solutes are much smaller than unity.a,28,29

If our solution were compressible, the continuity equations
dictate that the time evolution of the volume fraction ϕm(r,t) of
component m = A, B, S at position r in our two-dimensional
domain at time t obeys

ϕ σ ζ∂ + ∇· = +jt m m m m (1)

Here, jm(r,t) is the mass current of component m. On the right-
hand side of eq 1 we have added a source term σm that accounts
for evaporation and a noise term ζm that describes thermally
induced density fluctuations. In the following, we will describe
the various ingredients point by point starting with the
contribution of the mass currents.
Within linear nonequilibrium thermodynamics, diffusive

mass transport is driven by gradients in all of the chemical
potentials μA, μB, and μS of the two solutes and the solvent30

∑ μ= − ∇Ljm
n

mn n
(2)

where Lmn = Lnm denotes the symmetric Onsager mobility
coefficients for m, n = A, B, and S. As usual,31,32 the solution is
treated as incompressible, and the volume fractions add up to
unity: ϕA + ϕB + ϕS = 1. This means that the mass currents of
the three components are no longer independent, and this has
consequences on the one hand for the chemical potentials and
on the other hand for the mobilities. Let us first deal with the
chemical potentials.
Chemical potentials can be calculated from a free energy

functional, which we write as

∫ϕ ϕ ϕ ϕ ϕ ϕ= + ‐f fr[ , ] d [ ( , ) ( , )]A B loc A B non loc A B (3)

which is a spatial integral over a dimensionless local free energy
density, f loc, and a dimensionless nonlocal free energy density,
f non‑loc. Here, we have already presumed incompressibility; that
is, we have removed an explicit dependence of the free energy
densities on ϕS, which depend only on ϕA and ϕB.
Furthermore, in eq 3 and below we express free energies in
units of thermal energy kBT, with kB Boltzmann’s constant and
T the temperature, and the position in space r in units of the
size of an elementary molecular building block, presumed equal
for both polymers A and B as well as for the solvent, S.
For the local contribution, we invoke the dimensionless

Flory−Huggins free energy density33−35

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ χ ϕ ϕ

ϕ χ ϕ χ

= + + − −

× − − + + − −

× +

f
N N
1

ln
1

ln (1 )

ln(1 ) (1 )

[ ]

loc
A

A A
B

B B A B

A B A B AB A B

A AS B BS (4)

where χAB, χAS, and χBS are the usual Flory−Huggins interaction
parameters and NA and NB are the degrees of polymerization of
the two solutes. The size of the solvent, NS, is set to unity.
The nonlocal contribution to the free energy penalizes

concentration gradients. It gives rise to the spinodal length scale
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and the interfacial tension that ultimately drives coarsening.
Within a square-gradient theory for an incompressible three-
component system, we have

κ ϕ κ ϕ κ ϕ ϕ= ∇ | + ∇ | + ∇ < ∇‐f
1
2

1
2non loc AA A

2
BB B

2
AB A B

(5)

where the κs are “stiffness” coefficients.36 In principle, these
coefficients consist of contributions from a reduction of the
polymer-chain conformational entropy in concentration gra-
dients as well as from the interactions between the molecular
units.31,37−40 For reasons of simplicity, we take the stiffnesses as
free parameters that are subject to the condition 2κAB < κAA +
κBB. This guarantees that concentration gradients are always
penalized.
Returning to the chemical potentials, these can be obtained

from the free energy by performing functional derivatives with
respect to the various densities. However, due to the
incompressibility approximation our free energy in eq 3 does
not allow us to do that directly. Indeed, it allows us to only
calculate exchange chemical potentials by taking the functional
derivatives of the free energy

μ δ
δϕ ϕ

κ ϕ κ ϕΔ ≡ =
∂
∂

− ∇ − ∇
f

A
A

loc

A
AA

2
A AB

2
B

(6)

and by

μ δ
δϕ ϕ

κ ϕ κ ϕΔ ≡ =
∂
∂

− ∇ − ∇
f

B
B

loc

B
AB

2
A BB

2
B

(7)

These are related to the earlier introduced ones by ΔμA = μA −
μS and ΔμB = μB − μS and describe the change in the free
energy density due to the replacement of solvent by
components A or B.
In order to express the mass currents in eq 2 as a function of

the exchange chemical potentials rather than the usual ones, we
express the chemical potentials of components A, B, and S in
terms of the exchange chemical potentials of components A
and B. We do this by writing μA = ΔμA + μS, μB = ΔμB + μS,
and μS = μS. By making use of the Gibbs−Duhem relation,
ϕA∇μA + ϕB∇μB + ϕS∇μS = 0, we can relate μS to the exchange
chemical potentials of components A and B. We find from
straightforward algebra and making explicit use of incompres-
sibility, i.e., demanding that the various volume fractions add up
to unity.

μ ϕ μ ϕ μ∇ = − ∇Δ − ∇ΔS A A B B (8)

Hence, the gradient in bare chemical potential of solute A is
given by

μ ϕ μ ϕ μ∇ = − ∇Δ − ∇Δ(1 )A A A B B (9)

and that of solute B is given by

μ ϕ μ ϕ μ∇ = − ∇Δ + − ∇Δ(1 )B A A B B (10)

Now that we have worked around the chemical potentials in
incompressible systems, we need to address how incompres-
sibility affects the Onsager coefficients, Lmn, turning them into a
smaller number of effective ones. First we note that the
diagonal elements of the mobility matrix, Lmm, are related to the
tracer diffusivities by Lmm(r,t) = ϕm(r,t) Nm + Dm because under
conditions where component m is dilute mass transport should
obey Fickian diffusion, jm = −Dm∇ϕm. Note that, as advertised,

NS ≡ 1, and Dm is a tracer diffusivity that in principle depends
on the composition of the mixture.31 The off-diagonal
elements, which are symmetric on account of the Onsager
reciprocity relations, can (in principle) be related to micro-
scopic velocity−velocity correlation functions through the
Green−Kubo relations.41 However, since these cross-correla-
tions are typically not known in complex mixtures, we only take
the diagonal elements into account, Λm ≡ Lmm, by ignoring the
cross-mobilities in the Onsager relations, Ln,m≠n. The mass
currents of different solutes remain coupled through the
incompressibility assumption, ∑mjm = 0.30

The incompressibility assumption suppresses inhomogene-
ities in the density and is enforced either by introducing
advective mass transport in the so-called fast-mode theory32 or
by applying the so-called slow-mode theory. In slow-mode theory
an effective potential U is added to the chemical potential of the
solutes that enforces that the sum of currents add up to zero.31

For mixtures in which all components, including the solvent,
have the same molecular volume and the same diffusivity, fast-
and slow-mode theory are equal.31,32 However, if one
component is much more mobile than the others, fast-mode
theory predicts that this component dominates the kinetics,
whereas in slow-mode theory this is true for the slowest
components. From calculations that we do not present in this
work, we conclude that our key findings do not depend on the
choice between fast- and slow-mode mobilities.
Focusing our discussion on slow-mode theory, the transport

equations can be written as31,42

μ= −Λ ∇ + =U mj ( ) for A, B, Sm m m (11)

with Λm the diagonal components of the Onsager mobilities.
From the incompressibility relation ∑mjm = 0 we conclude that
the effective potential, U, obeys ∇U = −(ΛA∇μA + ΛB∇μB +
ΛS∇μS)/(ΛA + ΛB + ΛS).

31 If we insert this into the transport
equations of eq 11, and substitute the chemical potential
gradient, ∇μm, by the exchange chemical potential ∇Δμm =
∇μm − ∇μS from with the gradients in bare chemical potential
given in eqs 8−10, we obtain

μ μ= −Λ ∇Δ − Λ ∇ΔjA AA A AB B (12)

and

μ μ= −Λ ∇Δ − Λ ∇ΔjB BA A BB B (13)

Here, we have introduced the slow-mode mobility coefficients

Λ =
Λ Λ + Λ

Λ + Λ + Λ
( )

AA
A B S

A B S (14)

Λ = Λ = −
Λ Λ

Λ + Λ + ΛAB BA
A B

A B S (15)

and

Λ =
Λ Λ + Λ

Λ + Λ + Λ
( )

BB
B A S

A B S (16)

In case the layer is dry, if ϕS = 0, we retrieve from these
expressions those for the classical incompressible binary
mixture of components A and B, jA = −jB = −ΛAA∇(μA −
μB) with ΛAA = ΛBB = −ΛAB. In the other extreme case where
ΛS ≫ΛA,ΛB, we find that the mobilities in eqs 14−16 reduce to
ΛAA ≈ ΛA, ΛBB ≈ ΛB, and ΛAB ≈ 0. Hence, the fastest mode
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drops out, and the kinetics are determined by the slowest
components.
Finally, to obtain the generalized diffusion equations, we

insert our mass currents, which now enforce incompressibility,
into the continuity equations (1), giving

ϕ
μ μ σ ζ

∂
∂

= ∇·Λ ∇Δ + ∇·Λ ∇Δ + +
t
A

AA A AB B A A (17)

for component A and

ϕ
μ μ σ ζ

∂
∂

= ∇·Λ ∇Δ + ∇·Λ ∇Δ + +
t

B
BA A BB B B B (18)

for component B.
This leaves us to discuss the evaporation terms, σA and σB,

and the noise terms, ζA and ζB, in these equations. Starting with
the first, presuming that only the solvent evaporates, the overall
solute concentration ϕ ≡ ϕA + ϕB increases in time due to
evaporation. This happens at a rate α(r,t) ≡ ∂ϕ(r,t)/∂t that in
principle depends on the local composition, vapor pressure,
time, and so on.43 To simplify interpretation of our findings
and control the evaporation rate, we ignore any local and
temporal variations. In that case α becomes a control variable.b

This then translates to the evaporation terms in eqs 17 and 18
as σA = αϕA/(ϕA + ϕB) and σB = αϕB/(ϕA + ϕB).
We need to supplement our kinetic equations with initial

conditions. As already advertised, we ignore nucleation
processes for the short time needed to traverse the metastable
region in the phase diagram. Hence, in our calculations phase
separation starts when the solution crosses the spinodal
concentration, ϕ0 = ϕA(r, t = 0) + ϕB(r, t = 0). At that point
we know the overall composition of the solution because it is
fixed. The spinodal we calculate by evaluating the determinant
of the Hessian of our local free energy in eq 4 and equating it to
zero. This fixes ϕA(r, t = 0) and ϕB(r, t = 0) if we equate them
to the uniform spinodal concentrations. Because of our
assumption of steady evaporation, at time t = (1 − ϕ0)/α all
the solvent has evaporated. This means that at time t = (1 −
ϕ0)/α the layer is dry and that for longer times the kinetic
equations of eqs 17 and 18 no longer apply. We stop the
numerical evaluation at that point in time.
Finally, the stochastic noise terms obey the fluctuation−

dissipation theorem, allowing us to connect them to our kinetic
coefficients according to44−48

ζ

ζ ζ δ δ

⟨ ⟩ =

⟨ ′ ′ ⟩ = − ∇Λ ∇ − ′ − ′

t

t t t t t

r

r r r r r

( , ) 0,

( , ) ( , ) 2 ( , ) ( ) ( )

m

m n mn
(19)

for m, n = A, B. This now completes our discussion of all the
ingredients of our theoretical description.
We numerically solve eqs 17 and 18 using a standard finite-

difference method on a periodic 512 × 512 square lattice. We
approximate gradients and curvatures using a central-difference
description and perform time steps using adaptive explicit Euler
steps.49 Again, at t = 0 the mixture is homogeneous, and for t >
0 concentration fluctuations are implemented at each time step
using the discretized form of eq 19. Details are given in the
Appendix.

■ INPUT PARAMETERS AND NUMERICAL
CALCULATIONS

The generalized diffusion equations of eqs 17 and 18 cannot be
solved exactly for all times and conditions. Therefore, we rely in
large part on a numerical evaluation. This we do for parameter
values representing a variety of ternary solutions consisting of
solutes A and B in a solvent S. Half of the mixtures we focus
attention on find applications in organic photovoltaics,16,17,27

and the remainder are idealized model mixtures for comparison.
The mixtures for organic photovoltaics are asymmetric in the
sense that the solutes A and B have different solubilities in the
solvent S, whereas the model mixtures are symmetric in this
sense. As we shall see below, whether or not the solution is
symmetric has no impact on the early stage kinetics of phase
separation but can affect the late stages.
The input-parameter sets corresponding to the various

mixtures are presented in Table 1. Given are the Flory−

Huggins interaction parameters, degrees of polymerization,
gradient stiffnesses, diffusivities, and compositions. Entries I−
III are the idealized mixtures, and entries IV−VI refer to the
experimentally studied mixtures for which we take exper-
imentally determined values for the various parameters.16,17,27

The interaction parameters were established by means of
contact-angle measurements, and the degrees of polymerization
were estimated from the molecular weights.16,17,27 According to
our calculations, all mixtures have a single miscibility gap and
under appropriate conditions show coexistence of two phases.
Mixture IV represents a “DPP” copolymer (diketopyrrolo-

pyrrole−quinquethiophene) and a “PC70BM” ([6,6]-phenyl-
C71 -butyric acid methyl ester) fullerene derivative in the
solvent chloroform.16,17 Mixture V models a “F8” (poly(9,9-
dioctylfluorenyl-2,7-diyl)) polymer and a “PC60BM” ([6,6]-
Phenyl C61-butyric acid methyl ester) fullerene derivative in the
solvent chlorobenzene.27 Mixture VI is modeled on an “APFO-
3” (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4′,7′-di-2-thien-
yl-2′,1′,3′-benzothiadiazole])) polymer and a PC60BM fullerene
derivative dissolved in chloroform.27 Mixtures IV−VI have in
common that the solubility of the polymer in the indicated
solvents is larger than that of the fullerene derivatives. This
expresses itself in solute−solvent interaction parameters which
are nonzero and unequal degrees of polymerization. For the
symmetric mixtures we put the solute−solvent interaction

Table 1. Values of the Parameters for Mixtures of Solutes A
and B in Solvent Sa

mixture χAB χAS χBS NA NB DB/DA A:B

I(a) 0.75 0.0 0.0 10 10 1 1:1
I(b) 0.75 0.0 0.0 10 10 1 1:2
II 0.75 0.0 0.0 100 100 1 1:2
III 1.5 0.0 0.0 10 10 1 1:2
IV(a)16,17 1.0 0.4 0.9 89 7 1 1:2
IV(b)16,17 1.0 0.4 0.9 89 7 10 1:2
V(a)27 1.1 0.36 0.9 720 5 10 1:1
V(b)27 1.1 0.36 0.9 720 5 10 1:4
VI27 0.45 0.51 0.89 66 5 10 1:4

aMixtures I−III are symmetric, and mixtures IV−VI are asymmetric.
The latter are applied for organic photovoltaic materials.16,17,27 The χ’s
are dimensionless interaction parameters, the N’s are the numbers of
segments per molecule, the κ’s are concentration-gradient stiffnesses,
and the D’s are tracer diffusivities. Further, the stiffnesses have values
κAA = κBB = 1 and κAB = 0.1.
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parameters equal to zero and choose equal degrees of
polymerization. Mixtures I−III can be seen as pseudobinary
blends where the effective repulsion between the solutes is
reduced due to the presence of solvent.50−53

How this choice of parameters impacts upon the phase
behavior of these different mixtures is shown in Figure 1. The
phase diagrams in the figure we have calculated from Flory−
Huggins theory.c Critical point, binodal, and spinodal are
indicated in red (gray in print), blue (dark gray), and green
(light gray), respectively. Tie lines connect phases at equal

chemical potential and are indicated with thin blue (dark gray)
lines.
As we can see from Figure 1, the phase diagrams of mixtures

I−III are symmetric; that is to say, the critical point is located at
a blend composition of value 0.5, and the tie lines are
horizontal. This is not so for mixtures IV−VI. For mixtures IV
and VI the tie lines have a positive slope, indicating that the
polymer-rich phase is more dilute than the fullerene-rich phase.
In other words, tilted tie lines indicate solvent partitioning takes
place. For mixture V the sign of the slope depends on the

Figure 1. Calculated phase diagrams using the Flory−Huggins parameters of mixtures I−VI in Table 1. In blue (black) we have indicated the binodal
of which the coexisting phases are connected by tie lines. The green (light gray) line represents the spinodal, and the red (dark gray) arrows
represent the phase trajectories followed upon evaporation in our numerical simulations.
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overall solvent content. For dilute solutions the sign of the
slope is negative, implying that the polymer-rich phase is less
pure than the fullerene-rich phase, whereas for concentrated
ones the slope is positive.
To see how the evaporation rate impacts upon the phase

separation, we take as a representative example mixture IV(b).
The concentration path that we follow during the evaporation
of solvent is indicated in Figure 1 by the red (dark gray) arrow
as in fact for the other mixtures as well. In the process, the
overall blend composition remains constant as only the solvent
evaporates. To solve the dynamical equations, we need to input
the tracer diffusivities of the various components. For the ratios
of the tracer diffusivities of the solutes, we assume that they are
equal to the ratio of their molecular size and is indicated in
Table 1. The absolute time scale that we denote by τL in our
numerical solution we present in the following section and is
not of importance at this point.
Results of our numerical evaluation of the time evolution of

phase separation induced by steady evaporation for the mixture
IV(b) is given in Figure 2, for a very low dimensionless

evaporation rate of α̃ = 4 × 10−7 to be discussed in more detail
in the following section. Indicated in the top series of images is
the local composition, ν(r,t) = ϕA(r,t)/ϕ(r,t), and the bottom
ones the local concentration, ϕ(r,t) = ϕA(r,t) + ϕB(r,t), as a
function of dimensionless time. We recall that in our
calculations the spinodal is traversed at time t = 0. Focusing
on the top series, so the composition as a function of time, we
find that for t < τL not much seems to be happening, while for t

> τL a texture characterized by fullerene-rich droplets
embedded in a polymer-rich matrix rapidly emerges and
subsequently coarsens. Because of this, it seems natural to dub
τL a “lag time” before phase separation seemingly sets off.d As
we shall see, this is not quite accurate as spinodal
decomposition does take place for t < τL.
The bottom series in Figure 2, depicting the time evolution

of the local total solute concentration, highlights the preference
of the solvent for residing in the polymer-rich phase. This
partitioning of solvent results from the difference in solubility of
the two solutes. Because the polymer-rich phase is enriched in
solvent, the more concentrated fullerene-rich phase becomes
the dispersed phase despite its 2:1 excess. This is in agreement
with experimental observations.16

If we increase the evaporation rate by a factor of 100, we
obtain morphologies that are inverted as can be seen in Figure
3. In this case, first a bicontinuous structure emerges that

subsequently breaks up into elongated polymer-rich droplets in
a fullerene-rich phase. This is because for early times, where the
solution is dilute, the two coexisting phases are equal in volume
because the overall concentration and composition is close to
the midpoint of the tie line. For later times, i.e., when the
overall concentration is larger, the volume of the polymer-rich
phase becomes smaller than that of the fullerene-rich phase
because the overall concentration and composition are closer to
the binodal of the fullerene-rich phase. Apparently, the
evaporation rate in combination with the blend composition
and the level of asymmetry of the phase diagram dictates what
phase will be the dispersed phase and what phase will be the
continuous phase.
From the images in Figures 2 and 3 more information can be

extracted, e.g., the extent of phase separation and the typical
length scale of the evolving structure (see Figure 4). The
former we identify by probing the smallest and largest values of
the blend composition ν in the entire domain. The latter we
obtain from taking the Fourier transform of the local
composition ν(r,t) (the structure factor). The green (light
gray) symbols in Figure 4A represent the time evolution of the
composition and confirm that with ongoing evaporation the
composition variations remain small for times below τL. This is
not surprising because the driving force for phase separation
remains weak and the spinodal length scale, indicated with blue

Figure 2. Evaporation-induced structure development in a ternary
polymer solution. The color (grayscale) codings indicate differences in
blend composition of the solute, ν = ϕDPP/(ϕDPP + ϕPC70BM), and

differences in total concentration ϕ = ϕDPP + ϕPC70BM, with ϕDPP and

ϕPC70BM the concentrations of DPP and PC70BM (fullerene),
respectively. We have calculated these structures for the parameter
values of mixture IV(b) in Table 1 and scaled evaporation α̃ = 4 ×
10−7. The evaporation rate has been rendered dimensionless by the
factor 1/χABτL with χAB the interaction parameter between the solutes
and τL is the lag time (see main text), defined by the time, t, at which a
phase-separated structure becomes discernible (see also Figure 4).

Figure 3. Evaporation-induced structure development in a ternary
polymer solution. The color (grayscale) codings indicate differences in
blend composition of the solute, ν = ϕDPP/(ϕDPP + ϕPC70 BM), and

differences in total concentration ϕ = ϕDPP + ϕPC70BM, with ϕDPP and

ϕPC70BM the concentrations of DPP and PC70BM (fullerene),

respectively. The parameters are equal to those in Figure 2, except
that evaporation is 100 times faster.
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(dark gray) symbols, is large, requiring mass to be transported
over large distances. As time proceeds, the mixture is further
destabilized, and the spinodal length decreases until rapid
bifurcation of the composition in the polymer-rich and
polymer-poor regions takes place at time τL.
Shortly following the bifurcation, we find the composition

and concentration of the coexisting phases to approach their
respective binodal values. This means that the fullerene-rich
phase is almost pure shortly after the lag time, whereas the
polymer-rich phase initially contains a considerable amount of
fullerene but becomes more pure as the overall concentration
increases with time due to evaporation. Hence, the time
evolution of the phase purity of the phase-separated domains is
predominantly dictated by thermodynamics.
Now that we have discussed what phases that form in

mixture IV(b) constitute the minority or majority phases, and
what their phase purity is, we focus on the typical length scales.
As already advertised, we probe these with the aid of the time-
resolved static structure factor, S(q), which we calculate by
radially averaging the Fourier transform of the composition
field. To perform the Fourier transform, we impose periodic
boundary conditions. q*(t) in Figure 4A is the value of the
momentum transfer at which the structure factor S(q) takes its
maximum value. For times t < τL, we find it to increase with
time because the solution moves increasingly deeply into
biphasic regime due to evaporation.24,25 Consequently, the
mixture becomes increasingly unstable with time.
At time t = τL, q*(τL) takes its maximum value. It seems

plausible that the associated length scale can be identified as an
emerging structural wavenumber that potentially dictates the
late-stage structure in the dry film. For times t > τL, the
structural length scale increases with time on account of
coarsening. How much of the emerging structural length scale
survives depends on how much time remains for coarsening to
modify it. If there is sufficient time for the emerging structure
to coarsen, information about it will be lost.
Figure 4A shows that the emerging structural length scale

increases more rapidly for short times following the bifurcation
than for later times, suggesting that different processes are at
play. Inspection of the late-stage structure factor in Figure 4B
confirms this. This figure shows that following the emergence

of the spinodal peak at the wave vector q*(τL), a second peak
appears at a smaller wavenumber. The spinodal peak decreases
in intensity, whereas the peak height associated with the second
length increases with time. The two time scales mentioned
correlate with these two processes. The question now arises as
to what causes the second length scale to appear.
From the real space images we find that for early times

following the almost instantaneous phase separation rapid
coalescence of droplets takes place. This process gives rise to
the formation of droplets with an area that is twice as large as
that of the initial ones. This gives rise to a second length scale
that exceeds the initial one by a factor of √2, consistent with
the approximate ratio of the peak positions. For later times, the
predominant wavenumber seems to decrease with the one-third
power of time, indicating late-stage coarsening taking over. In
conclusion, we put forward that initially rapid droplet
coalescence takes place after which we enter the regime of
Ostwald ripening.
How the various length scales develop with time and how

they are affected by the rate of evaporation we discuss next. As
we shall see, a unified picture emerges for all mixtures I−VI, at
least for early times. For late times, we find that structure
formation in asymmetric mixtures may differ from that in
symmetric ones.

■ UNIVERSALITY AT THE EARLY STAGES OF
DEMIXING

As we have seen in the previous section, evaporation-driven
phase separation in solvent-borne polymer blends is charac-
terized by two kinetic regimes. The transition between these
two regimes coincides with the lag time, τL, to bifurcation, i.e.,
to rapid demixing. We find this for all mixtures I−VI (Table 1)
and evaporation rates that we studied. For short times, t < τL,
we have spinodal decomposition, but not as we know it due to
the ongoing evaporation. In this section we analyze spinodal
decomposition under steady evaporation by applying a
linearized theory. We calculate how the spinodal wavenumber
increases with time and deduce from that a time scale that we
can connect to the lag time τL. The theory allows us to
approximately collapse the numerical results of all mixtures

Figure 4. Structural development of the morphologies in Figure 2 as a function of time, t, in units of the lag time, τL. (A) The left axis indicates the
composition in green (light gray), and the right axis indicates the wavenumber in blue (dark gray). The filled triangles represent the predominant
structural wavenumber obtained numerically, whereas the solid line is predicted according to the linearized theory in eq 29 that is expected to hold
for early times. (B) Structure factor, S(q), for different times running from t/τL = 1 (light gray) to t/τL = 5.0 (black). The inset highlights the
appearance of two structure peaks.

Macromolecules Article

DOI: 10.1021/acs.macromol.6b00537
Macromolecules 2016, 49, 6858−6870

6864

http://dx.doi.org/10.1021/acs.macromol.6b00537


onto a single master curve, showing near universality of both
the symmetric and asymmetric mixtures.
The key assumptions of our approximate evaluation of our

dynamic equation are (i) the variations in concentration and
composition are small in the early stages and (ii) that solvent
partitioning does not influence the early stage dynamics. The
latter assumption implies that cooperative dif fusion, i.e., the
process associated with amplification of concentration f luctua-
tions (for t > 0), is unimportant and that interdif fusion, i.e., the
process associated with the amplification of composition
f luctuations, prevails. Hence, in eq 11 we set the solvent
current jS to zero, implying that jA = −jB and that the total
concentration of solutes remains spatially uniform, but
increases with time as ϕ(t) = ϕ0 + αt with ϕ0 the spinodal
concentration that we cross at t = 0.
Under these assumptions, we can express the mass current as

μ μ= −Λ∇ Δ − Δj ( )A A B (20)

where Λ = ΛAΛB/(ΛA + ΛB) is the slow-mode mobility
coefficient and κ ≡ κAA + κBB − 2κAB > 0 is an effective
concentration-gradient stiffness. As discussed previously, we
write the bare mobilities as Λm = ϕmNmDm with Dm the tracer
diffusivity of polymer m that we take constant, so that at high
dilution, ϕm → 0, we retain Fickian diffusion, jm = −Dm∇ϕm for
m = A, B, and S that respectively holds for low concentrations
of polymer A, polymer B, or solvent.
If we now introduce the transformation of variables (ϕA(r,t),

ϕB(r,t)) → (ϕ(t), ν(r,t)), with ν ≡ ϕA/(ϕA + ϕB) the
composition and ϕ ≡ ϕA + ϕB the concentration, we obtain

ϕ ν
κϕ ν= −Λ∇

∂
∂

− ∇
⎛
⎝⎜

⎞
⎠⎟

f
j

1
A

loc 2

(21)

Here, we have made use of the exchange chemical potentials in
eqs 6 and 7.
It is now expedient to express the local free energy density in

eq 21 in terms of a free energy per solute segment, fl̃oc, as f loc ≡
ϕfl̃oc. This quantity obeys

ν ν ν ν ν ϕχ̃ = + − − − +f
N N
1

ln
1

(1 ) ln(1 ) ...loc
A B

2
AB

(22)

where we have discarded all terms independent of ν as well as
those linear in ν, as these do not contribute to the mass current.
Note that eq 22 illustrates why our mixtures become unstable:
the concentration and therefore the effective interaction
parameter, ϕχAB, increase due to steady evaporation.
To finally obtain the approximate generalized diffusion

equation, we substitute the local free energy of eq 22 into eq 20
and subsequently insert this into the continuity equation ∂tϕA +
∇·jA = 0, giving

ϕ κϕ ν∂ = ∇·Λ∇ ∂ ̃ − ∇νf( )t loc
2

(23)

with the concentration ϕ = ϕ0 + αt and with composition field
ν = ν(r,t). Note that Λ = Λ(ν(r,t), ϕ(t)) depends on the spatial
coordinate and on time. We reiterative that ν(r,t) = ν0 + δν(r,t)
with ν0 the overall spinodal composition at t = 0 and δν the
time- and position-dependent spatial deviation from it.
For early times, after entering the spinodal region at t = 0, the

composition fluctuations remain small, allowing us to linearize
the diffusion equation and obtain

δν κϕ δν∂ = ∇ ∂ ̃ | − ∇νν νt M f t t tr r( , ) ( ( ) ( ) ) ( , )t 0
2

loc
2

0 (24)

with M0 ≡ Λ/ϕ0 a renormalized mobility coefficient at the
spinodal concentration, given by

ν ν ν ν= − + −M N D N D N D N D(1 ) /( (1 ) )0 0 A A 0 B B 0 A A 0 B B
(25)

which is independent of the overall solute concentration.
The spatial Fourier transformation of the linearized equation

reads

δν κϕ δν∂ ̂ = − ∂ ̃ | + ̂νν νq t q M f t t q q t( , ) ( ( ) ( ) ) ( , )t
2

0 loc
2

0

(26)

with q = |q| the magnitude of the momentum transfer and δν ̂
the Fourier transform of δν. From eq 22 we find given that at
the spinodal ∂νν + fl̃oc|ν0(0) = 0 holds, that ∂νν + fl̃oc|ν0(t) =
−2χABαt, with α the constant evaporation rate.
Integration of eq 26 over time yields

δν
δν

̂
̂

= −
q t
q

R q t tln
( , )
( , 0)

( , )
(27)

with relaxation rate

χ α κ ϕ α= − + +⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟R q t q M t t q( , )

1
2

2
0 AB 0

2

(28)

and ϕ0 (again) the spinodal concentration at time t = 0.
Inspection of eq 28 shows that immediately after crossing the

spinodal the relaxation rate is positive for short-wavelength
fluctuations. This implies that they relax. The opposite is true
for long-wavelength fluctuations, for which the relaxation rate is
negative and hence spontaneous fluctuations grow in
amplitude. The amplification is slow because mass transport
has to take place over large distances, and the composition
variations remain small, |δν| ≪ ν0. As time progresses, the
relaxation rate also becomes negative for smaller wavelengths.
Hence, the system becomes further destabilized, and the critical
length scale for fluctuation amplification decreases with time.
This confirms what we found numerically in Figure 4.
We obtain the corresponding time-dependent spinodal

length by maximizing eq 28, giving

χ α
κ ϕ α*

=
+

q t
t

t
( )

(2 )
AB

0 (29)

In Figure 4 we compare this expression (solid line) with our
numerically obtained results (filled triangles) for t < τL. We
indeed obtain excellent agreement between the numerically
generated data and the prediction from linearized theory.
For short times, t ≪ 2ϕ0/α, we find that the wavenumber

grows with the square root of time, χ α ϕ κ
*

≈q t t( ) /2AB 0 . For

long times, t ≫ 2ϕ0/α, the wavenumber becomes time
independent, χ κ

*
∝q /AB , and asymptotes to the value

obtained for a classical temperature quench of a binary polymer
mixture without a solvent.
Now that we understand how the evaporation rate affects the

spinodal length scale, it makes sense to investigate evaporation
affects the growth rates of the most unstable mode. For this
purpose we evaluate eq 27 at the spinodal wavenumber given
by eq 29. First, we insert eq 29 for q*(t) in the expression for
the amplification rate, R, in eq 28, giving
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κ ϕ α
*

= − +
*

R q t t t M q t( ( ), ) ( (1/2) ) ( )0 0
4

(30)

which is zero at t = 0 but becomes negative with time. The
maximum growth rate of fluctuations apparently grow with the
square of the evaporation rate and time for times t < 2ϕ0/α but
slows down to a linear dependence on evaporation rate and
time for times t > 2ϕ0/α.
Our predictions for the spinodal length scale equation in eq

29 and the maximum amplification rate in eq 30 break down at
the point where |δν| ≈ ν0. This allows us to estimate at what
point nonlinear effects become important, nonlinear effects that
lead to the rapid separation of phases after the lag time τL. This
means we can use eqs 29 and 30 to estimate that lag time.
Inserting eqs 29 and 30 into eq 27 and inserting τL for the

time t gives

κ ϕ ατ
χ ατ

κ ϕ ατ
τ= +

+
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r Mln

1
2 (2 )L 0 L 0

AB L

0 L

2

L
(31)

Here, rL = δν̂(q*(τL), τL)/δν ̂(q*(τL), 0) is a measure for the
maximum amplification of composition fluctuations at what we
identify as the crossover to the coarsening regime. Because of
the logarithmic dependence, this lag time is only weakly
affected by the value of rL. Plausibly the amplification factor in
Fourier space is the same as that in real space, and because of
the logarithmic dependence we need not to compare the
magnitude of the fluctuation to the composition at the spinodal.
For all intents and purposes the left-hand side of eq 31 is a

constant of τL. This means that the right-hand side depends on
the evaporation rate and the various other parameters. For this
reason, we treat rL as a fitting parameter and use eq 31 to
establish how our numerically obtained values for τL depend on
the evaporation rate α and all the other parameters for all
mixtures studied.
Comparison with our numerical data shows that the lag time

τL and associated wavenumber q*(τL) that we calculate from
our linearized theory do indeed correlate with those of the
emerging structure at the moment of composition bifurcation.
For sufficiently slow solvent evaporation, ατL ≪ 2ϕ0, the lag
time obeys

τ κϕ χ α∼ M( / )(1/ )L
3

0 0 AB
2

(32)

which confirms the weak dependence of the lag time on rL:
τ ∝ rlnL L

3 .
Equation 32 points at the existence of two natural time

scales. The first, τd ≡ κϕ0/Λ, is associated with phase separation
by interdiffusion over a characteristic distance κϕ0 . The

second time scale, τe ≡ 1/χABα = 2/|∂t ∂νν + fl̃oc|ν0 |, is associated
with the rate at which the mixture is destabilized by
evaporation. Hence, faster diffusion and faster evaporation
give rise to a decrease of the lag time. In fact, from eq 32 we
find that the lag time can be written as

τ τ τ∝L d
1/3

e
2/3

(33)

and the emerging structural wavenumber at the lag time as

τ
κϕ

τ
τ κϕ

α
*

∝ ≡ ̃
⎛
⎝⎜

⎞
⎠⎟q ( )

1 1
L

0

d

e

1/6

0

1/6

(34)

with α̃ ≡ τd/τe the dimensionless evaporation rate.

Equations 32−34 hold for sufficiently slow evaporation. This
is true if ατL ≪ 2ϕ0, or, in dimensionless units, if α̃ ≪ 8ϕ0

3χAB
3

holds. Under this condition the wavenumber and lag time
respectively scale with the 1/6 and the −2/3 power of the
evaporation rate. For fast evaporation, i.e., α̃ ≫ 8ϕ0

3χAB
3, the

wavenumber and lag time respectively scale with the zeroth and
the −1/2 power.
We have verified these findings by numerically solving the

generalized diffusion equations in eqs 17 and 18 for the host of
parameter values given in Table 1. Figure 5 indeed shows that

the numerically found (symbols) typical wavenumber of the
emerging structure at the lag time as well as the lag time itself
correspond to this linearized theory (solid lines). This confirms
our assumptions that (i) prior to the lag time the composition
fluctuations remain relatively small and (ii) the influence of
concentration fluctuations is negligible in that regime. These
findings show that we have a good understanding of early stage
spinodal demixing of ternary mixtures under the action of
evaporation and are able to predict the lag time and the
corresponding predominant wavenumber. In the next section
we discuss how evaporation influences the coarsening dynamics
during the late stages of demixing.

■ EFFECT OF EVAPORATION ON LATE-STAGE
COARSENING

To what extent the final dry-layer morphology resembles the
emerging structure depends on its evolution during the late
stages of phase separation, as already discussed. This influence
is largely determined by the time available to structure
development, which is set by the evaporation rate. Evaporation
not only determines the time period of coarsening but may also
affect the coarsening mechanism itself. That this must be so is
evident from Figures 2 and 3 which show that morphological

Figure 5. Emerging structural wavenumber q*(τL) (main figure) at the
crossover from the early to the late stages of demixing and the lag time
τL (inset) at which this crossover appears as a function of
dimensionless evaporation rate α̃. We have rendered the units
dimensionless using the length ϕ κ0 and the time scale τd of

interdiffusion. The numerical results (symbols) are curve fitted with a
single parameter from the linearized theory in eq 31 (solid lines) and
approach limiting power laws (dashed lines) for slow evaporation, α̃≪
8ϕ0

3χAB
3. In this limit, the wavenumber and lag time respectively scale

with the 1/6 and the −2/3 power of evaporation rate. For fast
evaporation, α̃ ≫ 8ϕ0

3χAB
3, the wavenumber and lag time respectively

scale with the zeroth and the −1/2 power. The various system
parameters are given in Table 1.
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transients, i.e., structural changes during the late stages, can
indeed be observed. This is especially true if the volume ratio of
the coexisting phases is strongly time dependent. As shown, the
volume ratio becomes time dependent for sufficiently fast
evaporation in combination with an appropriate blend
composition and pronounced asymmetry of the phase diagram.
In this section, we quantify how the morphological

transients, as observed for mixture IV(b), affect the time
evolution of the associated structural length scales. We achieve
this by comparing the coarsening dynamics of mixture IV(b)
with that of mixture II, for which we do not expect such
transients because of its highly symmetric phase diagram (see
Figure 1). The coarsening dynamics for mixture II is hence not
expected to be influenced by evaporation, but rather to obey
classical behavior. Its phase-separated morphology is dispersed
due to the off-critical 1:2 solute ratio, and should therefore
coarsen via Ostwald ripening, i.e., growth of large droplets at
the expense of small ones to reduce interfacial free energy. For
this mode of coarsening Lifshitz−Slyozov−Wagner (LSW)
theory predicts the average domain size to increase with the
one-third power of time, both in two and three spatial
dimensions (except for a logarithmic correction in 2D).55,56

Notably, as the classical time evolution of the structural
wavenumber characterizing the phase-separated morphology
must rely on a fixed volume ratio of the coexisting phases,
deviation from it is likely to occur once morphological
transients are present.
We obtain the time dependence of the structural wave-

numbers for mixtures II and IV(b) by solving the generalized
diffusion equations for various evaporation rates. In Figure 6 we
present the calculated predominant wavenumber (symbols) as
a function of time for the symmetric (A) and asymmetric (B)
cases. The dotted lines indicate the classical one-third time
exponent. We indeed find that at long times for slow
evaporation the coarsening kinetics of both mixtures are
consistent with the LSW theory. In contrast, as expected from
the morphological transients expressed by Figure 3, consistency
with LSW theory is not achieved for fast evaporation of solvent
from mixture IV(b) (Figure 6B). We note that the numerical
calculation corresponding to the highest evaporation rate was
performed until dryness was reached.
In conclusion, late-stage coarsening in highly asymmetric

phase-separated mixtures loses universality in the limit of fast
evaporation. We attribute this to incomplete structural
relaxation within the time period available to coarsening.

■ DISCUSSION AND CONCLUSION

Thin solvent-cast polymer-composite films find application in
organic photovoltaics.17,27 We have applied a quasi-two-
dimensional generalized diffusion model to describe how
evaporation drives the lateral phase separation of the two
solute components, which act as an electron donor and
acceptor in such films. Our model applies to those casting
conditions where no vertical, substrate- or evaporation-driven,
stratification takes place. We have considered various practical
mixtures where the two components have a different solubility
in the solvent but also various idealized symmetric mixtures
where the two solutes do have the same solubility. We find that
whether or not the mixture is symmetric has no impact on the
early stage kinetics of phase separation. In the early stages of
phase separation, evaporation leads to a spinodal length that
decreases with time. This contrasts with the classical case of an
instantaneous quench, where the spinodal length is independ-
ent of time.
At the end of the spinodal-like early stages a sharp crossover

takes place, where the compositions of the coexisting phases
rapidly approach their binodal values. At the crossover a
structure emerges of which the characteristic length scale
decreases with the one-sixth power of the evaporation rate, for
both symmetric and asymmetric mixtures. The emerging
structure can either be dispersed or bicontinuous. For
symmetric mixtures this type of morphology is solely
determined by the blend ratio of the solutes. In contrast, for
asymmetric mixtures the emerging morphology strongly
depends on the concentration at which the crossover takes
place. This concentration is determined by the rate of
evaporation.
To what extent the dry-layer morphology resembles this

emerging structure depends on the structure development
during the late stages of phase separation. For increasingly slow
evaporation, an increasing extent of structure development is
possible because more time for coarsening is available. Under
the condition of slow evaporation, the predominant structural
length seems to increase with the classical one-third power of
time. For fast evaporation, deviations from universal behavior
may present themselves, especially if the solubility of the solute
components differs. We conclude that the rate of evaporation
controls both the type of morphology and its characteristic
length scale.
We find qualitative agreement between the structure of our

laterally phase-separated solutions with the ones obtained

Figure 6. Time evolution of the predominant structural wavenumber, q*, that characterizes a symmetric (A) and an asymmetric (B) mixture. The
parameters of mixtures respectively II and IV(b) are as given in Table 1 for rates of solvent evaporation α̃ = 1.2 × 10−7−1.2 × 10−3 and 4.7 × 10−7−
4.7 × 10−3, respectively. For clarity the curves for different evaporation rates have been shifted parallel to the vertical axis.
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experimentally for mixtures IV and V discussed in the main
text, at least if we presume low evaporation rates.17,27 In that
case we find droplets consisting mainly of the fullerene-based
material in a continuum of the electron-donating polymer. In
this limit, we find from our model calculations that rapid phase
separation occurs near the spinodal concentration. This agrees
with the experiments, where in situ light scattering reveals a
significant increase of the intensity near a concentration that is
consistent with our predictions for the mixture in hand. In
addition, the observed structural length scale of the dry-layer
film increases with the one-third power of the evaporation rate.
This is consistent with the coarsening-dynamics dictated length
scale that dominates the late stages under slow evaporation.
Our model calculations do not seem to agree with the

experimental findings for mixture VI.27 Nilsson et al. find for
that mixture a layered structure perpendicular to the substrate.
This already indicates that stratification has taken place and
hence that the conditions of the experiments are outside the
validity of our theory. Indeed, our model is valid only in the
limit of small Biot numbers, i.e., under conditions where the
diffusive mass transport in the film counteracts concentration
accumulation near the top surface of the evaporating film. In
the experiments of Nilsson et al. for mixture VI, phase
separation does not take place at low concentrations, as is the
case for the experiments on mixtures IV and V. At high
concentrations, the tracer diffusivities of the various solutes are
substantially lower due to caging, suggesting that diffusion
cannot keep up with the advancing interface. So, we surmise
that in experiments on mixture VI the Biot number is large not
small, and hence our theory does not apply.
Our findings strongly suggest that experimental control is

possible over the final morphology of the film by controlling
the evaporation rate and blend composition. Indeed, transitions
between thermodynamics-dictated dispersed morphologies and
kinetics-dictated inverse or bicontinuous morphologies can be
achieved. Maximum control over the morphology is possible if
the polymer−polymer blend ratio is chosen to be close to the
critical ratio and if the solvent is chosen such that the solubility
of the two solutes in it is sufficiently different. Given the
importance of morphologies to e.g. solar cell and membrane
technology, our hope is that our work will inspire experimental
follow up to explore this further.

■ APPENDIX. NUMERICAL IMPLEMENTATION

In order to numerically solve the stochastic generalized
diffusion equation of eqs 17 and 18, we discretize the
fluctuation−dissipation theorem in eq 19

ζ

ζ ζ δ δ

⟨ ⟩ =

⟨ ′ ′ ⟩ = − ∇Λ ∇ − ′ − ′

t

t t t t

r

r r r r

( , ) 0,

( , ) ( , ) 2 ( ) ( )

m

m n mn (35)

where the index m, n = A, B is the label of a component in the
mixture, t time, Λmn the mobility coefficient of components m,
n = A and B, δ the Dirac-delta distribution, and r the position in
2D space that on a square two-dimensional grid we discretize as
rij = [xi + yj]

T for i, j = 1, 2, ..., Ngrid with Ngrid the grid size. On a
square lattice the positional coordinate is [xi + yj]

T = [i − 1 j −
1]TΔx with Δx the lattice spacing. Here, we obtain the thermal
fluctuations by adopting a method by Petschek and Metiu that
they used for binary mixtures with constant mobility and
generalize this for ternary mixtures with concentration-
dependent mobility.57 In this method, spatially correlated

noise fields are generated from common uncorrelated random
numbers.
First, we factorize the Dirac delta distribution as δ(r − r′) =

δ(x − x′)δ(y − y′) and discretize the coordinates (x, y) → (xi,
yj), (x′, y′) → (xk, yl) to obtain δ(r − r′) = δ(xi − xk)δ(yj − yl).
We use central difference to approximate the gradient by dδ(xi
− xk)/dx ≈ (δ(xi + Δx/2 − xk) − δ(xi − Δx/2 − xk))/Δx =
(δ(xi+1/2 − xk) − δ(xi−1/2 − xk))/Δx and subsequently
introduce the Kronecker delta function δik ≡ δ(xi − xk)/Δx
to obtain dδ(xi − xk)/dx ≈ (δ(i+1/2)k − δ(i−1/2)k)/(Δx)2. In
order to obtain the gradient of δ(r − r′), we do the same for
the y coordinate, giving
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where (i, j) and (k, l) are positions on the lattice.
Now, to obtain the discretized divergence, ∇·Λmn∇δ(r −

r′)δ(t − t′), we apply central difference of the form ∇·gij ≈
(g(i+1/2)j

x − g(i−1/2)j
x )/Δx + (g(i+1/2)j

y − g(i−1/2)j
y )/Δx. This gives

the discretized version of the fluctuation−dissipation theorem
as
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with σ2 ≡ (1/Δx)2(Δt/Δx2). Note that (Δx)2 is the number of
segments per coarse-grained cell, so that a smaller Δx implies
larger fluctuations. Finally, we cast the discretized fluctuation−
dissipation theorem in the form
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where we have approximated the mobility coefficients by

Λ = Λ + Λ
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(39)

We generate these correlated noise fields with a method
similar to that of Petschek et al.57 In both our and in their work
uncorrelated fields are defined, which are spatially correlated by
introducing displacements in x and y directions. In eqs 13a and
13b of their work, they have introduced uncorrelated fields that
have zero mean and a variance that is determined by the
mobility M (which roughly corresponds to Λ in our work). We
find that this does not lead to the correct correlated fluctuations
in case the mobility depends on concentration. Here, we let the
variance of the uncorrelated fields, ξ ∈ {νA, νB, μA, μB, γ, η}, be
determined by the variance σ2 (which roughly corresponds to
h2 in their work) via

ξ ξ σ δ δ⟨ ⟩ = 2ij kl ik jl
2

(40)
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and introduce the mobility at the point that the fields are being
correlated.
We correlate these fields in correspondence with eq 12 of the

work of Petschek et al., which is now more involved due to the
concentration-dependent mobility. Unfortunately, starting from
the desired result in eq 38, we can not derive an expression for
the spatially correlated fields ζ in terms of the uncorrelated
fields ξ. By trial we have found the desired results in the form of
the expressions
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and
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where the ν and γ fields generate correlations in the i (x)
direction and the μ and η fields generate correlations in the j
(y) direction. The γ and η fields correlate the noise fields of the
two different components. In this equation sgn is the sign
function, which is 1 for positive cross-mobility ΛAB, −1 for
negative cross-mobility, and 0 otherwise. By taking the product
⟨ζij

mζkl
n ⟩, we find after some algebra that this indeed results in eq

38. If one discards the cross mobilities ΛAB = 0 and assumes
that the other mobilities are position independent, this
expression reduces to the one given by Petschek and Metiu.57

Generalization of this result to systems with more than three
components and to systems with a higher or dimensionality is
straightforward.
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■ ADDITIONAL NOTES
aWe note that the Biot number is a dimensionless quantity that
compares the rate of external mass transport by evaporation to
that of internal mass transport by diffusion. Because our solutes
need not have equal diffusivities, we have one Biot number for
every solute.
bStrictly speaking, even if we ignore local variations and the
solvent evaporation rate is proportional to the overall
concentration of solvent, α ∝ ϕ2(1 − ϕ).43 For short times
after entering the spinodal this can be considered constant.

cThe binodal and tie-lines lines have been obtained using the
common tangent construction,54 which involves equating the
local exchange chemical potentials of coexisting phases I and II
and the osmotic pressures according to μloc,m

0 ≡ μloc,m
I = μloc,m

II

for m = A, B and f loc
II = f loc

I + μloc,A
0 (ϕA

II − ϕA
I ) + μloc,B

0 (ϕB
II − ϕB

I ).
The spinodal lines, which separate the metastable and unstable
regions, have been obtained by solving (∂ϕAϕA

f loc)(∂ϕBϕB
f loc) −

(∂ϕAϕB
f loc)

2 = 0.
dHere, the term lag time, τL, is not to be confused with the lag
time from classical nucleation theory.26
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