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Energetically favoured defects in dense packings
of particles on spherical surfaces†

Stefan Paquay,*a Halim Kusumaatmaja,b David J. Wales,c Roya Zandid and
Paul van der Schootae

The dense packing of interacting particles on spheres has proved to be a useful model for virus capsids and

colloidosomes. Indeed, icosahedral symmetry observed in virus capsids corresponds to potential energy

minima that occur for magic numbers of, e.g., 12, 32 and 72 identical Lennard-Jones particles, for which the

packing has exactly the minimum number of twelve five-fold defects. It is unclear, however, how stable

these structures are against thermal agitation. We investigate this property by means of basin-hopping global

optimisation and Langevin dynamics for particle numbers between ten and one hundred. An important

measure is the number and type of point defects, that is, particles that do not have six nearest neighbours.

We find that small icosahedral structures are the most robust against thermal fluctuations, exhibiting fewer

excess defects and rearrangements for a wide temperature range. Furthermore, we provide evidence that

excess defects appearing at low non-zero temperatures lower the potential energy at the expense of

entropy. At higher temperatures defects are, as expected, thermally excited and thus entropically stabilised.

If we replace the Lennard-Jones potential by a very short-ranged (Morse) potential, which is arguably more

appropriate for colloids and virus capsid proteins, we find that the same particle numbers give a minimum in

the potential energy, although for larger particle numbers these minima correspond to different packings.

Furthermore, defects are more difficult to excite thermally for the short-ranged potential, suggesting that

the short-ranged interaction further stabilises equilibrium structures.

1 Introduction

Virus capsids1 and colloidosomes2 have been successfully modelled
as dense packings of spherical particles constrained to a spherical
surface, in particle-based3–5 and phase-field calculations.6

The equilibrium packings follow from the interplay between
the curvature of the sphere and the interaction between the
particles. For fixed particle size and surface coverage, increasing
the radius of curvature of the surface leads to packings that
exhibit varying numbers of isolated point defects that, for large
enough particle numbers, condense into clusters of defects.6–11

Here, defects are particles that do not have the ideal six-fold
coordination. Studies of particles on unduloids and catenoids
have shown that for small particle numbers a Lennard-Jones
potential produces different minimum energy structures compared
to a purely repulsive Coulomb potential, showing that the range

and type of interaction also affect the geometry of particle
packings on curved surfaces.12 For packings on spherical
surfaces, the minimum energy structures for N = 12, 24, 32,
44 and 48 particles are the same for the Lennard-Jones and
repulsive Coulomb potential, whereas for many other sizes,
including 72, these are different.13,14

In their study of why spherical viruses almost invariably
exhibit icosahedral symmetry, Zandi et al.4 found by Monte
Carlo simulation of Lennard-Jones particles on a spherical surface
that, if the particle number allows it, the equilibrium packings do
in fact have icosahedral symmetry. This effect occurs for the
magic numbers N = 12, 32 and 72, corresponding to T = 1, 3
and 7 icosahedral symmetry. By allowing a switch between larger
and smaller particle sizes, modeling pentameric and hexameric
capsomeres, icosahedral symmetry is also recovered for N = 42,
which is the T = 4 structure. Fejer et al. studied a different model
of rigid bodies consisting of an attractive disk and two repulsive
Lennard-Jones axial sites on top and bottom. These sites induce a
preferred curvature. In this model, icosahedral packings turn out
to be local potential energy minima for N = 12, 32 and 72, but the
T = 4 icosahedral zero temperature structure for N = 42 is only a
minimum energy structure if the disks assemble on top of a
template.15 In the single-particle description that we follow, all
other particle numbers give non-icosahedral structures, often
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with more than the minimum required twelve five-fold point
defects.

Apparently, even for a single particle size, the icosahedrally
packed structures have a lower potential energy per particle
than the packings of adjacent sizes, at least for the low non-zero
temperatures considered.4 This result suggests that viruses
prefer icosahedral symmetry simply because it is the most optimal
packing for the effective interaction between the capsomeres.
The Monte Carlo simulations of ref. 4 are consistent with the
zero-temperature simulated annealing studies of Lennard-Jones
particles packings by Voogd,13 in the sense that they recover
potential energy minima at the same sizes. However, the latter
study provides more detail about the symmetry of all the packings
found. Interestingly, Voogd identifies the global minimum for the
N = 72 packing with a D5h point group, rather than an icosahedral
one, which is one of the structures that Zandi et al. identified at
this size. This discrepancy could be due to the non-zero
temperature in the simulations of Zandi et al., hinting at the
potential importance of entropy. Indeed, our calculations of the
potential energy for both packings confirm that the D5h packing
has lower potential energy while counterintuitively, the icosahedral
packing with fewer defects is entropically stabilised at a non-zero
temperature. A similar finding is reported by Altschuler et al. for the
Thomson problem for N = 42.16

This analysis suggests that temperature could play an
important role in the thermodynamic stability of the symmetry
of dense packings of particles on a spherical surface. For non-
zero temperature, minimum energy does not imply minimum
free energy. Indeed, our computer ‘‘experiments’’ reveal that for
certain numbers of Lennard-Jones particles confined to a
spherical surface, energy favours excess defects, i.e., these
packings have more than twelve defects for very low tempera-
tures. Such energetically stabilised defects also appear for the
Thomson problem14,17 and as grain boundary scars.6–11 Of
course, at higher temperatures, entropy favours excess defects,
in the form of thermally excited dislocations and/or disclinations
analogous to melting in a 2D flat surface. For an extensive
discussion we refer to the review of Strandburg.18

Another question that arises is how representative the
atomic Lennard-Jones potential is for interactions between
complex particles such as proteins and colloids, and how
sensitive the structure of dense particle packings on curved
templates is to the shape of the potential. This question is
relevant because interactions between proteins are arguably
better described by a short-ranged potential,19–21 and Van der
Waals interactions between colloids are also shorter-ranged
(stickier) than predicted by the Lennard-Jones model.22 For
example, the colloidosomes of the Manoharan group are
induced by the presence of polymer molecules that give rise
to extremely short-ranged depletion interactions between the
colloids.23 For three-dimensional clusters it is already known
that the range of the potential strongly influences the potential
energy landscape. Previous work has shown that the shorter
ranged the attractive part of the potential, the larger the number
of local energy minima for a given number of particles.24 Further-
more, for small clusters of short-ranged particles it was found that

temperature has a significant influence on the relative stability of
different packings.25 Finally, in a recent study of particles on
ellipsoidal surfaces, Burke et al. found that the potential softness
plays a crucial role in determining the particle number at which
defects begin to appear.26

To address this issue in the context of particles confined to
spherical surfaces, we consider a Morse potential of much
shorter range than the Lennard-Jones form. For N = 32 and
N r 24, we find for the same particle numbers deep local
potential energy minima that also turn out to have the same
structure. For larger N, the Morse potential produces deeper
local minima in the potential energy landscape as a function of
the N. Furthermore, for those sizes that are a local minimum in
the potential energy for both the Morse and Lennard-Jones
potential, the particle arrangement proved different. Hence, for
a shorter-ranged potential, for the same N, different packings
minimise the potential energy. For Morse particles it also
proved more difficult to thermally excite defects, indicating
that a shorter-ranged potential stabilises the structures. This
property is especially clear in the case of the T = 3 icosahedron
for N = 32.

However, we find that the T = 7 icosahedron for N = 72 is no
longer an equilibrium packing, nor a potential energy minimum.
Thus, while the range of the interaction potential broadens
the temperature range over which structures are stable, it also
influences the symmetry of the equilibrium packing itself. A similar
observation was reported for simulations of disks with an adhesive
edge confined to a spherical surface.3 For adhesive disks, the
effective range of attraction is zero, and in this case, the global
minima for both N = 32 and N = 72 are no longer icosahedral
packings. Thus, although a shorter range appears to help stabilise
the equilibrium structures over a larger temperature range, it also
changes the symmetry of the preferred packing.

Because in our simulations the particles fluctuate between
different packings, we can obtain free energy differences simply
by determining the probability of finding each packing. From
this probability we determine that the icosahedral packing,
which has the fewest defects, is indeed entropically more
favourable than the D5h structure, confirming that the ground
state can exhibit excess defects. This is similar to experimental
observations and computational results for very much larger
systems in the form of grain boundary scars6,10 and for packings
of electrons on a sphere (the Thomson problem).14,17 Grain
boundary scars are predicted to appear around N Z 36010

based on elasticity theory, while excess defects in the form of
scars and rosettes appear for N Z 410 in the Thomson
problem.8,17 On ellipsoidal surfaces Burke et al. found that
for hard particles, excess defects are stable for systems from
N Z 200.26 In this study we consider significantly smaller
particle numbers 10 r N r 100. We note that in ref. 14 some
minimum energy structures with excess defects for N as low
as 44 have been identified, albeit that they do not form scars.

The remainder of this paper is organised as follows. First we
describe in Section 2 the computational methods. We also
provide a discussion of how we quantify defects and how we
characterise them. Then, in Section 3, we discuss how temperature
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influences the stability of packings of Lennard-Jones particles.
In Section 4 we discuss the appearance of defects in the global
minimum and determine free energy differences between the
packings based on how often they are encountered. We continue in
Section 5 to show that the equilibrium structures of Morse particles
are much more robust against thermal fluctuations than those of
Lennard-Jones particles, but that the minimum energy packings
tend to differ from the Lennard-Jones packings at larger N. Finally,
in Section 6, we underline the most important implications of the
three different aspects of this work discussed above.

2 Methods

We consider packings of two different types of particle on a
spherical surface. The first model employs the well-known
Lennard-Jones potential, allowing us to directly compare our
results with those of Zandi et al.4 and Voogd.13 We write the
Lennard-Jones potential in terms of the equilibrium spacing, r0,
rather than the more usual zero-potential distance, to allow for
a straightforward comparison with the Morse potential later on.
Specifically, we have

VLJðrÞ ¼ e
r0

r

� �12
�2 r0

r

� �6� �
: (1)

The minimum value �e occurs at r = r0, so e can be treated as
the interaction strength or pair well depth. The second model
employs the Morse potential

VM(r) = e[e�2a(r�r0) � 2e�a(r�r0)]. (2)

In eqn (2), the parameters e and r0 have the same meaning as in
eqn (1), but now there is an additional parameter a, which can
be used to tune the interaction range. In this work we set a to a
specific value to model the interaction potential induced by
depletants that the Manoharan group propose to discuss their
experiments on colloidosomes.23 We do this by fixing the ratio
of the distances at which the potential exhibits a minimum
and where it is only one tenth of that well depth. Applying
this procedure leads to a value for the range parameter of
a = (61.2 � 2)/r0, which for convenience we rounded to a = 60/r0.
Such a large value for a leads to a much faster decay in the
interaction strength and destabilises the liquid phase.23,27–29

We specifically choose one tenth of the well depth because the
separation from the minimum covers most of the peak shape,
and hence we expect to obtain a better match. We performed
calculations for a = 72 as well and found qualitatively similar
results. In particular, for N = 72 we find the same minimum
energy structures in the same order, albeit at slightly different
(higher) total potential energies.

In our Langevin dynamics simulations, performed with the
LAMMPS program,30 we truncate and shift the potential at
some cutoff distance rc by defining as actual interaction
potential V(r) = VLJ/M(r) � VLJ/M(rc), where the subscript LJ
denotes the Lennard-Jones potential and subscript M the Morse
potential. We take as time unit the Langevin damping time tL,
which describes the time over which the velocity autocorrela-
tion decays. For our purposes, the exact value of the damping

time should be irrelevant because all our simulations focus on
systems under conditions of thermodynamic equilibrium. We
take rc = 2.5r0/21/6 E 2.2272r0, at which the untruncated
Lennard-Jones and Morse potentials have values of �0.016e
and �2.1 � 10�32 E 0e respectively. The distance rc corre-
sponds to a cut-off at exactly 2.5s in terms of the more common
Lennard-Jones distance parameter s. Furthermore, e will serve
as the reference energy unit and r0 as reference length unit,
producing a reference mass unit of m0 = etL

2/r0
2. For all

simulations the particle masses are set to 1m0.
Care was taken to ensure that the centre of mass of all

particles did not acquire an angular momentum from coupling
to the thermostat. This restriction is achieved by subtracting at
each step from all particle velocities the vector xCM � xi/N, with
xCM the angular velocity of the centre of mass, xi the position
vector of particle i, and N the number of particles. After
subtracting this component, the velocities are all rescaled such
that the kinetic energy before and after the correction is
unchanged. Note, however, that the kinetic energy is not constant,
as the Langevin thermostat imposes fluctuations consistent with
the canonical ensemble. Because the particles are constrained to
the surface of a sphere, there is no need to subtract the linear
velocity of the centre of mass.

For both potentials, we attempt to find for all 10 r N r 100
the potential energy minimum using the basin-hopping method31

as well as thermal equilibrium packings in a temperature range
between T = 0.001e/kB and T = 2e/kB, where kB is Boltzmann’s
constant. For each N a surface density r has to be chosen. Let R be
the radius of the spherical surface. Then r = N/4pR2, and R has to
be determined for each N. A natural choice for R is the radius that
results in the lowest potential energy at zero temperature. For
Lennard-Jones potentials, these radii are tabulated by Voogd in
ref. 13 and are consistent with our basin-hopping calculations, but
for a Morse potential we have not been able to find tabulated
values. We therefore employ the following strategy.

We perform Langevin dynamics simulations of N particles
constrained to a sphere using a special case of the RATTLE
algorithm32 described in ref. 33, where we linearly shrink the
radius from an initial value R0 to a final value R1 over a time
span of 104tL. The values for R0 and R1 we estimate from
considerations of hard disk packings, which gives rise to a
natural sphere radius R*. To calculate R*, consider N hard disks
of diameter d0 that cover an area fraction f = Nd0

2/16R2 of the
sphere. The upper limit to f in a flat, two-dimensional geometry
is fm ¼ p

� ffiffiffiffiffi
12
p

.3 The radius that gives this maximum is then
R� ¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=fm

p �
4. With d0 we associate the minimum of the

interaction potential r0, because for r o r0 both potentials are
steeply repulsive.

We search for a minimum in the potential energy around R*
by putting R0 = 1.3R* and R1 = 0.8R*. For each N we monitor
over time the potential energy and radius of the spherical
template as it shrinks from R1 to R0. This schedule produces
an energy trace for each N as a function of R similar to those
presented by Voogd,13 with a characteristic deep minimum just
before a steep increase for small R, from which the optimal
radius can be determined with a simple post-processing script.
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We present the optimal radii R as a function of N in Fig. 1
for both the Lennard-Jones and Morse particles for the case
a = 60/r0. Note that for the Morse particles, the sphere radius is
larger for all 10 r N r 100, because the penalty for overlap is
much greater and cannot be compensated easily by next-nearest
neighbour interactions. For the Lennard-Jones particles, the
difference in the optimal radius R between our data and Voogd’s
is less than 2% for all N and the largest deviation in total energy
is below 1%. Additionally, the potential energies we find at the
optimal radius match closely with those presented by Zandi et al.
in ref. 4. Furthermore, if we use the same method of quantifying
defects as Voogd,13 which is based on Voronoi constructions, we
find the same distribution of topological charges, reassuring us
that we obtain the same structures. For a complete tabulation of
our energies and sphere radii, see Section S1 (ESI†).

While Voronoi tesselation, as used by Voogd, is a natural
way to determine nearest neighbours in a hexagonal lattice,
issues arise with Voronoi tesselation when particles are packed
in other types of lattice, as the tesselation can be degenerate.
These issues are discussed in more detail in Section S2 (ESI†).
In previous works on global energy minima of the Thomson
problem such configurations were encountered,14,17 so this
apparent pathology was anticipated in the present work.
Because of these problems, we opted instead for a distance
criterion to quantify the number and type of defects.

With this criterion, all particles separated by less than a
distance r* are considered nearest neighbours. In this case,
care has to be taken to select a sensible value for r*. One way to
do this is to determine for every N at what distance the second
minimum in the pair distribution function is located and to use
this to fix r*. Some structures, however, produce a split first
peak at around the minimum of the potential energy r = r0. In
that case, we choose as r* a distance after the split peak but
before the second major peak.

In principle, r* is a function of temperature, so it should be
determined for every temperature T. For practical reasons,
however, we determine r* only at the low temperature of T =
0.01e/kB. For N = 24, 32, 44, 48 and 72 we verified that r* obtained

this way still coincides with a minimum in the time-averaged
pair correlation function at a higher temperature of T = 0.5e/kB.
With the distance criterion, square lattices are identified more
robustly in the presence of thermal fluctuations than by means
of tesselation, especially at lower temperatures. See Section S3
(ESI†) for a more thorough description of this procedure and a
tabulation of the cut-off radii r* obtained. Note, however, that
the network generated by connecting the nearest neighbours in
general does not have the proper Euler characteristic, an issue
we choose to ignore. Because of the drawbacks associated with
both methods, we apply both and compare them.

For the representative case of N = 72 particles, we determine
the free energy difference between specific packings as a
function of temperature to extract the relative contributions
of potential energy and entropy. Our first attempts to determine
these properties with thermodynamic integration as described
in ref. 34 did not produce satisfactory results. However, since in
our simulations the packings fluctuate between different sym-
metries, we count their occurrence frequencies. From these
frequencies we can reconstruct at each temperature the prob-
ability of finding a packing. From the probability ratio for two
different configurations, say, a and b, we calculate a free energy
difference. The probability Pa of encountering a scales with the
Boltzmann factor as Pa B exp(�Fa/kBT), where Fa is the free
energy of packing a. Hence, the ratio of two of these probabilities
is Pa/Pb = exp(�(Fa � Fb)/kBT) = exp(�DFab/kBT). In other words,
DFab = �kBT ln(Pa/Pb). Entropy differences can be derived from
the slope of the free energy difference as a function of tempera-
ture, since S = �(qF/qT)N,R evaluated at constant particle number
N and sphere radius R.

We next consider the thermal stability of Lennard-Jones
packings in Section 3 by investigating the number of point
defects at various temperatures. We then focus in Section 4 on
some packings that have additional defects in the global minimum,
and we determine their stability at different temperatures by
calculating the free energy. Finally we perform the same stability
analysis for a short-ranged Morse potential in Section 5.

3 Lennard-Jones defect landscape

For the Lennard-Jones potential we determine the number of
point defects as a function of temperature and particle number.
Point defects are particles that do not have six nearest neigh-
bours. For completeness and to facilitate straight-forward
comparison with earlier work, e.g., ref. 13, we present results
using the distance criterion in this section and those with the
Voronoi tessellation in Section S2 (ESI†). The data for T = 0 are
generated by means of basin-hopping calculations with the aid
of the GMIN program.31,35 The data for T 4 0 are obtained from
a Langevin dynamics simulation using the LAMMPS program.30

The damping time of the thermostat, tL, is the reference time
unit, while the time step size is fixed at 0.005tL. The time step
size was chosen empirically by finding a value for which the
particles have good energy conservation properties, when the
thermostat is disabled. For the Langevin thermostat we invoked

Fig. 1 Sphere radii R* that minimise the potential energy for N particles
interacting either through a Lennard-Jones (LJ) or a Morse (Morse)
potential, as fraction of the estimated radius that would tightly pack N

hard disks of diameter d0, d0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=fM

p .
4. Note that the LJ data coincides

well with the results of Voogd (reproduced with permission).13 The largest
difference between the two is no more than 0.02r0 (o2%).
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the Grønbech-Jensen–Farago formulation,36 which generates
positions that are correctly Boltzmann distributed at the thermostat
temperature for larger time steps, albeit at the expense of
inaccuracies in the velocity distribution. Since none of the
properties we are interested in depend on the velocity distribu-
tion, this is an acceptable drawback.

In Fig. 2 we show the fractions of particles with five and six
nearest neighbours within the distance r* at which the pair
distribution function has its second minimum. In Fig. S3 (ESI†) we
present the fraction of particles with seven nearest neighbours,
which we find to be lower than 0.02 for all N and T. From Fig. 2
we see that for many N there are more than twelve particles with
five nearest neighbours across the entire temperature range
probed. Apart from N = 12, N = 32 is the only packing that
retains icosahedral symmetry for a large temperature range. For
low temperatures it has exactly 12 five-fold particles, for a
fraction of 12/32 = 0.375. If the temperature is increased to
T = 2e/kB, four more five-fold particles appear, leading to an
increased five-fold fraction of 16/32 = 0.5. This indicates that
the T = 3 icosahedral structure of 32 particles is very robust
against thermal fluctuations, as it exhibits a smaller increase in
excess defects than packings with other N.

Typically, the number of excess defects increases with tempera-
ture. Remarkably, however, for certain N we observe additional
defects in the ground state and a non-monotonic dependence
of the number of defects as a function of temperature, most
notably for N = 44, 48 and 72. N = 72 is particularly interesting
because one might expect the minimum energy structure to be a
T = 7 icosahedron. While the icosahedron is a low energy
minimum, it turns out there are two more packings with a lower
potential energy, namely, a D5h structure and a D3 structure, as

well as two additional packings with a slightly higher potential
energy, one of which exhibits tetrahedral symmetry. We present
all of them in Fig. 3. Apart from the icosahedral structure in
Fig. 3c, they all exhibit clusters of point defects. The two lowest
minima have square arrangements of particles. From this result
we can conclude that for N = 72 an icosahedral packing is
stabilised entropically rather than energetically. We demonstrate
that this is indeed the case in Section 4. Note that there are other
N values for which excess defects disappear at intermediate
temperatures, e.g., N = 24, 44, 48, 60 and 90. For all these sizes
but N = 24, excess defects reappear at higher temperatures. The
excess defect fraction for these N values is plotted as function of
temperature in Fig. 4.

4 Defects near the ground state

As we have seen in Section 3, some values of N produce
packings that exhibit excess defects at very low temperatures.
For two thirds of the clusters considered, the number of excess
defects obtained for T = 0 by means of basin-hopping is equal to
the number of excess defects at the lowest non-zero temperature

Fig. 2 Fraction of particles with five (top) and six (bottom) neighbours as a
function of temperature for N = 10 to N = 100 Lennard-Jones particles,
using the distance criterion. For the (small) fraction of particles with seven
neighbours, see Fig. S3 (ESI†). Other numbers of nearest neighbours were
not observed.

Fig. 3 The five Lennard-Jones packings for N = 72 with the lowest
potential energy found using the GMIN program35 from two different
orientations (top and bottom) (a) D5h packing with energy per particle U/N =
�3.0564e, (b) D3 packing with U/N = �3.0559e, (c) icosahedral packing with
U/N = �3.0548e, (d) tetrahedral packing with U/N = �3.04636e and (e)
packing with two times three rectangular patches that wrap around the
sphere similar to the seam on a baseball, with U/N = �3.04630e. The colour
indicates the coordination numbers five (blue) or six (red).

Fig. 4 Excess defect fraction for N = 38, 44, 48, 60, 72 and 92. Lennard-
Jones particles as a function of temperature as determined by the distance
criterion. Note the reentrance of excess defects with increasing tempera-
ture for N a 24.
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result from our Langevin dynamics simulation (T = 0.001e/kB).
This correspondence suggests that these packings are not the result
of kinetic trapping but are energetically stabilised. Some sizes,
however, exhibit a discrepancy between the two approaches.

The even N for which there was a minor discrepancy in the
excess defect fraction between these two simulations were
N = 28, 30, 50, 58, 74, 94, and 98. For these packings, the
particles fluctuate between different low energy structures even
at this low temperature, and therefore the average number of
excess defects does not exactly match the number of excess
defects in the global minimum. The largest relative deviation in
the excess defect fraction between the two is 0.14% for N = 30.
From this result we conclude that if we would go to even lower
temperatures, we would get the right structures because the
global minimum dominates. We have not pursued this limit
further on account of the very long equilibration times required
for proper sampling.

For the odd particle numbers, we see similar discrepancies,
namely for particle numbers N = 37, 39, 41, 43, 47, 51, 55, 59,
73, 79, 85 and all odd N Z 89, where the largest discrepancy in
the excess defect fraction amounts to 0.12%. Again, at the lowest
non-zero temperature tested, the particle packing fluctuates
between different symmetries, where the dominant structure is
the global minimum. For all other odd and even N, we found no
discrepancies between the two methods.

For some N that exhibit excess defects in the low temperature
regime, we find that these defects disappear at intermediate
temperatures and reappear at higher temperatures. This effect
occurs for even N = 28, 40, 42, 46, 60, 62, 64, 68, 72, 76 and 86,
and for odd N = 37, 39, 41, 61, 71, 91 and 97. To investigate this
unexpected behaviour we focus attention on N = 72, for which we
know that the lowest temperature Langevin dynamics packing
coincides with the zero temperature basin-hopping result.
Apart from the global minimum, basin-hopping finds four
additional local potential energy minima with a significantly lower
potential energy than the other local minima (1.4% difference). The
differences in potential energy between the five lowest energy
packings are very small (o0.04%). Recall that these minimum
energy structures are shown in Fig. 3.

In order of increasing potential energy, the symmetries of
these packings are D5h, D3, icosahedral, tetrahedral, and finally
a packing consisting of two domains containing three rectan-
gular patches that wrap around each other, similar to a baseball
pattern. Of these five packings, only those that correspond to
the lowest three potential energy minima, (a), (b) and (c) in
Fig. 3, are observed in our LD simulations at low but non-zero
temperatures, indicating that either the barrier between these
three states and the other two is too large, or that the free
energy difference destabilises the two packings with higher
potential energy. Taking into account the contribution of the
potential energy to the Boltzmann weight of a configuration, in
particular near zero temperature, this last explanation seems
plausible. For these low potential energy packings we present
the ratios of the calculated Boltzmann factors for six tempera-
tures in Table 1. We calculated these Boltzmann factors from
the potential energies of the packings obtained by means of

basin-hopping, given in the caption to Fig. 3. From Table 1 it is
clear that at very low temperatures the potential energy differences
are amplified and that this is what destabilises the tetrahedral and
baseball packings.

To quantify the free energy rather than the potential energy
differences between the three packings found in our dynamics
simulations, we determine the frequency of occurrence of the
different packings, as outlined in Section 2. To verify ergodicity,
we keep track of the normalised frequencies of each packing as
a function of time, and verify that they reach a steady state value.
We also keep track of how often the packings switch between the
identified types. For a detailed analysis, see Section S5 (ESI†).
In particular, in Fig. S7 (ESI†) we show two time traces of the
observed packings and in Fig. S8 (ESI†) we show the convergence
of the observed frequencies. For T 4 0.03e/kB we are close to
achieving steady states, and we presume ergodicity to hold for
those temperatures.

In Fig. 5 we show the frequencies at which the different
packings occur as a function of temperature. Note that at low
temperatures, the low potential energy packings D3 and D5h are
energetically stabilised, while the icosahedral packing is completely
suppressed. At higher temperatures, the icosahedral packing
becomes more and more dominant, while the D5h and D3

packings become entropically suppressed. Basin-hopping pre-
dicts a D5h packing for the global potential energy minimum,
which is consistent with the trend shown in Fig. 5, but reliable

Table 1 Estimated relative probabilities of observing a D3 (Fig. 3b), ico-
sahedral (ico, Fig. 3c), tetrahedral (tetra, Fig. 3d) or a packing with two
domains with three rectangular patches (rect, Fig. 3e) compared to that of
finding D5h (Fig. 3a), using the Boltzmann weight of the respective
calculated potential energy

kBT/e 0.001 0.01 0.02 0.03 0.04 0.05

P(D3)/P(D5h) 0.556 0.943 0.971 0.980 0.985 0.988
P(ico)/P(D5h) 0.199 0.851 0.922 0.948 0.960 0.968
P(tetra)/P(D5h) 4.18 � 10�5 0.365 0.604 0.715 0.777 0.817
P(rect)/P(D5h) 3.95 � 10�5 0.363 0.602 0.713 0.776 0.816

Fig. 5 Probability of encountering an icosahedral, D5h or D3 packing with
N = 72 Lennard-Jones particles on a sphere with radius R = 2.55037r0,
where r0 is the equilibrium spacing of the pair potential, as a function of the
dimensionless temperature kBT/e. The frequencies do not sum to unity
because for some time frames the packing could not be identified.
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data for the temperatures in between T = 0 and 0.03e/kB are
difficult to obtain due to the increased simulation time needed
for proper sampling. Thus, while for T r 0.03e/kB the trend
seems to be consistent with the basin-hopping calculations, the
exact values for the frequencies might not be as reliable. For
T 4 0.03e/kB a clear steady state was reached that converged for
all three initial packings, and we presume these data to be
reliable.

Using the relative occurrence frequencies of the different
symmetries we extract free energy differences, presuming
ergodicity, from the associated Boltzmann weights. In Fig. 6
we plot these free energy differences, from which we immediately
see that at around T E 0.032e/kB all three packings are equally likely,
and that above this temperature the free energy of an icosahedral
packing is the lowest. Thus, above T = 0.032e/kB, we expect to
see predominantly the icosahedral packing, which is consistent
with Fig. 5.

We can determine entropy differences by calculating the
slope of DF, since S = �(qF/qT)N,R, evaluated at constant particle
number N and spherical template radius R. This analysis
immediately reveals that the entropy of an icosahedral packing
is larger than that of both the D5h and D3 packings, as the
slopes of F(D5h)–F(ico) and F(D3)–F(ico) are positive for the
entire temperature range probed. Also note that the entropy
of the D5h packing is larger than that of the D3 packing for
most temperatures, as F(D5h)–F(D3) has a negative slope for
T 4 0.025e/kB. Hence, at higher temperatures, the icosahedral
packing is favoured over both the D5h and D3 packings due to its
higher entropy, while at low temperatures the D5h packing is
preferred due to its low potential energy and the fact that its
entropy is higher than that of the D3 packing.

For even larger temperatures T 4 0.1e/kB the icosahedral
packing becomes less stable because of the emergence of thermally
excited excess defects, as is clear from Fig. 2. For this range of
temperatures we did not explicitly obtain a free energy difference
because we find many different packings, none of which seem to be

clear potential energy minima. These results confirm, not
surprisingly, that the equilibrium packings of particles on a curved
surface are not just a result of potential energy minimisation but
rather of free energy minimisation. Finally, it is clear that on curved
surfaces, additional point defects can actually lower the potential
energy, and are thus energetically stabilised. Although we have only
explicitly shown this for N = 72, we hypothesise that the same effect
occurs for other particle numbers that exhibit additional defects in
the ground state, which disappear for intermediate temperatures,
e.g., N = 60 and N = 92.

Now that we have shown that the temperature, or, equiva-
lently, the interaction strength, plays a crucial role in stabilising
different packings, we turn to the role of the range of attraction
of the interaction potential.

5 Morse defect landscape

In the previous section we saw that for Lennard-Jones particles
there exist energetically stabilised defects at low temperatures.
Furthermore, we found that icosahedral packings are stabilised
energetically for N = 32 but only entropically for N = 72. Since a
shorter ranged potential is a more realistic model in the context
of colloidosomes and virus capsomeres, it is of interest to see
how robust our findings are if we reduce the effective range of
the interaction potential. We set the range parameter a = 60/r0,
as discussed in Section 2, and again determined the excess
point defect landscape as a function of particle number N and
temperature T. Since this larger value of the parameter a makes
the potential sharper around the minimum, a smaller time step
is needed to maintain stability. Following the same procedure
described in Section 3, we found a time step size of Dt =
5 � 10�4tL to be adequate.

In Fig. 7 we show the number of particles with 5 and 6
nearest neighbours obtained by the distance criterion. In
Fig. S4–S6 (ESI†) we also show the fraction of particles with
three, four and seven nearest neighbours. Particles with seven
nearest neighbours are very rare, with the highest fraction
being 0.001 for T E 1.8e/kB and N = 86. Three and four nearest
neighbours occur more frequently for smaller N than compared
to the Lennard-Jones packings, which can also be seen from the
optimal template radii in SI 1 (ESI†). Note that for the Morse
potential, N = 32 has no additional defects in the ground state,
indicating that the icosahedral packing is again energetically
stabilised. The fraction of particles with five nearest neighbours
is 0.375, independent of the temperature. For N = 72, however,
there is no longer an intermediate temperature range for which
the icosahedral packing is thermally stabilised.

The ground state of the N = 72 packing obtained by basin-
hopping consists of three strips of particles with six-fold coordina-
tion surrounded by those with five-fold coordination (see Fig. 8a).
The packing corresponding to the second-lowest local potential
energy minimum is shown in Fig. 8b, where the potential energy
is 0.068% larger. The other local potential energy minima have
significantly higher energies, with the third-lowest having a potential
energy 3.4% larger than the second-lowest.

Fig. 6 Free energy differences between packings of N = 72 particles on a
sphere radius R = 2.55037r0. At low temperatures the D3 and D5h packings
are nearly equal in free energy, but an increasing importance of entropy
destabilises the D3 packing more than the D5h at higher T. Both the D5h and
D3 packing are destabilised at higher kBT in favour of the icosahedral
packing. At kBT E 0.032e the three packings appear to be equally probable.
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In our Langevin dynamics simulations the two packings
shown in Fig. 8 are also the most dominant ones. Even at T =
2e/kB the system tends to fluctuate between these two packings,
where the second minimum shown in Fig. 8b only appears very
infrequently. See Fig. S7 (ESI†) for more analysis on the fluctuations
between the different packings. Therefore, it seems that for shorter-
ranged potentials the energetic penalty is more difficult to overcome
by entropy.

From these findings, it seems that a shorter-ranged potential
destabilises icosahedral symmetry as expected.3,28,29 For virus
capsids this result would imply that, if the capsomeres are all
one size, their effective range parameter should be smaller than
ao 60/r0. On the other hand, icosahedral packings can be made
more stable by switching between different particle sizes, as

discussed by Bruinsma, Zandi et al.3,4 We intend to pursue this
question in future work.

Our simulations highlight two major differences between
the Lennard-Jones and Morse particle packings. First, we note
that excess defects are barely excited at higher temperatures for
particles interacting via the short-ranged Morse potential. This
is not entirely surprising because the Morse potential considered
here is much steeper than the Lennard-Jones potential, implying
that at equivalent thermal energies Morse particles have less
opportunity to rearrange. Second, and perhaps more strikingly,
clusters with N 4 32 that exhibit a local minimum in the potential
energy for both potentials correspond to very different arrange-
ments. These features result in different numbers of excess defects
for the two potentials for the same N and T. This analysis confirms
that the range of the potential is very important for determining
which particle arrangement is the most favourable.28,29

For some N, Morse particles exhibit additional defects in the
ground state that are energetically stabilised. This result is true
for N = 40, 66, 68, 70, 82, 86 and 90 although for Morse particles
the effect is less pronounced, i.e., the range of variation in the
excess defect fraction is not as large as for the Lennard-Jones
particles. In fact, the range of variation is so small that it is
almost indiscernible in Fig. 7. Hence, we also plot the excess
defect fraction as a function of temperature for the N values
quoted in Fig. 9. From the figure, we conclude that these sizes
show a clear non-monotonic behaviour in the excess defect
fraction with increasing temperature, indicating that the defects
at low T for these packings are energetically stabilised, just like
the defects we find for the Lennard-Jones packings in Fig. 2.

6 Conclusions

Inspired by virus capsid and colloidosome assemblies, we have
studied by means of computer simulation the packings from
N = 10 to 100 point particles constrained to a spherical surface.
Our aim was to investigate how the optimal particle arrangements
are influenced by temperature, or, equivalently, interaction strength,
and the range of the interaction potential. These factors have
not received extensive attention in the literature, although we find

Fig. 7 Fraction of particles with five (top) and six (bottom) neighbours as a
function of temperature for N = 10 to N = 100 Morse particles with a = 60/r0,
using the distance criterion. For the fraction of particles with three, four and
seven neighbours, see Section S4 (ESI†). Other numbers of nearest neighbours
were not observed.

Fig. 8 The two lowest potential energy packings for N = 72 particles for a
Morse potential with effective range parameter a = 60/r0, where r0 is the
pair potential equilibrium spacing, shown from two sides (top and bottom).
Colour codes the number of nearest neighbours (using the distance
criterion) of 5 (blue) or 6 (red). (a) The packing with the lowest observed
potential energy U/N = �2.32506e. (b) The second lowest local potential
energy minimum with U/N = �2.32348e.

Fig. 9 Temperature dependence of the fraction of excess defects for N = 40,
66, 68, 70, 82, 86 and 90 Morse particles with range parameter a = 60/r0.
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from our simulations that both have a profound impact. The
simulation techniques that we applied involved Langevin dynamics
for non-zero temperatures and basin-hopping calculations for
determining the global potential energy minima, which confirm
that our Langevin simulations are not kinetically trapped at low
temperatures. We have focused mainly on how the number and
configuration of point defects, as a measure for the structural
stability of packings, vary with temperature. Since at least twelve
five-fold point defects are required by geometry, we focus
specifically on the number of defects in excess of these twelve.

For N = 12, 32 and 72 Lennard-Jones particles, we find in the
temperature range of T = 0.05e/kB to T = 0.067e/kB that
the equilibrium packing is an icosahedron, consistent with
the earlier work of Zandi et al.4 Our basin-hopping calculations
show that the icosahedral packing is the global potential energy
minimum for N = 12 and 32, but not for 72, for which the global
minimum is a D5h packing, in agreement with the results of
Voogd.13 This result is surprising because the D5h packing
exhibits additional defects, which apparently have an energetically
stabilising effect. Hence, the icosahedral structure for N = 72 at
non-zero temperature must be entropically stabilised. In fact, our
simulations suggest that for a fairly large number of particle
packings the lowest energy structure exhibits excess defects that,
remarkably, disappear when raising the temperature. Of course, at
higher temperatures still, defects become thermally excited.
For these specific particle numbers the number of defects is a
non-monotonic function of temperature, whilst for all others, the
number of defects increases with temperature monotonically.

To investigate this kind of ‘‘reentrant’’ behaviour in more
detail, we consider N = 72 Lennard-Jones particles, for which we
have explicitly determined free energy differences between the
three lowest-energy structures. We find that packings with
more excess defects have a lower free energy at sufficiently
low temperatures, implying that they are energetically favoured
over packings with fewer defects. The global potential energy
minimum has D5h symmetry. However, our calculations show
that the T = 7 icosahedral packing has a higher entropy than the
D5h packing and is therefore thermally stabilised at higher but
not too high temperatures. Therefore the packing of Lennard-
Jones particles on curved surfaces is not just governed by
minimisation of the potential energy. What is true for N = 72
seems to be true for many sizes, because the symmetries of the
associated packings exhibit a strong temperature dependence.
On the other hand, the T = 3 icosahedral symmetry for N = 32
particles is stable over a wide temperature range.

Our main conclusions are not significantly altered if we replace
the Lennard-Jones potential by a short-ranged Morse potential,
which arguably is more representative of attractive interactions
between large molecules or colloidal particles, because it accounts
for a larger excluded volume effect.24,28 Again we find that for
certain sizes, the number of excess defects is a non-monotonic
function of the temperature s although for most packings we
find that it is more difficult to thermally excite additional
defects. The latter result implies that packings of particles with
a shorter range of attraction are more stable against thermal
fluctuations. Another notable difference between Lennard-Jones

and Morse particles is that for equal N and T, the equilibrium
packings may exhibit different symmetries. In particular, this is
the case for N 4 24, with the exception of the T = 3 icosahedron
for N = 32. Unfortunately, for a shorter-ranged Morse potential,
rearrangements of packings become too rare to determine
entropies of packings through simply counting their frequencies.
A dedicated free energy method like free energy basin-hopping
might provide more insight for these types of potentials.37

Our calculations suggest that equilibrium particle geometries
on a curved surface depend not only on the strength but also on
the exact shape of the interaction potential. Both factors impact
upon to what extent temperature is able to affect the competition
between particle packings.
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