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1.  Introduction

Nowadays, the efficient storage of electric charges is more 
important than ever due to our continuously increasing need 
for electric energy. For this reason, (super)capacitors have 
attracted large interest in recent years [1, 2]. Their elec-
trodes [1, 3], can be utilized for the construction of sustain-
able energy-conversion [4–8] and capacitive deionization 
[9, 10] technology. All these devices exploit the capacitive 
properties of the electric double layers (EDLs), which are 
established in the vicinity of electrode surfaces by ionic 
charges, drawn from the ionic electrolytes the electrodes are 
immersed in [11]. Accordingly, many studies have focused 
on the detailed description of the EDL and its properties 
during the last years [12–21].

In a recent study, Merlet and co-workers proposed an 
explanation for some non-linear response in the differential 
capacitance of a parallel plate capacitor by analyzing the in-
plane structure of the EDL by means of molecular dynamics 
(MD) simulations [22, 23]. They found a voltage-dependent 
structural transition in the first ionic layer of a common ionic 
liquid (BMI-PF6) in contact with the electrodes, which they 
constructed from carbon particles. Further simulation studies 
have verified hints for this voltage-dependent structural trans
ition [19, 24, 25] and, recently, also experimental studies on 
the structure of EDLs have been performed [26, 27]. However, 
a detailed theoretical description beyond these and older work 
on interfaces [28] is still missing.

A promising microscopic theory, based on fundamental sta-
tistical physics, is classical density functional theory (DFT). 
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Abstract
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) 
stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water 
treatment technologies. Classical density functional theory (DFT) is a promising framework 
for the study of the in- and out-of-plane structural properties of double layers. Supported 
by molecular dynamics simulations, we demonstrate the adequate performance of DFT for 
analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge 
storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We 
further calculate, for the first time, the in-plane structure of the EDL within the framework of 
DFT. While our out-of-plane results already hint at structural in-plane transitions inside the 
EDL, which have been observed recently in simulations and experiments, our DFT approach 
performs poorly in predicting in-plane structure in comparison to simulations. However, 
our findings isolate fundamental issues in the theoretical description of the EDL within the 
primitive model and point towards limitations in the performance of DFT in describing the 
out-of-plane structure of the EDL at high concentrations and potentials.
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Originally introduced for electronic systems in 1964 [29, 30], 
the framework has also been adopted and applied to classical 
systems [31–33], especially in the field of soft condensed matter 
[34–36], but also in (commercial) tools for gas sorption data 
analysis of porous materials [37–39]. The DFT framework of 
fundamental measure theory (FMT) [40–42] has been shown to 
provide a quantitative benchmark for the important model system 
of hard spheres [43], where it resolved the long-standing ques-
tion on the interfacial free energy in the crystal-fluid interface 
[44]. Even more, FMT accurately predicts pair correlations in 
confined, dense, and asymmetric, mixtures of hard spheres [45].

In contrast, a comparably successful functional for the 
primitive model of charged (asymmetric) hard spheres is still 
missing. While charges have been incorporated into DFT in 
several forms [17, 36, 46–52], their description typically lacks 
the correct treatment of the interplay between Coulombic 
and steric contributions, as known from the mean spherical 
approximation in bulk [53–57]. Thus, the incorporation of 
charges into DFT is of ongoing scientific interest and involves 
fundamental issues such as testing the contact value theorem 
[58, 59] and analyzing the decay of correlations [60, 61], but 
is also of relevance for devices with charged interfaces such 
as supercapacitors.

In this work, we apply DFT in order to investigate the funda-
mental properties of the in- and out-of-plane structure of the EDL. 
To ensure a theoretical description of particle ordering in our 
primitive model, we apply the White Bear mark II fundamental 
measure functional [62] for the hard-sphere contributions, which 
has been shown to provide excellent pair-correlation functions 
in uncharged systems [45]. Further, we solely add a mean-field 
Coulombic contribution, as described in previous work [63]. 
Since we extract pair correlations from DFT for the primitive 
model for the first time, we neglect the additional (approximate) 
correction discussed in previous work [63] in order to add only 
one new contribution to the well performing hard sphere func-
tional. This procedure seems to be adequate for monovalent ions 
at room temperature [12], which we use in our primitive model 
of binary charged hard spheres, but now also at lower dielectric 
constants, i.e. at stronger Coulomb coupling.

In the next section, we explain in detail our theoretical 
framework of DFT and the extraction of correlation functions 
in the primitive model. Then, we discuss our choice of model 
and parameters, as well as the differences between DFT and 
simulations, in section 3. Turning to our results, we first apply 
our theory in section  4 to the out-of-plane order and test it 
against MD computer simulations. We further discuss the 
layering and adsorption of charges in the EDL, as well as its 
capacitance. Second, we apply our theory in section 5 for the 
first time to the in-plane order of the EDL in the inhomoge-
neous primitive model. We discuss our results in comparison 
with the simulations and conclude in section 6.

2.  Structure in the primitive model

2.1. The primitive model

We use the primitive model to describe an ionic liquid. In this 
model, sketched in figure 1, the ions of species ν are described 

as charged hard spheres with hard-sphere radius νR  and charge 
valency νeZ , where e denotes the unit charge. Within the prim-
itive model the solvent only enters as a dielectric background 
with relative permittivity ε and temperature T. The interaction 
potential Φνν ′ between two particles of species ν and ν ′ with a 
core separation r reads

( ) ⩾

⎧
⎨
⎪

⎩⎪ λ
Φ =

∞ < +

+νν

ν ν

ν ν
ν ν

′

′

′
′

r
r R R

k T
Z Z

r
r R R

;

,B B
� (1)

where /( )λ πε ε= e k T4B
2

0 B  is the Bjerrum length in terms of 
the vacuum permittivity ε0 and Boltzmann’s constant kB. In 
an electrically neutral bulk with mean particle concentrations 
ρ̄ν for each species, this potential is typically screened within 
a distance characterized by the Debye length κ−1, defined via 

¯κ πλ ρ= ∑ν ν νZ42
B

2 .
In our grand canonical ensemble (see figure 1) the mean 

particle concentrations ρ̄ν are related to the mean particle num-
bers νN  in the total system volume V via a spatial integration of 
the ensemble-averaged one-particle concentration (or density) 
profiles ( )ρν

→r  of the respective species ν at positions →r  [36]. 
Consequently, the number of unit charges of species ν in a 
partial volume ⊂′V V  is

( ) ( )∫ ρ=′ν ν ν
′

→ →Q V Z r rd .
V

� (2)

In addition, we define the total number of positive and nega-
tive unit charges in the total system volume V by Q+ and Q−.

In our confined setting of a parallel plate capacitor, sym-
metry reduces the spatial parameters to only the cartesian z 
component perpendicular to the hard capacitor walls (elec-
trodes). These walls are located at z  =  0 and z  =  L, such that 
the concentration profile ( )ρν z  of a species ν vanishes outside 
the interval [ ]−ν νR L R, . This leads to species-dependent Stern 

Figure 1.  Sketch of the binary ionic liquid, confined in a parallel 
plate capacitor of plate separation L. The stroked lines illustrate 
the slab of the first layers of ions adjacent to the walls, defined 
by the first minima in the total concentration profiles ( )ρ z . The 
grand canonical nature of the system is explained by the schematic 
connection to a bulk reservoir at fixed chemical potentials, which 
can exchange ions with the system.

bulk
µ− µ+

2R+

2R−

z0 L
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layers of thickness νR  (see also figure  1). The wall charges 
eQp and eQn on the respective positive and negative electrodes 
are distributed homogeneously, resulting in wall unit charge 
densities σp and σn. Of course, electroneutrality requires 
+ +∑ =ν νQ Q Q 0p n .
All charges in the system contribute to a (dimensionless) 

electrostatic potential φ, which, for the ionic charge den-
sity ( ) ( )ρ= ∑ν ν νq z Z z , can be defined via Poisson’s equa-
tion  ( ) ( )φ πλ∂ = −z q z4z

2
B  on the open interval (0, L). The 

limits of the Poisson equation,

( )
→
φ πλ σ= −′

+
zlim 4 ,

z 0
B p� (3)

( )
→
φ πλ σ=′

−
zlim 4

z L
B n� (4)

respect the electrode charges, which are uniquely determined 
via the ionic charge density q(z) and the boundary values 

( )φ β= Ψe0 p and ( )φ β= ΨL e n of the electrostatic potential 
at the capacitor walls, where ( )β = −k TB

1 defines an inverse 
temperature. Note that these equipotential surfaces, which 
arise from the system symmetries, set well-defined boundaries 
with no call for additional image-charge methods.

2.2.  Structure and correlations

In statistical physics the three-dimensional partial static struc-
ture factors ( )νν ′

→
S k  can be defined for the total number of par-

ticles = ∑ν νN N  by [36]

( ) ( ) ( ) ( )ι ( ) ( )→ → → → → → → → → →∫ ∫δ ρ ρ= + ′ ′ ′νν
ν
νν ν ν νν

− ⋅ −
′ ′

′
′ ′S k

N

N N
r r h r r r r

1
e , d d .

V V

k r r 2

� (5)
The partial structure factors νν ′S  can be combined linearly to 
meaningful structure factors like the particle-particle (NN) 
structure ( ) ( )= ∑ ∑ν ν νν′ ′

→ →
S k S kNN , the particle-charge (NZ) 

structure ( ) ( )= ∑ ∑ν ν ν νν′ ′ ′
→ →

S k Z S kNZ , and the charge-charge 
(ZZ) structure ( ) ( )= ∑ ∑ν ν ν ν νν′ ′ ′

→ →
S k Z Z S kZZ  [36, 60]. The last 

term of equation  (5) involves the total correlation functions 
( )
νν ′h 2 , which are related to the direct correlation functions via 

the Ornstein–Zernike relation [36]

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )→ → → → → → → → → →∫∑ ″ ″ ″ ″ρ= +′ ′ ′
″

″ ″ ″νν νν
ν

νν ν ν ν
=

′ ′ ′h r r c r r h r r r c r r r, , , , d .
n

V

2 2

1

2 2
�

(6)

The static structure factor, as introduced in equation  (5), 
is related to the total volume V, it is determined on. If we 
are interested in the structure of only the = ∑ν νN Nslab slab ions 
which are located in the slab of length Lslab next to the wall, we 
have to restrict our calculations to the corresponding set Γν

slab 
of particles in the slab. Accordingly, we define the ensemble 
averaged partial in-plane structure factors in this slab by

( ) ( ( ) )∑ ∑= − ⋅ −νν
∈Γ ∈Γ

′

′ ′
′

→ → → →

ν ν

S q
N

ıq r r
1

exp ,
i i

i i xyslab� (7)

involving the projected two-dimensional in-plane vectors ( )→r xy 
and →q. In order to obtain an expression similar to equation (5), 
we have to contract the coordinates of the static structure 

factor along the z direction into the wall plane. We start from 
an in-plane Fourier transform of the total correlation function 
[45], defined by a Hankel transform via

( ) ( ) ( )( ) ( ) ( )∫=′ ′
νν νν

− ⋅
′ ′

→ → →h z z q h z z r r, , , , e d .ıq r
xy

2 2 xy� (8)

Following Tarazona and co-workers [64], we then define par-
tial transverse structure factors ν ν′H  by contracting the ′z  coor-
dinate in the slab of interest via

( ) ( ) ( )∫δ ρ= + ′ ′ ′ν ν νν ν ν ν′ ′ ′ ′H z q z h z z q z, , , d ,slab

slab
� (9)

which, for a one-component bulk fluid, resembles the 
structure factor ( )ν ν′S k . Similar to the static structure 
factor, the partial transverse structure factors can be used 
to construct the transverse particle-particle structure 

( ) ( )= ∑ ∑ν ν ν ν′ ′H z q H z q, ,NN , the particle-charge structure 
( ) ( )= ∑ ∑ν ν ν ν ν′ ′ ′H z q Z H z q, ,ZN , and the charge-charge struc-

ture ( ) ( )= ∑ ∑ν ν ν ν ν ν′ ′ ′H z q Z Z H z q, ,ZZ . Finally, a second con-
traction along the remaining z coordinate defines an in-plane 
structure factor

¯ ( ) ( ) ( )∫ ρ=ν ν ν ν ν′ ′H q
N

z H z q z
1

, d ,slab
slab slab

slab� (10)

which resembles the result from equation (7).

2.3.  Density functional theory

We apply the framework of (classical) DFT [33, 36] to our 
primitive model. DFT deals with ensemble averaged con-
centration (density) profiles ρν of species ν, which describe 
the particle distributions in a grand canonical ensemble. The 
equilibrium density profiles ρν

eq minimize the grand canonical 
energy functional ( { } [ { }])µ σ σ ρΩ Ψ Ψ ν νT V, , , , ; , ,p n p n , which 
(when minimized with respect to ( )ρν

→r , σp, and σn) gives 
the grand canonical potential of the corresponding physical 
system with temperature T, volume V, wall potentials Ψp and 
Ψn, and chemical potentials µν. Thus, the equilibrium density 
profiles can be determined from

[{ }]
( ) { }( )

δ ρ
δρ

ν
Ω

= ∀ν

ν ρ ρ=
→

ν ν
r

0 .
eq

� (11)

The minimization with respect to the wall charge densities is 
guaranteed by construction on the basis of equations (3) and 
(4).

The grand canonical potential Ω can be obtained from the 
Helmholtz free energy F via a generalized Legendre trans-
form µΩ = − Ψ − Ψ −∑ ν νF Q Q Np p n n , where the extensive 
unit charges /Qp n and particles numbers νN  are replaced by 
the intensive electrostatic potentials /Ψp n and chemical poten-
tials µν. It is convenient to split the corresponding free energy 
functional ( { } [ { }])/ /σ ρΨ ν νF T V N, , , ; ,p n p n  into an ideal gas 
part F id and an excess part F exc, where the latter includes all 
particle interactions.

Within DFT, direct pair-correlation functions ( )
νν ′c 2  immedi-

ately follow from a second functional derivative of the excess 
free energy [33, 36], such that
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( )
( ) ( )

( ) β
δ

δρ δρ
= −′

′νν
ν ν

′
′

→ →
→ →

F
c r r

r r
, .2

2 exc

� (12)

Then, total correlations are obtained via the Ornstein–Zernike 
relation in equation  (6). In principle, the total correlations 
can also be obtained from determining the pair distribution 

function ( )( ) ′
νν ′

→ →g r r,2  around a particle fixed at →r , but this so-
called test-particle route is problematic in situations where 
long-ranged particle interactions are present due to the finite 
boundaries of a numerically treated system (see also the dis-
cussion in [45]). We will therefore follow the compressibility 
route.

As in our previous work [63], and according to the inter-
action potential of equation  (1), we combine the excess 
free energy functional from a hard-sphere part FHS and a 
Coulombic part F C. For the hard-sphere contribution, we 
apply the so-called White Bear mark II functional [62] from 
fundamental measure theory [40] in its tensor version [65]. 
This functional has been shown to provide quantitative results 
for free energies [66], phase coexistence [43, 44], and pair 
correlations [45]. For the Coulombic part, we add the ionic 
mean-field contribution

∫

∫ ∫

ρ φ

λ

=

=
| − |

′
′

′

νF k T
V

L
q z z z

k T
q z q z

r r
r r

2
d

2
d d .

L

V V

C
B

0

B
B

[{ }] ( ) ( )

( ) ( )
→ →

→ →
�

(13)

Obviously, additional contributions could be added to cor-
rect for the correlations between the pure hard-sphere and 
Coulombic contributions [63], as derived, for example, within 
the mean spherical approximation in bulk [53–57]. For inho-
mogeneous systems, such corrections are still missing, and, 
since we extract pair correlations from DFT including charges 
for the first time, we neglect any additional and approximate 
correction in order to clearly separate the contribution of the 
Coulombic contributions to the excellently performing hard-
sphere functional.

Similar to the free energy, the direct correlations 
( ) = +νν νν νν′ ′ ′c c c2 HS C  can be split into correlations due to the hard-

sphere and Coulombic part of the excess free energy. The first 
contribution, arising from the hard-sphere part, was deter-
mined in a recent work [45] by one of us, where it was shown 
to be in excellent agreement with Brownian dynamics simu-
lations. The Coulombic part immediately follows in analytic 
form from equations (12) and (13) and reads

( )
( ) ( )

β
δ

δρ δρ
λ= − = −
| − |

′
′ ′νν

ν ν

ν ν
′

′

′→ →
→ → → →

F
c r r

r r

Z Z

r r
, .C

2
C

B� (14)

Following equation (8), νν ′cC  can also be Fourier transformed 
analytically in the xy plane, resulting in

( ) ( )( )∫ ∫
λ
π

= −
| − |

′
′

′νν
ν ν − ⋅

′
′ ′

→ →

→ → →c z z q
Z Z

r r
r, ,

2
e dıq r

xy
C B xy� (15)

λ= − ν ν
− | − |

′
′Z Z

q

1
e q z z

B� (16)

with =| | ≠→q q 0. In the limit of vanishing →∆ = −′z z z 0, 
equation (16) becomes λ− ν ν ′Z Z q/B .

Inserting equation (15) and the hard-sphere contributions 
( )′νν ′c z z q, ,HS  into equation (6) leads to

∫∑ ″ ″

″ ″

π ρ= +

×

′ ′

′

νν νν
λ

λ νλ

λν

−∞

∞

′ ′

′

h z z q c z z q z h z z q

c z z q z

, , , , 2 , ,

, , d ,

2 2 2

2

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )
�

(17)

which we then use together with the explicit form equa-
tion (16) to calculate the in-plane structure via equation (9).

3.  Choice of model and parameters

In order to perform quantitative comparisons, we must first 
choose the model parameters appropriately. Since this work 
has been inspired by the findings of Merlet and co-workers 
[23, 67], we will use the Lennard-Jones diameters of the 
spherical particles in their work as the hard-sphere diameter 
of our particles. Furthermore, we approximated the shape of 
their elongated BMI+ ion by a sphere of the same volume. 
Consequently, throughout this work we use ionic diameters 
=+R2 0.618 294 nm for the BMI+ ions and 2R−  =  0.506 nm 

for the PF−6  ions, having a diameter ratio / ≈− +R R 0.818 and a 
asymmetry α≈ 0.2919, which is defined for the ionic volumes 
V+ and V− via ( / )/( / )α = − ++ − + −V V V V1 1 . We also use the 
same valencies, =±±Z 0.78 e, the temperature T  =  400 K, 
and the wall separation L  =  12.32 nm as in [23, 67]. However, 
we chose a different relative permittivity and mean concen-
trations different from ρ̄ =± 2.345 nm−3 for the following 
reasons.

In the equal-size limit of →α 0, the volume-conserving 
averaged ionic mean radius ¯≈R 0.5677 nm allows to draw an 
approximate comparison between the described binary system 
of Merlet and co-workers and the well-studied restricted 
primitive model of equally-sized ions. With a volume fraction 

¯ ¯/η π ρ= ≈R4 3 0.153  and an effective dimensionless temper
ature ¯ /λ= ≈∗T R2 0.01B , the system with ε = 1 would be 
located in the metastable region of the fluid-solid coexistence 
[68, 69], which most probably is avoided for the binary mixture 
by the asymmetry of the ion radii. Nonetheless, we have chosen 
to work at a higher effective temperature T* by varying the rel-
ative permittivity between ε = 1 and 30, focusing on ε = 10 
if not mentioned otherwise. By this choice, our work can be 
related not only to the ionic liquid BMI-PF6, which tends to 
demix from water [70], but also to other ionic electrolytes with 
higher permittivities, such as diluted ionic liquids or tetraeth-
ylammonium tetrafluoroborate (TEA-BF4) solvated in acetoni-
trile (ACN) [8], which is often used in supercapacitors. Such 
systems have typical concentrations of about ρ̄ =± 0.6 nm−3 
(1 M), where the electrodes are still screened well and ionic 
core repulsions are important (κ ≈− 4.61  nm). We will focus in 
the work at hand on moderate ionic concentrations of around 
2 M. Note however that we do not aim to give a realistic model 
for one specific ionic liquid but rather aim to bring forward the 
knowledge about microscopic effects involved in the composi-
tion of the EDL, which all ionic liquids have in common.

J. Phys.: Condens. Matter 28 (2016) 244007
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In this work, we test our DFT results against MD simula-
tions of charged pseudo hard-sphere particles. Details of the 
simulation method can be found in previous work [63]. The 
simulations were performed using the ESPResSo package 
[71]. There are three notable methodological differences 
between the simulations and the theory. First, in the simula-
tion we sample the canonical ensemble and not the grand-
canonical one, second, we assume transverse symmetry in 
our theory, and third, we impose constant charge densities 
and not voltage on the electrodes. To match the theory and 
simulation setups we use as input for the simulations the par-
ticle number densities and surface charges obtained from the 
DFT calculations (see for example table 1). This is justified 
by the fact that, first, there is a large bulk-like region in the 
capacitor, and second, we find that the simulations reproduce 
accurately the theoretically predicted densities. Furthermore, 
we performed bulk simulations of the ionic liquid and found 
excellent match between the simulations and theory. Lastly, 
we also verified that the correct wall potentials are reproduced 
in the simulations.

4.  Out-of-plane structure and charging effects

We first compare the out-of-plane EDL structure resulting 
from the theory and the MD simulations. In figure  2 we 
show typical ionic concentration profiles for two systems 
with a reference bulk concentration of 2 M. The electrodes 
are charged asymmetrically up to potentials (a)  ±0.1 V and 
(b)  ±0.5 V. It is obvious from the profiles that the layering of 
ions in general is captured in our theory even at high packing 
and high potentials, but especially the alternating layering 
of differently charged ions is clearly underestimated. The 
DFT anion and cation profiles seem to ‘stick together’ too 
strongly (see red and green curves in comparison to red and 
green symbols), while our MD simulations and previous work 
show alternating layers of both species for high potentials and 
concentrations [15, 18, 19, 51, 67, 72]. The reason is most 
probably that the mean-field description of charges from 

equation (13) is decoupled from the hard-core repulsion [51], 
which overestimates the Coulombic attraction between ionic 
cores at small distances, where particles overlap.

The ‘sticking effect’ of the ionic profiles described above 
is also visible in figure  3, where we show the profiles for 
different permittivities between uncharged walls. The DFT 
results show the typical layering of a binary system, where the 
small anions reach the walls closer than the larger cations (e.g. 
[18, 19, 51]). Increasing the dielectric screening by increasing 
ε strengthens this layering of anions (arrow up in figure 3), 
while the layering of the cations is weakened (arrow down in 
figure 3).

Indeed, the layer of exclusively anions in contact with 
the wall introduces a local electric field as a counterpart to 
the mechanical pressure towards the wall. When the poten-
tial is forced to vanish at the electrodes, electrical charges are 
induced on them. Thereby, the charge induced at the wall rises 
with increasing permittivity, as shown in table 1. Next to the 
results, where we initially fixed the electrostatic potentials 

Table 1.  Data as obtained from DFT for systems of several relative 
permittivities ε at ionic concentrations ¯ /ρ =+ − 2 M.

ε (1) Ψp (V) Ψn (V)
σp  
(e nm−2)

σn  
(e nm−2)

N+  
(1/nm2)

N−  
(1/nm2)

30 0.0 −0.0 0.023 0.023 14.46 14.52
30 0.437 −0.563 1.775 −1.775 15.09 15.11
10 0.0 −0.0 0.019 0.019 14.46 14.51
10 0.087 −0.113 0.156 −0.156 14.49 14.49
10 0.1 −0.1 0.177 −0.136 14.47 14.52
10 0.459 −0.541 0.777 −0.777 14.67 14.68
10 0.5 −0.5 0.848 −0.720 14.60 14.78
2 0.0 −0.0 0.011 0.011 14.46 14.49
1 0.0 −0.0 0.008 0.008 14.45 14.48

Note: For each system either the electrostatic wall potentials p n/Ψ  at the 
positive anode and the negatively charged cathode sum up to zero, or the 
wall charge densities p n/σ  sum up to zero. In addition, the total numbers N+/− 
of ions of each species  +  and  −  in the system are given per unit area of the 
lateral extension.

Figure 2.  Comparison between DFT results (curves) and MD 
computer simulations (symbols) for the concentration profiles ρ∗, 
where ∗ is a place holder for cations, anions, and the sum of both. 
The profiles are normalized to the total concentration ¯ ¯ ¯ρ ρ ρ= ++ − 
of ions in bulk. Results are shown for a system with temperature 
T  =  400 K, permittivity ε = 10, and bulk concentration ¯ /ρ =+ − 2 
M, at two electrostatic wall potentials (a) Ψ = −Ψ = 0.1p m  V and 
(b) 0.5 V. The plots show regions in the vicinity of the system 
walls, which are located at z  =  0 nm and z  =  L  =  12.32 nm. 
Additionally, panel (b) shows the positions of the first two minima 
in the total concentration profiles ρ̄ next to the wall, which are 
marked by vertical dashed lines, located at z  =  0.598 nm, 1.198 nm, 
L  −  1.296 nm, and L  −  0.601 nm.
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/Ψp n at the electrodes, table 1 also shows data for fixed sur-
face charge densities /σp n on the electrodes. Since the former 
is natural for our grand canonic theory, we had to scan over 
different potentials to force the charges on both plates to add 
to zero, which models the standard function of a capacitor. 
Note in this context that we cannot simply shift potentials in 
our system, because the system is in osmotic contact with a 
neutral bulk reservoir at zero potential, i.e. the zero-potential 
point is already chosen in the bulk reservoir.

In figures 4(a) and (b) we show ionic concentration profiles 
near the positive and negative electrode, respectively, for three 
applied voltages. When the potential difference Ψ = Ψ − Ψ∆ p n 
between both electrodes is increased, the ionic charges, which 
screen the electrodes, reorganize. Recent work indicates that 
the EDL can be subdivided into layers [19] with ion exchange 
occurring between them as Ψ∆ changes. This exchange has also 
been discussed as the cause of structural in-plane transitions 
within the EDL when the potential is increased [23]. The local 
change in the ionic concentrations due to the change in Ψ∆ is 
shown in panels (c) and (d). This response function demon-
strates how the layers are structured and to which regions ions 
tend to go to and leave from. For example, the magnification 
in the inset of figure 4(c) shows that at low potentials the con-
centration of anions next to the positive electrode increases 
in all regions when the potential is increased (red solid curve 
positive for all z  <  0.9 nm), whereas at higher potentials 
the change in concentration becomes negative in the region 
around z  =  0.5 nm, corresponding to the minimum around 
z  =  0.6 nm in the anion concentration profile (red curves) in 
panel (a). Moreover, figure 4(d) clearly shows how the anions 
are repelled from the increasingly negative electrode: initially, 
the rejection is strongest immediately at the wall (red solid 
curve in panel (d)), but with increasing potential, when the 
ionic concentration vanishes at the wall (red curves in panel 
(b)), anions are also rejected from more distant regions where 
they were attracted to earlier (red dotted curve in panel (d)).

Another salient feature of the EDL that is captured by our 
DFT is the change in the shape of the concentration peaks when 
the voltage increases, which indicates a structural transition in 
the EDL. The cation distributions near the anode in figure 4(a) 
show that the first peak of the concentration profile decreases 
with increase of Ψ∆, vanishing completely for Ψ =∆ 1.2 V 
(black curves). At the same time, the peak shifts to larger z and 
the (initially) second peak first decreases (dashed curve) and 
then builds up again (the black solid curve in panel (a) has two 
peaks, at the wall and at ≈z 1 nm, the dotted curve has only one 
peak at ≈z 0.8 nm). The final result is that the first peak (black 
solid curve at the wall) has been shifted by 0.6 nm and com-
bined with the second peak (black dotted curve at ≈z 0.8 nm). 
Furthermore, at large voltages the first layer of cations resides 
slightly farther from the electrode compared to the second layer 
of anions (dotted curves in the inset of panel (a)). These struc-
tural features of the EDL are very similar to those described by 
the simulation study of Kirchner et al [24], in which it is argued 
that these are additional hallmarks of the in-plane ordering of 
the counter-ion layer adsorbed on the wall. To test this within 
the framework of DFT we will investigate the in-plane structure 
factor of the first adsorbed layer in the next section.

The layers of the EDL can be defined in between the minima 
of the total ionic concentration profile [19], which we show in 
figure 2(b) by the dashed vertical lines. Here, we ignored the 
discontinuous minimum which stems from the fact that the 
smaller anions can approach the wall more closely. The thick-
ness of the layers, which we plot in figure 5(a) for different 
permittivities, depends on the applied electrostatic wall poten-
tials /Ψp n. In figure 5(a), we show the thickness, L*, of the first 
layer, of the second layer, and of the half cell (L /2  =  6.16 nm) 
at the respective electrode, where ∗ just represents a place 
holder. Especially at high ε, the thickness of the layers show 
interesting dependence on the applied potential. In part (b) of 
figure 5, we plot the number ν

∗N  of particles relative to bulk 
in the respective regions. Obviously, ion exchange is most 
significant in the first layer of ions adjacent to the electrode, in 
accordance with the spatially resolved results in figures 4(c) 
and (d). Note, however, that a large response in the ionic con-
centrations does not correspond to a large change in the total 
number of particles, but rather to a large change in the local 
charge density and, hence, in the differential capacitance of 
the cell (dotted lines remain almost flat in panel (b)).

The differential capacitances per unit area, shown in part 
(c) of figure 5, are defined as the change of charges per area, 
σ∗, in a certain subvolume V* of the whole cell due to poten-
tials, hence,

σ
=
∂
∂Ψ∗
∗C

e
.diff� (18)

Applied to the whole cell volume, the voltage dependence 
of this quantity is of great importance for the properties of 
charging (super)capacitors, and is therefore often studied in 
the context of ionic liquids [13, 15, 16, 18–20]. In particular, 
Kornyshev was the first to discuss the difference between the 
so-called bell and camel shape of the voltage dependence of 
the differential capacitance [13], where our results shown 
in panel (c) are somewhere in between both shapes. For 

Figure 3.  Concentration profiles of the cations and anions next to the 
left electrode at vanishing potential Ψp for four relative permittivities 
ε = 1, 2, 10, and 30 at an ionic concentration ¯ /ρ =+ − 2 M. Due 
to their sizes, the anions reach the electrode closer than the larger 
cations, which leads to a separation of the concentration profiles.
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asymmetric particle sizes, these shapes are asymmetrically 
deformed for positive and negative electrodes [16, 20], as the 
results in figure 5(c) confirm for the system with ε = 10; here, 
we also provide a comparison between our system’s particle 
asymmetry α≈ 0.2919 and two less asymmetric systems, with 
a smaller and a vanishing α, clearly demonstrating the men-
tioned symmetry for a vanishing α and the asymmetric shift 
for finite α. Interestingly, the differential capacitance of the 
second layer for ε = 30 seems to be almost symmetric, while 
the first layer shape shows a large asymmetry. Moreover, 
figure 5(c) demonstrates that the first layer contributes most to 
the differential capacitance of the respective electrode, espe-
cially for small permittivities. Indeed, the contribution of the 
first layer is almost identical for our system with ε = 2 (the 
lines are on top of each other). Even though the total amount 
of charge that is stored on the electrodes is higher for higher 
permittivities (see table 1), the charges are stored in a much 
smaller volume for low permittivities. For this reason, the 
permittivity might be decreased in (super)capacitors with very 
narrow pores in order to maximize the ability to store elec-
trical charges on the electrodes.

In contrast to (super)capacitors, where charge capaci-
ties on the electrodes are crucial, molar ion capacities for 

salt adsorption play an important role in capacitive desalina-
tion and capacitive energy extraction [10, 63, 73]. The molar 
differential capacitance at fixed chemical potential is defined 
similarly to equation (18) by

=
∂
∂Ψ∗
∗NC ,mol,

diff� (19)

where ∗N  denotes the total number of particles per electrode 
area in the volume V* of interest. We plot this measure of par-

ticle storage in figure 5(d). Obviously, ∗Cmol,
diff  reaches higher 

values for higher permittivities, where the repulsion between 
like-charge ions is better screened. Since the molar differential 
capacitance is a derivative of the particle number, a vanishing 
value indicates a minimum in the latter. Interestingly, this 
minimum is shifted towards negative potentials for increasing 
asymmetry α, such that at the negative electrode the total 
number of particles is decreased for increasing potentials. 
This can be understood from figure 4, which shows that the 
small anions are repelled from the cathode at lower absolute 
potentials than the cations from the anode. In a simple picture, 
each cation, adsorbed to the cathode, needs ( )/( )α α+ −1 1  
anions to leave in order to have enough free volume, as follows 

Figure 4.  Concentration profiles of cations and anions at (a) the anode and (b) the cathode for different cell potentials Ψ = Ψ − Ψ∆ p n in 
a system of ionic concentrations ¯ /ρ =+ − 2 M and a relative permittivity ε = 10. The insets show magnifications of the second peak in the 
profiles. The local change in the ionic concentrations with respect to a change in the cell potential is shown in panels (c) and (d), where, 
again, the insets magnify the regions of the second peaks.
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from the definition of α in section 4. As a consequence, small 
counterions seem to adsorb better to an electrode than small 
coions. In conclusion, the effective adsorption of ions requires 
a detailed study of the adsorption as a function of the ionic 
sizes and the solvent’s permittivity.

5.  In-plane structure of the electric double layer

In this section, we analyze the partial transverse structure fac-
tors ( )ν ν′S qslab  in the first layer next to the anode. Recall that the 

first layer is defined up to the first minimum of the total con-
centration profile, zmin, ignoring the minimum at z  =  R+ due 
to the small anions reaching closer to the walls. Naturally, zmin 
depends on the potential Ψp, as the analysis of the thickness 
of layers in figure  5(a) shows. Accordingly, we have calcu-
lated ( )ν ν′H z q,slab

0  from DFT on the slab interval [ ]−R z, min , as 
explained in equation (9). For technical reasons and in order to 
compare our DFT-generated in-plane structure to that obtained 

from our simulations, we have approximated the contraction 

from equation (10) by ¯ ( ) ( )=ν ν ν ν ν′ ′ ′H q n H z q,slab slab slab
0  with the mole 

Figure 5.  Characteristics of the first two layers at the electrode and of the half cell in terms of (a) their thickness, (b) the amount of 
particles in relation to bulk, (c) the resulting contribution ∗Cdiff to the differential capacitance, and (d) the contribution ∗Cmol,

diff  to the molar 
differential capacitance. The results in parts (b), (c), and (d) are separated into cation and anion contributions. The three columns show 
results for the relative permittivities ε = 2, ε = 10, and ε = 30, each at ionic concentrations of ¯ /ρ =+ − 2 M. In the case of ε = 10, data is 
shown for the additional asymmetries α = 0.1583 and α = 0.0 of the ionic species. Furthermore, magnifications in part (d) demonstrate 
that a decreasing permittivity seems to be similar to a magnification of the graphs at hand, since the magnification at ε = 30 is qualitatively 
similar to the plot at ε = 10, where the magnification again is qualitatively similar to the plot at ε = 2.
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fraction /=ν ν′ ′n N Nslab slab slab in the first layer, which is equiva-

lent to ( )ν ν′S qslab . As a representative position we have chosen 

( )/= ++z R z 20 min , such that the slab contains both anions and 
cations. We did not find any noteworthy differences for other 
values of z0 within the slab. Note that the structure ( )νν ′H z q,slab

0  
still is determined from the complete framework of DFT and 
the Ornstein–Zernike relation applied to the full inhomoge-
neous, z-dependent density profiles we discussed in this work.

In figure 6, we draw a comparison between both the partial 
transverse structure factors ( )ν ν′S qslab , approximatively calcu-

lated from ( )ν ν ν′ ′ �n H z ,slab slab
0  and DFT, and obtained from MD 

simulations, for three electrode potentials. The first global 
observation is that there is certainly no quantitative agreement 
between the DFT results and the simulations. Such a poor 
agreement should not come as a surprise given (i) the incom-
plete construction of the free-energy functional by neglecting 
correlations between the hard-sphere and electrostatic contrib
utions and (ii) the resulting issues in the out-of-plane structure 
we discussed in the previous section. In particular, we observe 
in figure 6 that the simulated in-plane structure is more pro-
nounced for the diagonal (++ and  −−) components, reaching 
the asymptotic large-q limit for smaller values of q. This is 
consistent with the ‘sticking’ effect of our functional, which 
gives spurious structure on small length scales and hence on 
large q’s. The slow large-q decay of the DFT-based structure 
may well be due to this shortcoming of the DFT. Figure 6 also 
shows a relatively large difference between panels (a) and (b) 
compared to panel (c), where the  −− correlations obtained 
by the simulations become very pronounced at ∼q 10 nm−1, 
although this can hardly be seen as a sign of a divergence 
(and hence as a signature of an in-plane phase transition). Our 
DFT results seem to completely miss this enhanced struc-
tural feature in figure  6(c), where simulation results clearly 
show increased structure at larger q values. This indicates a 

Figure 6.  The partial transverse structure factors ( )ν ν′S qslab  in the 
first layer of ions next to the anode, obtained from both DFT 
(approximatively) and MD simulations, for electrode potentials 
(a) Ψ = 0.0p  V, (b) Ψ = 0.1p  V, and (c) Ψ = 0.5p  V. In (c), the  ++ 
contribution from the MD simulations is not shown due to an 
almost vanishing number of cations, which leads to bad statistics. 
Note that the diagonal parts (++ and  −−) of the structure factor 
have been normalized by the mole fraction of the corresponding 
species to reach comparable large-q limits of 1.
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compactification of the first layer of ions in agreement with 
our previous out-of-plane analysis.

In figures 7(a) and (b) we show the particle-particle (NN) 
and charge-charge (ZZ) structure, which are linear combina-
tions of the partial in-plane structure factors shown in figure 6, 
respectively. Both are presented for the same three potentials 
as in figure  6 and for both DFT and simulations. The NN 
structures are all quite similar (except at low q for the high 
potential simulations) and show a reasonably good agreement 
between DFT and simulation. This is to be attributed to the 
high quality of the FMT part of the functional which captures 
overall packing effects accurately. In contrast, the ZZ struc-
tures show a very poor agreement between DFT and simula-
tions, again showing a decay to the large-q limit in DFT that is 
extremely slow compared to the simulations.

The simulation results in figure 7(b) show a significant shift 
of the primary peak from ∼q 6 nm−1 for Ψ = 0.1p  V to ∼q 10 
nm−1 for Ψ = 0.5p  V, consistent with a very strong adsorption 
of ionic charge to the electrode surface. As discussed previ-
ously, this finding is consistent with the results of Kirchner  
et al [24] and our findings from section 4. All in all we argue 
that the present DFT is not sufficient to study the in-plane 
structure of an ionic liquid in the vicinity of a (highly charged) 
electrode, and further investigations to correct for the slow 
large-q decay in the correlations is required.

6.  Concluding discussion

In this paper we investigated a free-energy functional for a 
size-asymmetric primitive model of spherical ions in order to 
describe the in- and out-of-plane structure of an ionic liquid 
confined in a parallel-plate capacitor by the means of clas-
sical DFT. Both the steric repulsions as well as the charges 
are important in these dense and strongly coupled Coulombic 
systems. The ionic hard-core repulsions are accurately treated 
on the basis of a fundamental measure functional whereas 
the Coulombic interactions are taken into account at a mean-
field type Poisson-Boltzmann level. To ensure the isolation 
of problems we found for the calculation of in-plane struc-
ture from DFT, we neglected further (approximate) contrib
utions to the functional, which would correct for correlations 
between the respected hard-sphere and Coulombic contrib
utions, but which are still unknown for inhomogeneous sys-
tems. For several cell voltages we first investigated the ionic 
density profiles at high concentrations and potentials as a 
function of the distance from the electrodes, finding reason-
able but far-from-perfect agreement with our MD simula-
tions of the same model. The most obvious deviation from 
our simulation results is a much weaker layering of oppositely 
charged ions in the EDL, observed from DFT, while general 
layering and charge exchange in between layers still is cap-
tured. Nevertheless, the out-of-plane profiles allow for the 
calculation of the differential charge and molar capacitances, 
quantities that are relevant for energy-storage and desalina-
tion devices. An interesting issue concerns the possibility of 
an in-plane structural phase transition associated with anoma-
lies in the differential capacitance as observed recently in 
simulations [22, 23, 25]. While our out-of-plane results show 

a hint for this structural transition, the in-plane structure that 
follows from the direct correlations of our functional gives a 
very poor account of our simulated in-plane structure. As a 
main problem, we isolated the slow decay of correlations and 
connected it with the previously described underestimation of 
charge layering. However, our work points towards the con-
struction of better functionals, which have to be considered 
to comprehensively study the observed phenomena in ionic 
liquids confined in (porous) electrodes. A first candidate is 
possibly the MSA-corrected functional that was recently used 
in [47, 63]. Although we took the asymmetry between cations 
and anions into account by assigning them different hard-
sphere diameters, it is also conceivable that the non-spherical 
shape of some of the ions is a crucial ingredient that needs to be 
incorporated at the level of the hard-core functional. After all, 
the rod-like character of some of the ions in real ionic liquids 
allows for voltage-induced structural changes of the double 
layer that involve alignment of the ions. Given the practical 
importance of the systems at hand and the complexity of the 
required functionals, classical DFT is facing a challenging, 
interesting, and hopefully bright future to address confined 
ionic liquids in external potentials.
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