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We investigate coupled spin and heat transport in easy-plane magnetic insulators. These materials
display a continuous phase transition between normal and condensate states that is controlled by an external
magnetic field. Using hydrodynamic equations supplemented by Gross-Pitaevski phenomenology and
magnetoelectric circuit theory, we derive a two-fluid model to describe the dynamics of thermal and
condensed magnons, and the appropriate boundary conditions in a hybrid normal-metal–magnetic-
insulator–normal-metal heterostructure. We discuss how the emergent spin superfluidity can be exper-
imentally probed via a spin Seebeck effect measurement.
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Introduction.—It has been many years since Kapitza first
observed that helium, when cooled below a temperature of
2.17 K, displays properties attributable to a new quantum
phase of matter [1], such as the ability to flow without
dissipation through thin capillaries, the quantization of the
vorticity, and a record thermal conductivity. These proper-
ties are well understood within the framework of the two-
fluid model proposed independently by Tisza [2] and
Landau [3], in which He II is described as a mixture of
a normal fluid, which is viscous and carries all the entropy
of the system, and a superfluid that flows without friction
and carries no thermal energy.
Only a few years later, the two-fluid model successfully

threw light upon the apparent absence of the usual thermo-
electric effects, such as the Seebeck and the Peltier effects, in
the superconducting state [4]. Indeed, in superconductors, all
the conventional thermoelectric properties vanish due to the
coexistence of the thermal quasiparticle current with a
dissipationless supercurrent that counterflows with it. The
analogy between the supercurrent of electric charge in
superconductors and the mass superflow in helium stems
from theunderlying commonorigin of these phenomena, i.e.,
the spontaneous breaking of the Uð1Þ symmetry underlying
Bose-Einstein condensation (BEC, of either atoms orCooper
pairs) and the associated macroscopic quantum coherence.
Therefore, a superfluid phase can be described by a two-fluid
model, in which the condensed and itinerant atoms are,
loosely speaking, identified with the superfluid and normal
components, respectively. This concept can be extended to a
variety of systems exhibiting Uð1Þ symmetry breaking and
thus the coexistence of a normal and a Bose-Einstein
condensed fluids, such as excitons [5,6], polaritons [7,8],
and magnons [9–11].
A growing interest has recently arisen in magnonic

systems as promising setups for achieving room-
temperature Bose-Einstein condensation, motivated in part
by the experimental progress of Demokritov et al. [12] on

parametrically pumped magnon condensates. More
recently, a theoretical proposal for the realization of a
BEC of magnons by means of direct spin current injection
from an adjacent normal metal with strong spin-orbit
coupling was put forward by Bender et al. [13]. Unlike
BEC of real particles, BEC of quasiparticles and, in
particular, quasiequilibrium magnons, does not require
low temperatures, since the high densities of magnons
needed for the condensate to form can be produced via
external pumping or by tuning the magnetic field, which is
facilitated by their small effective mass (corresponding to
strong exchange). In this Letter, we focus on a ferromag-
netic insulator with easy-plane magnetic anisotropy as a
simple model system that displays a transition between
normal and BEC phases and exhibits superfluid behavior.
The magnet is sandwiched between two metallic reservoirs
that act like thermal baths, set at two different temperatures,
and that may provide spin accumulation via the spin Hall
effect (as illustrated in Fig. 1). The temperature difference
applied across the ferromagnet induces a spin current into
normal metals, which can be measured as an inverse spin
Hall voltage and is dubbed the spin Seebeck effect [14]. By
sweeping the magnetic field in the z direction, the system
can be tuned to a state where the (xy) easy-plane rotational
symmetry is spontaneously broken, and which, as a result,
supports collective spin currents. We show that the spin
Seebeck effect is then diminished, as a result of counterflow
between condensate and thermal spin currents. As a
practical utility, our results may provide novel routes to
control thermal spin currents.
Model and hydrodynamic equations.—We consider the

following model Hamiltonian for an easy-plane magnetic
insulator subjected to a field B oriented along the z axis:

H ¼
Z

d3r

�
−
A
2s

ŝ · ∇2ŝþ Bŝz þ
K
2s

ŝ2z

�
; ð1Þ
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where ŝ is the spin density operator (in units of ℏ), A
the exchange stiffness, K > 0 the constant governing the
strength of the local easy-plane anisotropy, and s the
saturation spin density. Performing the Holstein-
Primakoff transformation [15], ŝz ¼ Φ̂†Φ̂ − s and

ŝ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s − Φ̂†Φ̂

p
Φ̂, it is straightforward to recast the

Heisenberg dynamics of ŝ as a superfluid coupled to a
normal cloud (see, e.g., Ref. [16]). By, furthermore,
including phenomenologically the Gilbert damping
constant α, the corresponding Gross-Pitaevksi equation
(following the Popov approximation [17]) reads as

ði − αÞℏ∂tΦ ¼ ðℏΩþ Knc=s − iRÞΦ − A∇2Φ: ð2Þ
Here, Φ≡ hΦ̂i ¼ ffiffiffiffiffi

nc
p

e−iφ is the superfluid order param-
eter, with φ being the precessional angle of the magneti-
zation density in the xy plane and nc (nx) condensed
(normal) magnon density. In particular, sz ¼ nc þ nx − s.
We are assuming small deviations from the ground state (in
the absence of anisotropy), so that nc þ nx ≪ s, through-
out. ℏΩ≡ B − Kð1 − 2nx=sÞ is the normal-phase magnon
gap, and the collisional term R describes the coupling to the
finite-temperature normal cloud [18], which is defined by
ϕ̂≡ Φ̂ − Φ, with hϕ̂†ϕ̂i being the normal cloud density nx.
At zero temperature (and thus R → 0), Eq. (2) recasts the
Landau-Lifshitz-Gilbert equation [19] for small-angle
dynamics of the spin density around the −z direction
(see Fig. 2). It is, furthermore, illuminating to rewrite
Eq. (2) as the superfluid hydrodynamic equations

_nc þ ∇ · jc ¼ −Γcx − 2αωnc; ð3aÞ

ℏðω −ΩÞ − K
nc
s
¼ A

�
ð∇φÞ2 −∇2 ffiffiffiffiffi

nc
p
ffiffiffiffiffi
nc

p
�
; ð3bÞ

where ω ¼ _φ is the condensate frequency and jc ¼ ncvc
the condensate spin current (polarized out of the easy plane,
i.e., in the z direction), where vc ¼ −ℏ∇φ=m and m≡
ℏ2=2A is the kinetic magnon mass. Γcx ¼ 2ncR=ℏ is the
collision term describing equilibration between the con-
densate and the thermal cloud, defined as Γcx ¼ 2ηðω −
μ=ℏÞnc [17], with η parametrizing the rate of the thermal
cloud-condensate scattering [20]. Chemical potential μ and
temperature T parametrize the Bose-Einstein distribution of
the thermal cloud.
The equilibrium phase diagram of the easy-plane con-

densate is shown in Fig. 2, which is obtained by a mean-
field self-consistency analysis for nc ≥ 0 coupled to the
thermal cloud [20]. In the following, we will be interested
in the linear response of magnons to a temperature gradient.
Linearizing with respect to small nonequilibrium variables

—ω, vc, and δnc ≡ nc − nð0Þc for the condensate and μ and
δT ≡ T − Tð0Þ for the cloud—Eqs. (3) become

δ _nc þ nc∇ · vc ¼ 2ηðμ=ℏ − ωÞnc − 2αωnc; ð4aÞ

ℏω ¼ K
δnc þ 2δnx

s
− A

∇2δnc
2nc

: ð4bÞ

Here, δnx ≡ nx − nð0Þx can be expanded in terms of μ and δT
(disregarding its subleading dependence on δnc). The
superscript (0), which was dropped in Eqs. (4) without
danger of ambiguity, denotes the corresponding equilib-
rium values in the absence of the thermal flux.

FIG. 1. Normal-metal–easy-plane insulator–normal-metal hy-
brid heterostructure. The state of the equilibrium magnetization,
which is determined by the interplay between the magnetic field
B and the anisotropy energy K, can be perturbed by magnon
transport driven by temperature gradient ∇T and spin accumu-
lations μl;r ¼ μl;rẑ sustained by the metal leads. At low magnetic
fields, the spin Seebeck current (polarized along the z axis) jx
induced by the temperature gradient ∇T coexists with a super-
fluid spin counterflow jc, as discussed in the text.

FIG. 2. Equilibrium phase diagram. The condensate phase
boundary is at T=Tc ¼ ð1 − B=KÞ2=3=Γ3=2ζ3=2, where Tc ≡
As2=3 estimates the Curie temperature. In the normal phase,
the net spin density s is oriented along the (negative) z axis; the
condensate spontaneously breaks U(1) symmetry around the z
axis, as manifested by a static canting of the magnetization,
whose deviation from its normal-state equilibrium value along
the z axis is parametrized by the condensate density nc. In the
absence of an applied field B, the ferromagnet is a planar xy
magnet. The reduction of the spin Seebeck current jx (red curve)
as the magnetic field B decreases below the transition point, at a
fixed T, is a direct and observable signature of superfluidity.
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The above condensate equations are complemented by
hydrodynamic equations for the thermal cloud, which
can be easily constructed within the Boltzmann transport
theory [20]:

δ _nxþ∇ ·jx ¼ 2ηðω−μ=ℏÞnc−gnμμ−gnTðT−TpÞ; ð5aÞ

δ _uþ ∇ · jq ¼ −guTðT − TpÞ − guμμ: ð5bÞ

Here, u is the energy density of the thermal cloud, Tp is the
phonon temperature, and the g coefficients parametrize
relaxation of magnons by the (phononic) environment.
[Note that a contribution to the energy rate equation (5b)
from the condensate-cloud scattering is missing as it is
quadratic in the nonequilibrium bias: δ _ujcx ∝ ℏωðℏω − μÞ.]
The linear response spin jx and heat jq, current densities,
furthermore, can be expanded as

jx ¼ −σ∇μ − ς∇T; jq ¼ −κ∇T − ρ∇μ; ð6Þ

where σ, κ, ς, and ρ are, respectively, the bulk spin and heat
conductivities and the intrinsic spin Seebeck and Peltier
coefficients.
Boundary conditions.—The spin and heat flow across the

sample must be determined consistently with the boundary
conditions defined at the FjN interfaces at x ¼ 0; L.
Accounting for interfacial static spin-transfer and spin-
pumping torques, the linearized z component of the
condensate spin current density injected from the left
reservoir with a nonequilibrium spin accumulation μl ¼
μlz is given by [25]

jcjx¼0 ¼ ncg
↑↓
l ðμl − ℏωÞ=2πℏs; ð7Þ

where g↑↓l is the real part of the (dimensionless) spin
mixing conductance (per unit area). The thermal spin and
heat currents flowing across the left interface are given by

jxjx¼0 ¼ Gðμl − μÞjx¼0 þ SðTl − TÞjx¼0; ð8aÞ

jqjx¼0 ¼ KðTl − TÞjx¼0 þ Πðμl − μÞjx¼0: ð8bÞ

Here, Tl is the electron temperature and G, K, S, and Π are
the interfacial magnon spin and thermal conductances and
spin Seebeck and Peltier coefficients, respectively.
The boundary conditions, Eqs. (7) and (8) along with the

analogous expressions for the right interface, together with
the two-fluid hydrodynamic relations, Eqs. (4) and (5),
constitute a complete set of linearized equations from
which we can yield solutions for all the dynamical
variables. We will now solve this problem in a steady
state (i.e., δ _nc ¼ δ _nx ¼ δ _u ¼ 0 and ω ¼ const), when the
normal-metal reservoirs are thermally biased: Tl ¼ T −
ΔT=2 and Tr ¼ T þ ΔT=2. We will suppose, for simplic-
ity, that the phononic heat transport and thermal profile are

only weakly disturbed by the magnons, so that Tp ¼
T þ ΔTðx=L − 1=2Þ, where we, furthermore, neglected
interfacial Kapitza resistances.
Results.—Let us investigate the flow of magnonic spin

and heat across a mirror-symmetric NjFjN structure driven
by a small temperature bias ΔT. We will consider two
limiting cases: the magnet is sandwiched (i) between two
heavy metals acting as good spin sinks (as may be
exemplified by PtjYIGjPt), in which case μl;r ¼ 0, or
(ii) between two light metals being perfectly poor spin
sinks (possibly approximated by CujYIGjCu), in which
case spin accumulations build in each lead to block the total
spin current across the interfaces, jc þ jx → 0 at x → 0; L.
Since the spin-preserving relaxation of magnon distri-

bution towards the phonon temperature, as parametrized by
guT in Eq. (5b), does not rely on relativistic spin-orbit
interactions, we may expect it to be an efficient process at
high temperatures (stemming, e.g., from the modulation of
exchange coupling by lattice vibrations). The correspond-
ing length scale, which is governed by the inelastic
magnon-phonon scattering, λu ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
κ=guT

p
, can therefore

be taken to be shorter than other relevant length scales,
which are associated with relativistic physics (i.e., λn and
λcx defined below). In this regime, we can set T → Tp,
which decouples the spin transport from heat dynamics,
resulting in the steady state, in the following diffusion
equation for magnons:

∂2
xμ − ðμ − ℏωÞ=λ2cx − μ=λ2n ¼ 0; ð9Þ

which is solved by

μ ¼ ðλm=λcxÞ2ℏωþ cle−x=λm þ creðx−LÞ=λm: ð10Þ
Here, λ−2m ≡ λ−2n þ λ−2cx , λn ≡ ffiffiffiffiffiffiffiffiffiffiffi

σ=gnμ
p

is the thermal

magnon diffusion length, and λcx ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏσ=2ηnc

p
is the

condensate-cloud equilibration length (where nc is the
condensate equilibrium density according to the phase
diagram in Fig. 2). The boundary conditions are given by

jxð0Þ ¼ G�cl − ςΔT=L ¼ G½μl − μð0Þ�; ð11aÞ

jxðLÞ ¼ −G�cr − ςΔT=L ¼ G½μðLÞ − μr�; ð11bÞ
for the cloud (supposing L ≫ λm), where μð0; LÞ ¼
ðλm=λcxÞ2ℏωþ cl;r, G� ≡ σ=λm, and

vcð0Þ ¼ g↑↓ðμl − ℏωÞ=2πℏs; ð12aÞ

vcðLÞ ¼ g↑↓ðℏω − μrÞ=2πℏs; ð12bÞ
for the condensate. The reservoir spin accumulations are
μl ¼ μr ¼ 0 in the good spin sink case and are found
according to ncvc þ jx ¼ 0 (at both interfaces) for the poor
spin sinks. Integrating the steady-state version of Eq. (4a),
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∂xvc ¼ 2ηðμ=ℏ − ωÞ − 2αω; ð13Þ

we get for Δvc ≡ vcðLÞ − vcð0Þ,

Δvc ¼
2ηλmðcl þ crÞ

ℏ
− ½2αþ 2ηðλm=λnÞ2�ωL: ð14Þ

In the simpler, good spin sink case (where the spin
Seebeck physics is manifested through the total spin
currents injected into the metal reservoirs), we thus have
5 linear equations, (11), (12), and (14), for 5 unknowns:
cl;r, ℏω, and vc at x ¼ 0; L. For poor spin sinks (where the
spin Seebeck physics is manifested through the spin
accumulations induced in the metal reservoirs), we have
two additional unknowns, μl;r, and two more equations (for
the vanishing total spin current at the interfaces). Note that
the differential equation (4b) for δnc decouples in the
linearized treatment. Adding and subtracting Eqs. (11), and
substituting the difference of Eqs. (12) into Eq. (14) leads to

ðGþG�Þc− −ςΔT=L−Gμ−¼ 0;

ðGþG�ÞcþþGðλm=λcxÞ2ℏω−Gμþ ¼ 0;

2ηλmcþ
ℏ

−
�
αþη

�
λm
λn

�
2

þ g↑↓

2πsL

�
1−

μþ
ℏω

��
ωL¼ 0; ð15Þ

where c� ≡ ðcl � crÞ=2 and μ� ≡ ðμl � μrÞ=2.
In the good spin sink case, μ� ¼ 0, the last two equations

above lead immediately to ω ¼ 0 and cþ ¼ 0. The remain-
ing equation gives

cl ¼
ςΔT=L
GþG�

¼ −cr: ð16Þ

The spin currents at the two interfaces (which turn out to be
purely thermal and equivalent) are thus given by

jx ¼ −
ςΔT=L

1þG�=G
; ð17Þ

and vanish when either λcx → 0 (strong condensate-cloud
interaction regime, where λm → λcx) or λn → 0 (strong
magnon damping regime, where λm → λn), since
G� ∝ 1=λm → ∞. As, by decreasing field B, we go deeper
into the condensate phase at a fixed T, and nc is mono-
tonically increasing, λcx decreases and thus the magnitude
of jx is reduced (see Fig. 2, where we took into account the
dependence of λm on B but ignored the dependence of other
quantities on B, which is valid as long as T ≫ K [20]). jx is
largest at the transition point to the normal state and is given
by Eq. (17) with λm → λn. Note that although the superfluid
velocity vc vanishes at both interfaces, it is nonzero inside
the ferromagnet (at distances beyond λm from the inter-
faces), according to Eq. (13),

vc ¼
2ηλmcl

ℏ
¼ 2ηλm

ℏ
ςΔT=L
GþG�

: ð18Þ

Already in this simple case we encounter the conveyor-belt
physics, as the superfluid spin current ncvc in the bulk
counteracts the diffusive thermal flux −ςΔT=L and reduces
the net spin Seebeck effect as measured at interfaces.
In the opposite limit of the poor spin sinks, we still find

ω ¼ 0 and cþ ¼ 0, so that μþ ¼ 0, while

μl ¼
ςΔT=L

G� þ ð1þ G�=GÞg↑↓nc=2πℏs
¼ −μr: ð19Þ

This spin accumulation vanishes when either λcx → 0 or
λn → 0 and decreases with decreasing field B, displaying
an analogous behavior to the one of the spin current at the
interfaces in the good spin sink case (see Fig. 2). While the
total current now vanishes at the interfaces, jx and vc are
both nonzero in the ferromagnet (see Fig. 3).
Discussion and conclusions.—In this work, we con-

structed a hydrodynamic theory which describes the
interactions between thermal and condensed magnons in
an easy-plane magnetic insulator in the presence of a
thermal gradient. We predicted that spin superfluidity
can be induced by sweeping the external magnetic field
and experimentally probed via the spin Seebeck effect. We
estimate that for YIG this drop should be observable [20].
Although we have explicitly considered a ferromagnetic
insulator, we anticipate, according to Refs. [26] and [27],
qualitatively similar behavior also for antiferromagnets.
Future works should more systematically address the
magnon-phonon relaxation mechanisms and study the role
of magnons in the net heat transport. Nonlinear response, in

FIG. 3. In the presence of a temperature gradient ΔT, the
magnon chemical potential μðxÞ deviates near the interfaces from
its zero bulk value in the ferromagnet (YIG). This is accompanied
by the electronic spin accumulation buildup in adjacent metals
(Cu, treated as a poor spin sink). The spin accumulation μl at the
left interface exerts a torque on the magnetic order parameter,
twisting it in the opposite direction with respect to the one
induced by μr ¼ −μl at the right interface. In the mirror-
symmetric case, the precession frequency ω vanishes. The
condensate jc and thermal jx contributions to the spin currents
are plotted for λn ¼ λcx.
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the contexts of dynamic instabilities [16] and pinning by
parasitic in-plane anisotropies [28], and higher-order man-
ifestations of the microscopic irreversibility [29] of the
coupled spin and heat transport will be addressed
elsewhere.
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