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Local thermomagnonic torques in two-fluid spin dynamics
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We develop a general phenomenology describing the interplay between coherent and incoherent dynamics in
ferromagnetic insulators. Using the Onsager reciprocity and Neumann’s principle, we derive expressions for the
local thermomagnonic torques exerted by thermal magnons on the order-parameter dynamics and the reciprocal
pumping processes, which are in close analogy to the spin-transfer torque and the spin pumping at metallic
interfaces. Our formalism is applicable to general long-wavelength dynamics and, although here we explicitly
focus on ferromagnetic insulators possessing U(1) symmetry, our approach can be easily extended to other classes
of magnetic materials. As an illustrative example, we apply our theory to investigate a domain wall floating over
a spin superfluid, whose dynamics are triggered thermally at the system’s edge. Our results demonstrate that the
local pumping of coherent spin dynamics by a thermal magnon gas offers an alternative route—with no need
for conducting components and thus devoid of ohmic losses—for the control and manipulation of topological
solitons.
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I. INTRODUCTION

The interaction between spin-polarized electron transport
and magnetization dynamics via spin-transfer torques [1] and
spin pumping [2] has been investigated for almost 2 decades
now. It paved the way for the manipulation of magnetization
textures and dynamics without the deployment of external
magnetic fields [3]. Recently, much enthusiasm has been
bolstered by the possibility of attaining similar outcomes by
means of thermal control. Thermally driven magnetization
dynamics could be achieved through laser pulsing, as well
as through heat diffusion, thereby removing the need for an
electronic medium altogether [4].

In magnetic insulators, a thermal bias triggers a pileup
of thermal magnons via the spin Seebeck effect [5]. This
incoherent magnon cloud can relax by transferring spin angular
momentum to the magnetic order parameter and thus resulting
in a local (thermomagnonic) spin-transfer torque [6,7]. The
latter may then launch nonequilibrium spin textures, opening
up new prospects for thermally driven nonvolatile magnetic
memories and logic with potentially little net dissipation.

In this work, via Neumann’s principle and the Onsager reci-
procity relations, we develop a general formalism describing
the local thermomagnonic torques exerted on the magnetic
order parameter and the backaction of the coherent dynamics
on the thermal magnons. These reciprocal phenomena are in
close analogy to the spin-transfer torque and spin pumping
in metallic multilayers [8]. Our phenomenology is suited
to describe the interplay between diffusive and collective
(Landau-Lifshitz-type) dynamics for general spin textures,
providing a generalization of previous results [6,7].

To simplify our discussion, we focus on the simplest non-
trivial case yielding local thermomagnonic torques, i.e., axially
symmetric (either easy- or hard-axis) magnetic systems. The
hard-axis case has been proposed [9] for hosting a spin super-
fluid, which is rooted in the Goldstone mode associated with
the spontaneous U(1) symmetry breaking [10,11]. In contrast

to the exponentially decaying flow of thermal magnons, the
spin superfluid can transmit spin transport over long distances.
This has been exploited recently by Upadhyaya et al. [12],
who suggested that a hard-axis magnet can efficiently transfer
spin angular momentum between a metallic spin reservoir and
a distant domain wall. Here, we employ our phenomenology
to extend their proposal to a domain wall driven by a thermally
activated superfluid dynamics.

II. LOCAL THERMOMAGNONIC TORQUES

In this section, we construct a general phenomenology
describing the coupling between magnetic order-parameter
dynamics and a quasiequilibrium cloud of thermal magnons.
Specifically, we consider a magnetic insulator, whose spin
density is given in the ground state by s = sn, s being the
saturated spin density (in units of �) and n the spin density
orientation. Finite temperature gives rise to the fluctuations
δŝ = ŝ − 〈ŝ〉, where ŝ is the spin-density operator. These are
composed of thermal magnons, whose density ñ reduces the
magnitude of the spin density to s̃ ≡ s − ñ. Here, we assume
that the interactions within the thermal magnon cloud are fast
enough (compared to the pumping and relaxation processes) to
equilibrate them to a common temperature, T , and chemical
potential, μ. We are supposing the temperature to be large
compared to the anisotropy fields, such that the magnons are
of the exchange type and carry spin −� along n.

If the coherent texture is smooth on the scale of the
thermal-magnon wavelength, the hydrodynamic variables that
describe the system are the orientation n of the order parameter
and the thermal-magnon density ñ, which together parametrize
the total (three-component) spin density 〈ŝ〉 ≡ (s − ñ)n. In
terms of these variables, the instantaneous state of the magnet
can be described by a free-energy functional, F[n,ñ]. The
effective (Landau-Lifshitz) transverse field H ≡ δnF[n,ñ] and
the chemical potential μ ≡ δñF[n,ñ] are the forces conjugate
to the variables n and ñ, respectively.
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Within the linear response, the relations between the rates
ṅ and ˙̃n and the forces can be written as(

ṅ
˙̃n

)
=

(
Lnn Lnñ

Lñn Lññ

)(
H
μ

)
≡ L

(
H
μ

)
, (1)

where we have introduced the 3 × 3 linear-response matrix
L, per each point in space (Lnn is a 2 × 2 block, etc.)
Leaving the relaxation processes aside for the moment, the
decoupled orientational dynamics obey the Landau-Lifshitz
equation [13]:

�ṅ = 1

s̃
H × n. (2)

The decoupled dynamics of the incoherent magnon cloud are
treated diffusively:

˙̃n = −∇ · j̃, (3)

where we have defined (in the absence of thermal gradients, for
now) j̃ = −σ∇μ as the magnon flux, with σ being the magnon
conductivity [11,14]. The kinetic (matrix-valued) coefficients
Lnn and Lññ can be easily read off from Eqs. (2) and (3). The
off-diagonal coefficient Lnñ describes the thermomagnonic
torque exerted by the thermal magnons on the orientational
dynamics. Its reciprocal counterpart is the pumping of the
magnon gas by the coherent magnetic precession, which is
described by the coefficient Lñn.

The off-diagonal linear-response coefficients are connected
via Onsager reciprocity, which dictates that [15]

[Lnñ(n)]ij = −[Lñn(−n)]ji , (4)

where the minus signs stem from different time-reversal
transformations of n and ñ. Let us next write the equation
of motion for n due to thermomagnonic torques as

�ṅ = −h(μ,n,ṅ) × n, (5)

where h(μ,n,ṅ) ⊥ n is a linear function of the nonequilibrium
arguments μ and ṅ. Terms ∝ ṅ in Eq. (5) contribute to
the coefficient Lnn. Their form is restricted by the Onsager
reciprocal relations between the components of the transverse
magnetization dynamics, i.e.,

Lnn(n) = [Lnn(−n)]T, (6)

where T denotes matrix transpose. In addition to the require-
ments imposed by the reciprocity relations (4) and (6), the form
of h(μ,n,ṅ) must be constrained by the structural symmetries
of the system [16].

In the following, we restrict our attention to insulating
magnets which retain U(1) symmetry, typical examples of
which are the simple easy-plane and easy-axis ferromagnets.
In these systems, due to the rotational invariance around the z

axis, Neumann’s principle requires that

h(Rzn,Rzṅ) = Rz{h(n,ṅ)}, (7)

where Rz(θ ) is the SO(3) rotation matrix by angle θ around
the z axis. The U(1) symmetry, furthermore, enforces the con-
servation of the z component of the total angular momentum
associated with the total spin density, i.e.,

s̃ṅz − ˙̃nnz = 0, (8)

where nz ≡ ẑ · n. To derive explicitly the equations of mo-
tion (1), we start by expanding h in Eq. (5) up to linear
order in H, μ, and ṅ, which captures the Landau-Lifshitz
torque, the static thermomagnonic torque, and the dynamic
thermomagnonic torque, respectively. Utilizing structural
symmetries (7), Onsager relations (4) to derive the reciprocal
equation for ˙̃n, and the constraints (6) and (8), we finally arrive
at

�ṅ = η′nz(�nzṅ − μn × ẑ) − ηnzn × (�nzṅ − μn × ẑ)

+ 1

s̃
H × n, (9)

˙̃n =η′s̃nzṅz − η
s̃

�
ẑ · n × (�nzṅ − μn × ẑ) − ∇ · j̃, (10)

where η and η′ are some even function of nz. Since we are
working at linear response, s̃ here can be taken to be the
equilibrium spin density at the ambient temperature T .

We next proceed to restore the relaxation mechanisms, both
for the precessional dynamics and the magnon density. Micro-
scopically, these are rooted in the relativistic corrections, such
as spin-orbit coupling, which would affect the conservation of
the z component of the spin angular momentum. We thus relax
the constraint (8) when including the relaxation terms, while
not revising our derivation of Eqs. (9) and (10). The underlying
premise of such an approach is that the relaxation processes
are usually weak enough that we can start by disregarding their
role in the spin transfer between the coherent and incoherent
dynamics.

The damping terms naturally appear in the Gilbert and
Bloch forms for n and ñ, respectively, which append Eqs. (9)
and (10) as follows:

�ṅ=η′nz(�nzṅ − μn × ẑ) − ηnzn × (�nzṅ − μn × ẑ)

+ 1

s̃
H × n − α�n × ṅ, (11)

˙̃n=η′s̃nzṅz−η
s̃

�
ẑ · n × (�nzṅ−μn × ẑ)−∇ · j̃−γμ. (12)

Here, α and γ parametrize the Gilbert damping and the (T1)
Bloch relaxation of magnons, respectively. While α and γ can
generally depend on n2

z (and have a tensorial form, according to
the axial symmetry), we for simplicity consider the limit when
they are mere constants. Note that the general thermomagnonic
torques ∝ η in Eqs. (11) and (12) reproduce the results of
Ref. [7] for nz ≈ −1 (considered there) [17]. The terms ∝ η′
on the right-hand side of both equations have been omitted in
Ref. [7], which we similarly do hereafter. Indeed, in Eq. (11),
the term ∝ η′ṅ can be combined with the left-hand side,
merely leading to a small rescaling of the equation if (which
is natural to expect) η′ 	 1, while the term ∝ η′μ gives rise
to a fieldlike torque, which does not play a substantial role
in the dynamics that we are interested in. The term ∝ η′ṅz

in Eq. (12) is inoperative in a steady state with nz = const,
which is the case we focus on. As a final simplification, we
take the remaining coefficient η (which microscopically stems
from the axial anisotropy [6]) to be a constant, in the spirit of
our treatment of α and γ .
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FIG. 1. An easy-axis magnet exhibits an Ising-like order, with
the global ground state oriented either up or down in spin space; a
domain wall, resulting from this Z2 symmetry breaking, separates
the up and down domains (which are related by the time reversal). A
superfluid arises in an easy-plane magnet from the spontaneous U(1)
symmetry breaking. When the layers are coupled together by a weak
exchange interaction ∝ g, the resulting bilayer displays a composite
U(1) × Z2 symmetry breaking. The coupling induces a tilt nz (δmz) of
the order parameter n (m) in regions I and III, while it locks together
the orientations of the order parameters in region II. Here ϕ (φ) is the
azimuthal angle of the easy-axis (easy-plane) order parameter n (m).

III. DOMAIN WALL FLOATING ON A SUPERFLUID

Let us now turn to a concrete application of the formalism
derived in the previous section. Specifically, we investigate
the coupling between a domain wall and a spin superfluid. Our
setup is similar to that of Upadhyaya et al. [12], except that
the superfluid dynamics are here triggered thermally. This is
accomplished by a thermomagnonic torque exerted by a pileup
of thermal magnons, which is induced by a local heat source.

The key ingredient for the realization of a system supporting
both zero modes, the spin superfluid and the domain wall, is the
spontaneous breaking of the U(1) × Z2 composite symmetry,
with U(1) standing for the rotations around the z axis (which
would define a spin superfluid within, e.g., an easy-plane
magnet) and Z2 for the time reversal (which would govern
domain walls within, e.g., an easy-axis magnet). A weakly
exchange coupled bilayer of an easy-plane and an easy-axis
magnetic films proposed in Ref. [12] is one such system that
could be easily engineered. See Fig. 1 for a schematic.

While the easy-plane magnet hosts a spin superfluid, the
ground state of an easy-axis magnet breaks the time-reversal
(Z2) symmetry, harboring a domain wall as a topologically
stable defect. The exchange coupling ∝ g between the two
layers acts as an effective magnetic field on the easy-plane
magnet: it tilts the order parameter, n, out-of-plane, resulting
in a finite nz. The latter enables the conversion of thermal
magnons into coherent spin dynamics via the thermomagnonic
torques ∝ ημ in Eq. (11). In the domain-wall region, the
exchange coupling locks the orientations of the easy-plane
and the easy-axis order parameters, allowing for an efficient
transfer of angular momentum. This, finally, gives rise to the
domain-wall motion, as argued in Ref. [12].

A. Model

We consider a bilayer of an easy-axis ferromagnet (of
thickness t̄) coupled to an easy-plane ferromagnet (of thickness
t), as sketched in Fig. 2(a). Our analysis can also be straight-
forwardly generalized to an easy-axis ferromagnet|easy-plane

j

j

λm

λmμ

λ

∝ η
ñ

n

x

x

II III

v

ϕ

(a)

(b) (c)

∂xT x̂

ŷẑ

Ii Ib

∝ g > 0

t̄

t

heat

FIG. 2. (a) A bilayer of an easy-plane ferromagnet of thickness t ,
coupled (with coupling strength g > 0) to an easy-axis ferromagnet
of thickness t̄ . At the left edge, a heat conductor induces the
heat flux ∝ −∂xT (localized near the bilayer edge [18]), which, in
turn, activates the superfluid current j ∝ −∂xϕ. The coupling ∝ g

locks the easy-plane and easy-axis orientations in the domain-wall
region, interrupting the superfluid flow. The superfluid current is then
absorbed by the domain wall, inducing its motion with velocity v.
(b) Out-of-equilibrium chemical potential profile decaying away from
the left edge with the diffusion length λm. The thermal magnon density
ñ equilibrates by exerting a torque ∝ η on the order parameter n.
(c) Superfluid current profile. The current increases and saturates
exponentially in the interfacial region Ii , decays linearly in the bulk
region Ib, and is absorbed by the domain wall in region II, with the
remaining current decaying linearly within region III.

antiferromagnet heterostructure [12] or essentially any U(1) ×
Z2-breaking system of the type sketched in Fig. 1.

A biased heat conductor at the left contact induces an
accumulation of thermal magnons in the easy-plane layer,
which is localized within the spin-diffusion length λm 	 L,
with L being the bilayer length in the x direction [11]. The
thermally induced nonequilibrium magnon density ñ exerts a
torque ∝ η over the spin-diffusion length, triggering superfluid
dynamics in the easy-plane magnet. The spin transport is
subsequently carried along the x axis by means of coherent
precession of n in the xy plane [12]. The thermal magnons
hosted in the easy-axis magnet can also exert a torque on the
superfluid across the interface. Here, however, in the limit of
a weak interlayer coupling, we can neglect it, as it scales as
∝ g2.

The free-energy density (per unit of area in the xy plane)
describing our bilayer is

F[m,n,ñ] = Āt̄(∂xm)2/2 − K̄ t̄m2
z/2 + At(∂xn)2/2

+Ktn2
z/2 + Uint[m,n] + U [ñ], (13)

where Ā (A) and K̄ (K) are the exchange stiffness and the
magnetic anisotropy of the easy-axis (easy-plane) magnet,
respectively, and we supposed quasi-one-dimensional tex-
tures along the x axis. The interfacial exchange interaction
Uint = −g m · n couples the order parameters of the two
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magnets with the coupling strength g. U [ñ] is the thermal-
magnon free energy, taken to be decoupled from the order
parameters, as our focus is on the dissipative spin torques.
m = (sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector oriented
along the direction of the spin density in the easy-axis
ferromagnet, parametrized by the spherical angles θ and φ.
The spin-density orientation of the easy-plane ferromagnet
n = (

√
1 − n2

z cos ϕ,
√

1 − n2
z sin ϕ,nz) is parametrized by the

azimuthal angle ϕ and the z projection nz. The chemical
potential μ is contained in the dependence U [ñ].

Let us now suppose the easy-axis magnet hosts a domain
wall of width λ =

√
Ā/K̄ 	 L. In the following, we account

solely for the coupling between the domain wall and the coher-
ent dynamics of the easy-plane ferromagnet. We neglect the
interactions between the domain wall and thermal magnons,
which are disturbed by the heat flux only in the vicinity of the
bilayer edge (see Fig. 2). Taking x = X as the domain-wall
location, we have θ ≈ 0 for x 	 X (regions Ii,b) and θ ≈ π

for x 
 X (region III). Then, in regions Ii,b, the exchange
interaction Uint ≈ −gnz leads to a tilt of the z component, nI

z,
of the order parameter n, with nI

z ≷ 0 for g ≷ 0. In region III,
we have instead Uint ≈ gnz, and the tilt, nIII

z , reverses its sign.
Note that, for simplicity, we are taking the coupling g to be
weak (compared to Kt and K̄t̄), so that |nI,III

z | 	 1; to linear
order in g, we neglect the tilt δmz induced on m. nI,III

z are
constant in regions Ii,b and III, respectively, with nIII

z = −nI
z.

The static canting of the magnetization, nI
z, enables the two-

fluid character for the out-of-plane polarized spin transport in
the easy-plane magnet [11]. Namely, in the interfacial region
Ii , the heat flux at the left interface induces a pileup of thermal
magnons with chemical potential μ [see Fig. 2(b)], which
feed the superfluid current according to the term ∝ ηnI

zμ in
Eq. (11). This gives rise to a z-polarized superfluid current
density, which is proportional to the gradient of the azimuthal
angle, i.e., j ∼ −∂xϕ [9,19]. In region II, the coupling Uint

locks the azimuthal angles of the easy-axis and easy-plane
magnets, φ = ϕ at x = X, impeding the superfluid current
flow. Since the U(1) symmetry demands the conservation of
the z component of the angular momentum, the superfluid
current is absorbed by the domain wall [see Fig. 2(c)] and
converted into its sliding motion [see Fig. 2(a)].

B. Coupled dynamics

Within the Landau-Lifshitz-Gilbert phenomenology and by
including the relevant thermomagnonic torques [see Eq. (11)],
the orientational order-parameter dynamics in our bilayer can
be written as

�(1 + ᾱm×)ṁ = −m × δmF/s̄t̄ , (14)

�(1+αn×)ṅ=−n×δnF/st−ηnzn×(�nzṅ−μn×ẑ), (15)

where α (ᾱ) parametrizes Gilbert damping of the easy-plane
(easy-axis) ferromagnet, s (s̄) is the equilibrium spin density
of the easy-plane (easy-axis) ferromagnet, and the functional
derivatives δ are taken with respect to the xy coordinates only.
(We are hereafter dropping the tilde on s̃.) Soft dynamics of the
easy-axis ferromagnet reduces to the dynamics of the domain-
wall region, which, in the collective-coordinate approach [20]
and using the Walker ansatz for the magnetization profile, i.e.,

ln tan(θ/2) = (x − X)/λ, reads as

s̄̇ − ᾱs̄Ẋ/λ = 0, s̄Ẋ + ᾱs̄λ̇ = τ/2t̄ . (16)

Here, the soft-mode coordinates X and  ≡ φ(X) are
the location of the domain wall and the azimuthal an-
gle at its center, respectively, while �τ ≡ −∂

∫
dx Uint =

g
∫
λ
dx sin θ sin(ϕ − φ) is the torque arising from the ex-

change interaction with the easy-plane ferromagnetic sublayer.
To linear order in nz, the z-projected dynamics of Eq. (15)

become

�s(ṅz + αφ̇) = A∂2
xϕ − ηsnzμ + (g/t) sin θ sin(φ − ϕ).

(17)

Viewing Eq. (17) as a continuity equation for the z component
of the spin density sz = snz allows us to identify j = −A∂xϕ

as the z-polarized superfluid spin-current density flowing in the
x direction. The thermal-magnon density ñ evolves according
to Eq. (12) as

˙̃n + ∂xj̃ + σμ/λ2
m = −ηsnzϕ̇, (18)

where j̃ = −σ∂xμ − ζ∂xT (with ζ being the bulk magnon
Seebeck coefficient) is the thermal-magnon flux and λm =√

σ/(γ + ηs/�) is the thermal-magnon diffusion length,
which is reduced by the superfluid coupling η [21]. Note
that, so far, we are not including the direct thermomagnonic
torques [22,23] by the thermal gradient ∂xT onto the pre-
cessional order-parameter dynamics. We comment on those
below.

In the following, we solve Eqs. (16)–(18), looking for
solutions of the form ̇ = �, Ẋ = v, ϕ(x,t) = f (x) + �t ,
ṅz = 0, and ˙̃n = 0, corresponding to a steady-state motion of
the domain wall propelled by a superfluid spin flow. We impose
hard-wall boundary conditions at x = 0 both for the superfluid
and the normal components of the spin current, i.e.,

∂xϕ = 0, σ∂xμ + ζ∂xT = 0. (19)

Solving Eq. (18) with the boundary conditions (19) yields

μ(x) = μ0e
−x/λm − (λm/λcx)2nI

z��, (20)

in region I. Here, μ0 = λmζ∂xT /σ and λcx = √
�σ/ηs is the

superfluid-thermal magnon equilibration length [11]. Integrat-
ing Eq. (17) in regions I and III, with λm,λ 	 X,L, leads us
to [24]

j− = −ηsnI
zμ0λm − αs��X, (21)

j+ = αs��(L − X), (22)

where j∓ are the superflow spin currents just before and after
the domain wall (i.e., region II). On the other hand, the spin-
current loss within the domain-wall region, �j = j− − j+,
equals

�j = αs��λ + �τ/t. (23)

Combining Eqs. (21)–(23) yields

τ/t = −ηsnI
zμ0λm/� − sα�L. (24)

The physical interpretation of Eq. (24) is straightforward:
The amount of the angular momentum transferred from the
superfluid to the domain wall is proportional to the spin current
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fed into the superfluid by the thermal cloud, minus the net
current loss due to Gilbert damping.

Using Eqs. (16) and (24), we can determine the velocity v

at which the domain wall moves as

v ≡ Ẋ = − ηnI
zλ

2
m(s/s̄)(ζ/σ )/2�

(t̄/t)(1 + ᾱ2) + αᾱL/2λ
∂xT . (25)

Equation (25) is the central result of our calculation. The
numerator is proportional to the torque exerted by the thermally
induced magnon pileup at the left edge of the bilayer, while
the denominator is augmented by the Gilbert-damping spin
leakage associated with the domain-wall dynamics in the
easy-axis layer and the superfluid dynamics in the easy-plane
layer. When a ferromagnetic (antiferromagnetic) exchange
coupling between the two layers is switched on, g ≷ 0,
the superfluid induces a domain-wall motion towards the right
(left) end, with a driving force proportional to the interfacial
temperature gradient ∂xT < 0 and to the strength of the
interaction between the superfluid and the thermal cloud within
the easy-plane magnet, η.

Let us compare, in the limit of small damping, i.e.,
α,ᾱ 	 1, Eq. (25) with the result of Ref. [23] for the
domain-wall velocity subject to the bulk thermomagnonic
torques ∝ ∂xT . The latter concerns the domain-wall motion
induced by a thermal-magnon flux traversing its profile (which
should be contrasted with our superfluid-mediated torques
that are induced nonlocally). Within the stochastic Landau-
Lifshitz-Gilbert phenomenology, the corresponding velocity is
[23]

v ∼ 0.1
∂xT

ᾱ�s̄λ̄
, (26)

where λ̄ =
√

Ā/s̄T is the thermal-magnon wavelength (in
units such that the Boltzmann constant is kB = 1). With
yttrium iron garnet (YIG) in mind, taking s̄ = 1/nm3, ᾱ =
10−4, λ̄ = 10 nm, and ∂xT = 20 K/mm, the domain-wall
velocity (26) is v � 0.1 m/s. The superfluid-induced domain-
wall velocity (25) exceeds Eq. (26) when

η � 0.1

nI
z

1

ᾱλ̄

t̄

t

1

sλ2
m

σ

ζ
, (27)

supposing that αᾱ 	 (λ/L)(t̄/t). Let us take, consistently
with our approximations, nz ∼ 0.1. Following the transport
theory of Ref. [11] (Supplemental Material), we can set
σ/ζ ∼ 1 in the simplest diffusive limit. Rewriting s ∼ 1/a3,
with a being the atomic-lattice constant, Eq. (27) reads
as

η �
(

1

ᾱ

)
︸ ︷︷ ︸


1

(
a3

λ̄λ2
m

)
︸ ︷︷ ︸

	1

t̄

t
. (28)

This shows that it is in principle possible to achieve domain-
wall motion with the superfluid-mediated spin transfer, which
is faster than the motion in response to the direct thermal
gradient. Taking ᾱ/η ∼ 10 and λm ∼ 10 μm, the superfluid-
induced (25) and the thermally driven domain wall (DW)
velocities (26) are comparable for films of the same thickness.
We note, however, that the dissipation of energy in the
superfluid case scales more favorably with the geometric
dimensions of the structure, as the spin current can be supplied
predominantly to the domain wall, without the diffusive/ohmic
losses throughout the entire system.

IV. DISCUSSION AND CONCLUSION

In this work, we have outlined a phenomenological ap-
proach to derive local thermomagnonic torques and pumping
allowed by the symmetries of a magnetic system, using axially
symmetric U(1) magnets as a concrete illustrative example.
Our formalism, which relies on the Onsager reciprocity and
Neumann’s principles, can be extended to other classes of
magnetic systems, as well as to the nonlocal torque/pumping
phenomena. For simplicity, we have included the dissipative
spin angular-momentum losses perturbatively, disregarding
their effect on the torque/pumping process. In the opposite
regime of a very strong spin relaxation, this assumption can
also be easily relaxed.

As a possible practical application, we have discussed the
coupling between a superfluid and a domain-wall in an easy-
plane|easy-axis ferromagnetic heterostructure. We have shown
that a local heat flux can induce a distant motion of a domain
wall via a spin superfluid. Furthermore, we have established
that the transfer of angular momentum in our setup can be more
efficient than the one involving bulk temperature gradients
and the direct interaction between thermal magnons and the
domain wall.

Our findings allow one to bridge thermal biases with
collective spin dynamics, paving a way for the conversion
of heat into long-ranged spin transport that suffers little
dissipation. In particular, this can be used for channeling spin
currents into topological soliton motion from featureless heat
sources. A possible future application is the injection of chiral
domain walls by means of a local thermal bias, as a natural
extension of the proposal put forward in Ref. [25].
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