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1 Introduction

Studies of quantum loop corrections to the gravitational potentials in flat space background
have a long history [1-16]. These studies are typically based on computing the scattering
amplitude for two massive particles and then solving the inverse scattering problem to
reconstruct a Newtonian potential which would produce the same scattering amplitude in
quantum mechanics. This technique is well-tested and has the tremendous advantage of
being independent of the choice of gauge and of field variable. However, it seems artificially
restricted to asymptotic scattering problems, as compared with the time-dependent effects
which can be explored using the classical field equations. And its application to cosmology
seems inappropriate because the formal S-matrix which can be defined for massive scalars
on de Sitter [17] is not observable.

A more suitable technique for time-dependent sources and cosmological backgrounds
is the Schwinger-Keldysh, or in-in, formalism [18-22], which provides expectation values
of operators instead of in-out matrix elements. The authors have previously solved the
Schwinger-Keldysh effective field equations to work out quantum corrections (from a mass-
less, minimally coupled (MMC) scalar) to the two potentials of a point mass on flat space
background [23-25]. When graviton and gauge particles start to appear in loops the prob-
lem of gauge dependence must be faced, but that is not an issue here. And it should be
noted that the Schwinger-Keldysh results are consistent with those derived using conven-
tional scattering techniques. They also furnish an essential correspondence limit for the

current computation in de Sitter.



De Sitter space is of particular interest in cosmology as a paradigm for the background
of primordial inflation. A generic prediction of inflation is that the quantum fluctuations
of MMC scalars and gravitons are amplified and preserved to late times so that they
seed large scale structure formation [26-33]. This is a tree order effect, but the same
quantum fluctuations inevitably give rise to loop effects which have been studied in recent
years [34—66]. The purpose of this paper is to learn how a loop of MMC scalars changes
the gravitational potentials of a point mass on de Sitter. This involves three tasks:

1. Compute and renormalize the one-loop contribution to the graviton self-energy
—i[MY¥P7] (25 2") from a MMC scalar on de Sitter background;

2. Convert the in-out self-energy to the retarded one of the Schwinger-Keldysh
formalism,
[‘”’EPC’] (x;2") — [“”E%Zt} (x;2); (1.1)

3. Solve the quantum corrected, linearized Einstein field equation

DHP? fihpo () — /d4m' [ ] (@2 khpo (2)) = 87GTLY (2) . (1.2)
Here DH*P?kh,q(x) is derived by expanding the gravitational side of the Einstein
equation, (R + Agh” — %g‘“’ R)\/—g, about de Sitter background to first order in
the metric perturbation, g, () = a®(t)kh,(x), where a = a(t) is the scale factor,
k? = 167G is the quantum gravitational loop counting parameter, G is the Newton

constant, and 7 (z) is the linearized stress-energy tensor density.

The first two steps have been already performed in the ref. [55] and we summarize the
results in section II. Section III is devoted to the last step, that is to solving the Schwinger-
Keldysh effective field equations for the graviton field sourced by a static point mass. Our
discussion comprises section IV, and some tedious technical details from section III have
been subsumed to an appendix.

2 Schwinger-Keldysh effective field equations

The point of this section is to present the Schwinger-Keldysh effective field equations
which we will solve in the next section. We first set up the background geometry and
define the graviton field as a perturbation around this background. We then give the in-
out effective field equations derived in [55] and discuss how to solve them perturbatively.
Finally, we explain why it is more appropriate to convert to in-in equations for cosmological
backgrounds such as de Sitter, and we make the conversion.

2.1 Preliminaries

We consider the Lagrangian of gravity plus a MMC scalar,

1
167G

(R~ 20)V=5 ~ 30:00,09"" /=3 (21)



where G is Newton’s constant, R is the Ricci scalar and A is the cosmological constant.
Our computation is based on perturbation theory in the Poincaré patch of de Sitter space

ds® = gdatdz” = a®(n)ndatde” . (2.2)
The coordinate ranges are
—oco<a’=n<0 , —co<z<4oo. (2.3)

Here the scale factor depends on conformal time 7 as, a = —1/Hn and the Hubble param-

eter H = %A is constant. It is also useful to employ the de Sitter length function,

y(z:a’) = Had |[|Z2-2|* - (In—n| —ie)?| | (2.4)
where a = a(n) and o’ = a(n’). Note that y(z;2’) is related to geodesic distance on de
Sitter {(z;2') as, y(z;2')|c=0 = 4sin?(Hl(z;2')/2). We define the graviton field h,, by
subtracting the background from the full metric and then conformally rescaling,

Gy (%) = Gy ()

huw(x) = —

or g,uu(l') =a’ Nuv + th;w(l') = a2§,u1/(l') ) (2'5)
where k? = 167G is the loop-counting parameter of quantum gravity.

2.2 Effective field equations

Varying the one-particle irreducible (1PI) effective action corresponding to the La-
grangian (2.1) with respect to the graviton field h,,, and retaining only the linear
terms gives,

DIl () — / a'a! (£ (250" o () = ST (@) (2.6)
Here the Lichnerowicz operator for de Sitter is [55, 67],
DT %a2 [(n#(pno)v _ U“yﬁp(f) 0% + N oPOT 4+ Pl oto” — 28(“77”)(”8")] (2.7)
+Ha? {(17‘“’17’” — n“(pn”)”) Oy — 277“”6(()’)(9”) + 25(()’)770)(“3”)} + 3H2a4n“”56’58 )
Quantum corrections come from the graviton self-energy whose general form is,
i [sz} (z:2') = F™ () x FP° (') [Fo(x; x')] G (z) x G () [Go(x; x')}
+F0 | Fy(aaf) | + G | Gafws o) (2.8)

The four projection operators FH¥, GH FHP? and GHYP? and one loop results for the
corresponding structure functions Fy, Go, Fa, and G2 are given in ref. [55].
It is convenient to re-express the action of the Lichnerowicz operator on the graviton

by extracting the scale factor a,!

EW =DMPhyp(2) = Oa aQEW”“O‘BQBhPO(:L‘)} + 0o [Hagn“”ho‘o] — Ha*® W, (2.9)

'Due to an error, only the first term in (2.9) is found in ref. [55].



where the Lichnerowicz tensor factor £LHVP7P g

1 1 1
E,ul/paaﬂ = 5,’7&5 nH(PnU)V_nMVT}PU} +57’#”770(‘1775)0_'_577#’”77“(0‘7’5)”—na(pna)(”’qy)ﬂ . (210)

For the quantum correction, we extract the unprimed derivatives from the z/* integration
and partially integrate the primed derivatives, bringing the effective field equation (2.6) to
the form

B = ST @) + P [atal i) Rin(o!) + 0 [ Gl B (o)
(")

ggaﬂa@w,g“a;)aﬂ /d4x’iG2(m ') CORO (1) (2.11)

B

lin

—28a85/d4x' [iFg(m;:): )CHP (21) 4 i Gy )Clm .
+ [n‘“’ﬁkag—%

Here Elin and éﬁf 7 are the linearized Ricci scalar and Weyl tensor of the conformally
= —= afyo
rescaled metric. Ry, and C;,,  are their purely spatial parts, respectively.

2.3 Perturbative solution

Because we only possess one loop results for the structure functions, we must solve (2.11)
perturbatively by expanding the graviton field and the structure functions in loop orders,

hu(z) = b)) (2) + h(D(2) + KD (2) + ... (2.12)
Foa(z;2') = 0+ Fyo (z;2') + Fyg(@;2)) + ... (2.13)
Goo(z;2') = 0+ G((]g(x; ')+ Gé?%(x; )+ ... (2.14)

By substituting (2.12)—(2.14) into (2.11), we obtain equations for the tree order field hg,),)
and the one-loop field hlj),

E;u/(O)(:L,) 27Im ( ) (2.15)

B0 a) = 7 [t iF{ (s ) R o) + 0 [ 16 a1) Bino )

~ = pavfB
—20,05 / d*a/ [iFQ(U(x; ) CEB (2) +iG (232" ) g () (2.16)

[ ono 25700 4010} o) /i) s Y ) = )

(
Here B0 = D’“’”Uh%,). Note that in (2.15) we regard the matter source as Oth order,
assuming the stress tensor includes no loop corrections from the 1PI 1-point function.
The solution of the Oth order equation hfg,) enters the right hand side of the 1st order

equation (2.16) to provide sources for the one-loop field h(l)

2.4 Schwinger-Keldysh formalism

The perturbative effective field equation (2.16) seems to be ready for use, but if one were
to interpret it in the spirit of the in-out formalism it would possess two disturbing features:



e Acausality: the in-out effective field equation at z# receives influence from points z/#
which lie in the future of x*, and at spacelike separation from it.

e Imaginary parts: the in-out effective field develops an imaginary part if there is
particle production.

Neither of these features prevents one from describing flat space scattering problems, but
they would be problematic for cosmological settings in which we do not know what happens
in the asymptotic future and the more natural question is how the fields evolve when
released at finite time in some prepared state. That question is answered by the Schwinger-
Keldysh formalism [18-22]. This technique produces true expectation values, rather than
in-out matrix elements, so the effective field equations at z* depend only on points 2’# on
or within its past light-cone, and the effective fields associated with Hermitian operators
are real. Because excellent reviews on the Schwinger-Keldysh formalism exist [68-71], and
the current authors have described it before in [55], we merely comment that the linearized
Schwinger-Keldysh effective field equation is obtained by replacing the in-out self-energy
with its retarded counterpart,

[P (s 2") — [ (@ 2)) = S | (z2) + S0 ] (25 2)) . (2.17)

In this expression, we obtain [W Zi‘;] and [W Ei‘i] from (2.8) by replacing the de Sitter
length function y(z; ') by y,, (x;2') and y,_(z;2'), respectively, where

g (wa') = H2ad [|7-3'|2 = (In—n/|~ie)?] = y(z,2") (2.18)
v (wia') = B2ad [|F-7"|2 ~ (1= +i2)?] . (2.19)

This converts the nonzero structure functions in (2.16) to the retarded ones of the
Schwinger-Keldysh formalism [55],

.2 4 2152 1 7
L 0*—4H%aad'0 -y 1o, N a2
Fy/(x;2") = 576773{ 16 In Tod 1_ @_ 4H aa’ In(aa’)0°©
i2q? (3= L 430 pym( =L
+H%a"a {3 4—y+4(2 Y) ln<4_y)]@}, (2.20)
P2 4 2192 1 1 2! /
W, o ik° [0*+20H?ad’0 v\ H*?ad' In(ad) .,
By (@e) = 647r3{ 240 M ) Y8 1 9
1
422 73 1. /-y
+H*a2a [4_y 6ln<4_y>]@}, (2.21)
G(l)(:n'x') = ﬁ H'a?a” i—|—11n e (2.22)
2 643 4—y 3 \d—y ‘ ‘

(Note that G((]l) (x;2") is zero for the MMC scalar at one loop.) Here the symbol © stands
for the Heaviside step function which ensures causality,

o=0(an—|a-7l) .  Ap=n-v, (2.23)



and now the ie-prescription can be dropped in —y(x;2’) in egs. (2.20)-(2.22),
—y(z;2") = —y(z;2")|e=0 = H?ad' | An* — Ha‘c’—f’H?] . (2.24)

Also note that the structure functions are pure imaginary, which makes the effective field
equation (2.16) manifestly real. Therefore, the resulting Schwinger-Keldysh effective field
equation is causal and real as promised.

3 Quantum corrected gravitational potentials

In this section we solve the effective field equations (2.15) and (2.16) which we repeat below,

B O(z) = ST (x) (3.1)

EP W (3) = S () (3.2)

with the retarded structure functions (2.20)—(2.22) for the graviton field. We are interested
in quantum loop corrections to the gravitational response of a static point mass M. The
Oth order equation (3.1) determines the classical response to a point particle. The 1st order
equation (3.2) leads to the one-loop correction to the classical gravitational potentials.

3.1 Classical solutions

The linearized stress tensor density 7/ () in (3.1) for a static point mass M on the de
Sitter background takes the form [72],

T (2) = —a(n)dh oy M&>(%) . (3.3)

lin
The symmetries of this system imply a solution of the form,

hoo(x) = fi(n,r) s hoi(w) = Oifo(n,7) ,  hij(z) = i f3(n,7) + 0;0; fa(n, ), (3.4)

where r = ||Z||. It is convenient to choose the longitudinal (Newtonian) gauge fo = 0 and
f1=0.2 In terms of these variables the E*” of expressions (3.1), (3.2) take the form,

EY = a2{ —3a®H?f1 + (V? — 3aHy) fg} , (3.5)

EOi e a28¢{ - (ZHfl - 80f3} y (3.6)
g 1 1

EY — QQaiaj{ - §f1 + 2f3}

+a25ij{ <;v2 + aHdy + 3a2H2> fi+ (ag + 2aHdy — ;v2> f3} . (37)

2Instead of completely gauge fixing, one could have employed the gauge invariant formalism analogous
to refs. [24, 25]. The final results, expressed through the one-loop corrected Bardeen potentials, can be
easily related to the results obtained here. For the reasons of simplicity we shall not proceed here along
this technically more involved path.



The classical solutions of the Oth order equation (3.1) are

(0) QGM

folw) = £0(@) = o = —2p0(z), (3.8)

a(n) || 7|

where ¢ (z) and (9 (z) are the usual potentials in the longitudinal gauge. Note
that these classical solutions (3.8) are just conformally rescaled potentials of a point
mass in Minkowski space. At the classical level, both T, and E}* with fl?:a) given
by (3.8), obey the (covariant) conservation identities, 9,7 + aH 50na57 = 0 and
OLEL + aHYnas ES” = 0.

3.2 Computing the one-loop source integrals

The one-loop source terms on the right hand side of (3.2) in the 3 + 1 decomposition are

S0 — “2M F00 ‘E"; iFY (2, 0V —o (3.9)
d77 [ (1)

1
$,)+§iGgl)(:E, x’)} , (3.10)

T =

12
SY = QM}" /a(n)[zFo(xx)] —0

2 /
+”?fwaoai/ d",) [z’Fg(l)(m,:r’H—;iGgl)(x,x’)] : (3.11)
=0
SZJ = K 2M]:ZJ/QC§Z ) [Y,F( )( /)]f/:()
1 M 1 1
288/d4:c’ |:F2(1)(SC; x') + §Ggl)(x; x’)} Ga/ [ 8;8;- + (MV’z} 7
2M o d77/ 1
EEAvER LY / Y Lom 3.12
S rv-oe] [2h Y wa) g6 e
where
FOO = g2 [VQ — 3aHd + 3a2H2} 0% = V2 — 3aHd, + 9a2H? , (3.13)
FY = 4?0, [—30 + aH] a?=0; [—80 + 3aH} , (3.14)

Fi = q? [—(51‘jV2 — 0;05) + (5@'(83 +aH0y — 3a2H2)} a > )
= —(5Z-JV2 — 818J) + (5”(83 —3aHJdy — 3a2H2) . (3.15)

One can check that the left hand side of the effective equation with arbitrary functions fi 3
obey a conservation identity,

O EM + aHoYnapsE*? =0, (3.16)

which is a consequence of the contracted linear Bianchi identity. Because of the special
(transverse) character of F#¥ in egs. (3.13)—(3.15), an analogous conservation identity holds



for the right hand side S* with an arbitrary choice of Fél), FQ(I) and Ggl). These represent
a nontrivial check of our equations. Moreover, these tell us that the four equations are not
independent. One can solve any two equations; the other two follow from the conservation
identities. (Had one proceeded with the gauge invariant formulation, one would need to
cleverly combine the four equations into two gauge invariant equations, resulting in the
two equations for gauge invariant scalar potentials.)

There is one ugly term on the right hand side of the second line of the (ij) equation.
All other terms contain only time integrations, but that term requires a three dimensional
spatial integration. It is hence worth spending some effort and analyse all four equations, to
see whether we can get rid of the spatial integration when evaluating the one-loop corrected
f1,3. These equations can be easily obtained from the (00), (0¢) and (ij) equations given
in eqs. (3.5)-(3.7) and (3.10)—(3.15),2

—3a2H? Y 1 (V2 = 3aHdy) £V

K 2 oo [A0 ) /
_ 2;2” [V2 — 3aHd, + 9a2H?] / Rl ER
KZM o fdn' T. (1) no L) ,
- 3 \% a7 [zFQ (a:,a:)+§zG2 (:r,a:)] ey’ (3.17)

—aH M — 9y iV

2M d /
= L |:—80 —+ SQH}/ i [ZFél)(fL’, x’)]f/zo

2a2 a(1)
H;{j\j o ;ZZ:) [iFQ(U(x,x’)—i—;iGgl)(x,x')} e (3.18)
_% M +% £
= “;Cf‘f ;fz:) [iFy " (@, 2)=o0
g [ [ + i |
562324 ac(lZi) [iFél)(w; ') + %’iGgl)(w; w’)} ) (3.19)
<;V2 +aHJp + 3a2H2> 4 <a§ +2aH — ;v2> £
=g [V a8 —sang s S, g
+ i;\f(a%—w)/afz:) [ipél)(x;xz) N ;ing(w;x/)} R (3.20)

The third equation (3.19) tell us that in order to determine the gravitational slip (defined
as the difference of the two potentials) one ought to perform both the integrals over time

30ne can extract two equations from the (ij) equation by acting with the projectors, §;; — 8;0;/V? and
(1/3)6:; — 0;0;/V?, which extract the terms o 6;; and 8;0;, respectively.



n’ and space Z'. It is convenient to define the two source integrals, the one-loop spin zero

Sél) and spin two, Sél), as follows,

50 = [ S E o (321)
Wy = [ |50 oW
@) = [ 5 i ) + g6 wa| (322)
where
12 4 faa H262 2 2_,2
i o e = — g e | (1 (R ) <1 Joan )
—%HQaa'ln(aa’)(?QH(An—r) (3.23)

+H 2 '2{3 41y 2(2 y)ln<4_yy>]9(An—r)},

B ()45 zG()( )LO

K2 30* +60aa’ H20? H?(An?—r?)
- 64><97r3{ 80 [(m( 4 )1>9(A"T)]

+%H2aa’ In(aad’)0*0(An—r) + H'a?a [41;} 9(A77—7’)} .
(3.24)

The equation for the gravitational slip (3.19) then becomes,

M M
VA0 = E v + 5 ( 9+ 3 VQ)“”()- (3.25)

The solutions for fl(l) and fél) are obtained by combining (3.17) and (3.18),

K2 M KM 2
f@) = =555 (@) + = [—Sw 2(8(2)—aH60)] $§9(z) = —26W(2) , (3.26)
M KREMT 1
@) = S5 @) + az[—?)—v—%Hao} 50 () = —20W (), (3.27)
where
V2 f(n, & ——/d3 FT) . (3.28)
7= 2] ||

By inserting (3.26) and (3.27) into (3.17)—(3.20) one sees that all of the equations (3.17)—
(3.20) are satisfied, representing a nontrivial check of our basic equations (3.26)—(3.27). We
also see that the spatial integral of the spin two source is required for determination of the
one-loop contributions to both gravitational potentials ¢(t) = —fl(l)/Q and 1) = —fél)/l

The actual calculation of the quantum (one-loop) corrected gravitational potentials
&M and ™ is rather technical and we relegate it to the appendix. Since the complete
results are rather complex, in the last step of the calculation in the appendix we take



the late time limiting form. The final result for fl(l) and fél) is given in eqgs. (A.28)—
(A.29). From these, it is easy to extract the one-loop corrected potentials ¢(1) = —fl(l)/2,
P = —fél)/Q. When &« is replaced with G (via the relation, x = V167G) and the
units ¢, h are appropriately re-inserted to elucidate the quantum gravitational nature of
our calculation, we obtain from (A.28)—(A.29),

GM h G
1) - _
o (@) = ar {207rc3 (ar)?
h 1 3 Hr 1
+—GH? {—3 In(a) = - 1“(7) + o(ag)] } (3.29)
Ye) = ar { 607c? (ar)?

h o 1 3 Hr 2 Har 1
+—=GH [—Sln(a)—loln<0)+3 . +0(a3)” (3.30)

It follows that MMC scalars in de Sitter background generate the conformal scalar contri-
butions plus another positive contributions to the gravitational potentials. The first terms
in egs. (3.29)-(3.30) represent the one-loop contributions from a conformal scalar field, and
in the limit when H — 0,a — 1 they reduce to the Minkowski space results of refs. [23—-25],
representing a nontrivial check of our principal results (3.29)—(3.30).

4 Discussion

We have included one loop effects from MMC scalars to derive quantum loop corrections
to the potentials associated with a static point mass. Each of the full potentials, ¢ and
1, can be presented as its classical value times a series of quantum corrections we have
obtained in (3.29)-(3.30), which are at late times (when a > 1),

GM h G
das(x) = = ar { 207c3 (ar)?
hGH? 1 3 Har 1
Sl - gp ()l 3)
GM h G
Yas(z) = - ar {  60mc3 (ar)?

RGH?[ 1 3 Har 2 Har 1
P ne) - 21 ‘ 2 =\
L [ 50 (@) ~ 15 n( c >+3 c ]+O(G’a3)}

(4.2)

These can be compared with the corresponding flat space results which have been previously
computed in [23-25],

GM h G

braa(2) = — { +ogg+ O(G2)} (4.3)
GM h G

’lbﬁat(.%') = — , {1 — 6071'637”‘72 + O(GQ)} . (44)

~10 -



From this comparison, one can see that the first quantum correction terms in (4.1)—(4.2)
represent the de Sitter version of the flat space correction and the terms proportional to
GH? are the intrinsic de Sitter corrections.

Note that every factor of the co-moving distance r which appears in expressions (4.1)—
(4.2) is multiplied by a scale factor a(n) so that their product gives the physical distance
from source to observation point. The remaining factor of In(a) multiplies a term of the
same form as the classical potential. Because these secular terms contribute equally to both
potentials, they can be reinterpreted as a time dependent renormalization of the mass term,

2
h GH ln(a)] , (4.5)

M—M [1 - =
or equivalently a time dependent renormalization of the Newton’s constant,

c® 30
H2
G—-G [1 _ G ln(a)} . (4.6)

c® 307

Even though the secular terms are suppressed by the loop counting parameter, hGH?/c?,
whose value is less than 10719 for primordial inflation, they are growing in time, and can
eventually become large. Indeed, when the number of e-foldings, In(a) = Ht becomes of
the order ¢®/(hG H?), the correction becomes large, signifying a breakdown of perturbation
theory in the sense that, when [AGH?/c%|In(a) ~ 1, all orders contribute significantly. To
understand what happens at very late times, one would have to sum these higher loop
contributions, which is a major unsolved problem [44-46, 73, 74].

The secular screening effect we have just described is fascinating. It might represent
the seed of an explanation for why the Newton constant seems so much smaller than
any other length scale of fundamental theory. However, there is no avoiding the sense of
strangeness. If we adopt the perspective of an observer at fixed co-moving position, whose
physical distance to the source increases exponentially in co-moving time, then quantum
scalar fluctuations are erasing the gravitational imprint of a point source faster than its
classical redshift, in precisely the region where the source has almost no effect. From the
perspective of an observer at fixed physical distance (in static coordinates) one wonders
why anything is changing at all.

The sense of strangeness is even stronger when we compare with the recent result [67]
for one loop corrections to the gravitational potentials from virtual photons. Unlike our case
of MMC scalars, conformal invariance means that photons behave the same, in de Sitter
conformal coordinates, as they do in flat space. Yet they also induce secular screening [67].
From this we can infer that the screening effect originates not so much from the way
quantum fluctuations are affected by inflation but rather from the different way that gravity
responds to sources on de Sitter space as opposed to flat space.

Finally, it is interesting to speculate that quantum corrections to gravity from the epoch
of primordial inflation might modify late time gravity in observable ways, for example,
as regards explaining the current phase of cosmic acceleration. These type of questions
have been investigated in the context of Einstein’s gravity endowed with a non-minimally
coupled, light scalar [75-77], as well as in the context of some simple non-local extensions
of gravity [78-81].

- 11 -



Acknowledgments

We are grateful for conversations on this subject with M. Frob and E. Verdaguer. This
work was partially supported by KASI, by the D-ITP consortium, a program of the NWO
that is funded by the Dutch Ministry of Education, Culture and Science (OCW), by NSF
grants PHY-1205591 and PHY-1506513, and by the Institute for Fundamental Theory at
the University of Florida.

A Evaluating the source integral

In this appendix we give some details on how to perform the source integrals S((]l) and
Sél) given in egs. (3.21)—(3.22) and (3.23)—(3.24), which through egs. (3.26)—(3.27) allow
us to calculate the one-loop corrected scalar gravitational potentials ¢(t) = — fl(l) /2 and
-1V /2.
To begin with, it is convenient to break the source integrals, S(()l) and Sél) in egs. (3.21)—
(3.22) into the following simpler integrals,

n—r d?’]l _y 1
Ty, = —0* — 1 —~1| = Al
! 16(9 /770:1/H a’ [n<4aa’> } 4ar? (A1)
H<4a e —y
Ty = —62/ dn’ [m( )—1}
! 4 no=—1/H 4daa’
H%a 1. (1-Hr-1
= In(Hr)+=In| —% A2
) wa

a

2 n—r n—r
Iy M {ln(a)(‘ﬂ/ dn’+82/ dn/ ln(a’)] = Ha <
4 no=—1/H no=—1/H 2r

11
a
=T 1 I—I2 1-H
I3, = H4a2/ dn'd’ [] = {ln(1+aHT)+ln< it >
no=—1/H 4—y 2r 1+Hr+1

n—r
T = 3H4a2/ dn'd’ [1+1(2 Y) ln< —Y ﬂ 3H3 3{4H'rln< )
no=—1/H 4 A=y

[(1—1—Hr) 1]1 (Hfm)—[u—m)?—l] In <1_HT+1>} (A.5)

a? 1+Hr—1 a? 1—Hr—

When written in terms of these integrals, the spin zero and spin two sources (3.21)—(3.22)
and (3.23)—(3.24) are simply,

I<.72

(1)
= | Tiat = (Tip+To+T34) + =T A.
S0 (t:7) 64><37r3[3 L +3( 1oLy )+3 34 (4.6)
S (t,r) LA — (T1p+To+T34) (A7)
2 ) - 64)(37'('3 5 la 1b 2 3a)| .
where
H2q 1 1. [(A+Hr-YH(-Hr+l)
Tip+To+Tsq = ——— < In |1+ +=1In al il A8
T r {n[ Har] 2 [<1+Hr+ H Hri)]} (A5)
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Now, it is convenient to re-express the scalar gravitational fields fl(l) and fél) in
egs. (3.26)—(3.27) as

1 2 _
@) = k1| = 580 - s + V@] (a9
1 1 _
10@) = 0|5 ) - s - Hav S| (o)

where

2 1 a? 1 1 1
L A — 23| In (1 Harln (1
0 64 x 373 | 12 (ar)? T siar "\ T Har ) TP Har

(e R =)

_Z<(1—H7~)2—al2>1 <1Z:f)]} (A.11)

S(l) _ K)2 i a2
2 64 x 373 | 20 (ar)3

1 1 1 (1+Hr—-YHY(1-Hr+1)
“H? | ——In(1 1 a al )| (A2
o Har +Har +2Ha7“ " (1+Hr+1(1-Hr-1) ( )

To fully reconstruct the gravitational potentials (A.9)-(A.10) we also need to evaluate

m@

V‘QSS), which can be broken into three parts,

2173
= — e ]_
VS 64 x 373 { 2003 <r3 Vg (1 g

+V‘2[22rln(Eiig:;aig_g:tai)]}. (A13)

There are three pieces on which the inverse Laplace operator act. One can check that the

o 1 V_2(1>__ 1 In(Hr) (A14)

first evaluates to,

20aH3 3 20H3 ar
where, for convenience, we fixed the integration constant to be —In(H)/r.* Strictly speak-
ing, when V2 acts on —In(H)/r it generates a delta function, o< §3(#), but that term can

be subsumed in a (finite) renormalization of the Newton constant. To evaluate the other
two terms in (A.12) the following integral representation can be used,

Vg(r) = /0 r dr’r’(l - j>g(w>, (A-15)

4Other choices of integration constants are possible. The plausible one is, —In(Ha)/r, since in this
case the final answer depends on the physical distance ar only. However, an inspection of the constraint
equation (3.20) shows that this choice is illegitimate. Indeed, since Ji contributes equally to both fi
and f3, but it does not contribute to the right hand side, Ji must satisfy, (93 + 3aH8 + 3a>H*)J, =
a2(8t2 +4HO; + 3H2)J1 = 0, from which we conclude that the choice of the integration constant in (A.14)
is the correct one.
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where [12g(r)],_,0 must vanish. Applying this to the other two terms in (A.12) yields,
a 1
1
Hr ( +Har>]
1\? 1\ 3] ar 3
|:11'l (HT—’_CL) _2:| - ﬁ |:1H(H7’)—2:|
1 hd
[ a)+ ] + ora H3 [ CL)+2
(
(

_ 2| a 1+Hr—L(1-Hr+1
Jz3=V [2Hr ( %
1

T2

Il
<
.

|
5

(A.16)

- o <1+H7~1;T[+1n)<(1+[:1:a> -3+ <1_H7~+i>2 (14 1) -]
_(1+H7~+i>2 o (vemre ) -3 - <1—Hy«_i>2 (1) -3
+75 <1+1> [ln <1+i> 1] Ve (1—i> [m (1—i>—1] . (A.17)

In terms of these integrals, szsg) is simply,

KZH3

—2¢(1) _
V7S, 64 x 373

(jl +J2 + jz) (A.18)

According to the expressions for the scalar potentials f(l) and f:,gl) in (A.9)—(A.10) we
need the following combinations of the sources S(()I) and S’él ,

s a5 K2 31 [ 1 1 1
- = H In(1 Harln |1
2a? 3a? 128 x 373 | 20 (ar)? + Har * Har +Harin I+ Har

(
1 +Hr—Y(1—H 1 1+H
+ ln<( +Hr—g)(1-Hr+ )>—a<(1+H7")2—2>1 <+ "t >
2Har (1+Hr+1(1-Hr-1) 4 a 1+Hr—1
a 1 1—Hr+1
Y O ST Y (e Al
H(omr ) m () (a1
siVsh g2 11 [ 4 1 1
{ H [3Har In <1+%> — Harln <1+M>

2a2  3a2 128 x 373 | 20 (ar)? *

1 1+Hr—YHY(1-Hr+1 1 1+Hr+1
+  ((AEAT ?)( - 0;) + 2+ H)? - )i
2Har (1+Hr+,)(1-Hr—=) 4 a I+Hr—

+% ((1—Hr)2—(112> In (1:5::%)] } (A.20)

A.1 Late time limit of the gravitational potentials

==

We now have all the ingredients to calculate fl(l) and fél) given in (A.9)—(A.10). The
answer is rather long, and since we are primarily interested in the late time behavior, we
now present the late time limit, a — oo, of various relevant contributions. First for the
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non-spatial integral terms in (A.9)—(A.10) we have

50285 une W2H 3.1, 2
2a2  3a? 64 x 373 [40(Har)? 4Har 3(Har)?
3 4 1
- Oo— A21
8(Harp ' 3(1—H22)a? <a4)} (A.21)
sgﬂ_sg%jf K2H3 S S D S
202 3a? 64 x 373 [40(Har)?  4Har 3(Har)?> 8(Har)3
2 1
——s — A.22
+3(1—H2r2)a2+0<a4)} ’ ( )

For the spatial integral terms (A.16)—(A.17) which eventually enter (A.9)—(A.10), we obtain

a—oo 1 1 3 1 1 1
Jr = HZ{IH(HQTH_ Har[IH(HCWH_Q}+6(Har)2_24(Har)3+O(a4>} (A.23)
asoo 1 (14+Hr —Hr 1 1
— In(1+H In(1-H 24— — ). (A.24
Js = H2{ Hr n(l+Hr)+ Hr a( r+ +3(1—H2r2)a2+0<a4)} ( )

Then the action of the inverse Laplacian operator on the spin two source becomes in the
large a limit,

i S = = i o (7 74 )
2
= & XI;I?T?) { 12%(522 — ln(Har)—Flar [ln(Har)—i—g] _G(Hlar)Q
| 24(11}@7“)3 - 1—;[[:r In(14+Hr)— 1;II:T In(1—Hr)
—2—M+0(;)} , (A.25)

What enters fl(l) and fél) are the second and first derivative of this expression, respec-

tively, i.e.
27173
902 (1) asoo  K7H In(Hr) 1 In(H 1] 3
A 64><37T3{20Har SHar | MHT) =5 3Har T 8(Har)?
4
A2
- 3(1—-H?r?)a? <a4>} (A.26)
{3 (In(Hr) 1 1 1 1
—Ho, V25 =y - 1- In(Har)+ =
VST 64 x 3m3 20Har+ 2Har a( ar)—i—z 3(Har)? 8(Ha7‘)3
2
A2
st )} am

Interestingly, all the negative powers of a without the logarithm factors in (A.26)-(A.27)
cancel the corresponding terms in (A.21)-(A.22). What finally remains in the scalar per-
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turbations fl(l) and f?El) at late times are,

2773
9. K°H 3 In(Hr) In(Har) 1

- ol —= A28

64 x 3m3 [40(Har)3 * 20Har  2Har O\ ( )

27173
1), 2 KTH® [ 1 In(Hr)  In(Har) 1
ENCA M64 x 373 [ 40(Har)? * 20Har 1 2Har +O a*) ]’ (A.29)

These are our main results, which are used in the main text (3.29)—(3.30) to obtain the
late time one-loop corrected gravitational potentials.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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