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ABSTRACT: The off-shell version of the c-map is presented, based on a systematic off-
shell reduction from four to three space-time dimensions for supergravity theories with
eight supercharges. In the reduction, the R-symmetry group is enhanced to local [SU(2) x
SU(2)]/Z2 = SO(4) and the c-map is effected by a parity transformation in the internal
space that interchanges the two SU(2) factors. Vector and tensor supermultiplets are each
others conjugate under the c-map and both can be dualized in three dimensions to (on-shell)
hypermultiplets.

As shown in this paper the off-shell formulation indeed leads to a clarification of many
of the intricate issues that play a role in the c-map. The results for off-shell Lagrangians
quadratic in space-time derivatives are analyzed in detail and compared to the literature.
The underlying reasons are identified why not all of the four-dimensional tensor multiplet
Lagrangians can be in the image of the c-map. The advantage of the off-shell approach is,
that it also enables a systematic analysis of theories with higher-derivative couplings. This
is demonstrated for a particular subclass of such theories, which, under certain conditions,
are consistent under the c-map. In principle, explicit results for realistic four-dimensional
type-II string compactifications can be explored in this way.
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1 Introduction

Dimensional reduction of supersymmetric theories is usually performed in the context of
on-shell field representations. For theories with a large number of supercharges this is
unavoidable, as off-shell representations are usually not available. For theories based on
off-shell representations it is often not worthwhile to define a full and consistent off-shell
dimensional reduction scheme, because the extra auxiliary fields contained in the off-shell
configuration can be removed by solving their corresponding (algebraic) field equations.
In the presence of higher-derivative couplings, however, these field equations are no longer
algebraic. In their on-shell form these couplings will therefore take the form of an iterative
expansion in ever increasing powers of space-time derivatives, which will completely obscure
their underlying structure. In this case an off-shell reduction scheme is indispensable, as



one obtains a supercovariant dictionary expressing the higher-dimensional fields into the
lower-dimensional ones, so that different invariants can be reduced on a case by case basis.

The dimensional reduction of 4D N = 2 supergravity theories to 3D dimensions is
special and is relevant for the so-called c-map [1]. Because the number of supersym-
metries remains the same, four-dimensional theories with N = 2 supersymmetry yield
three-dimensional theories with N = 4 supersymmetry. Dimensional reduction is usu-
ally applied to Lagrangians that are at most quadratic in space-time derivatives and the
c-map has mainly been studied at the on-shell level [1-4]. In its original form it maps
vector multiplets into hypermultiplets. But in its off-shell form it maps vector into tensor
supermultiplets and vice versa [5]. Both these types of multiplets can be converted to
hypermultiplets in 3D by vector-scalar duality.

The c-map is related to T-duality for type-II string theories with one spatial dimen-
sion compactified on a circle [6, 7]. In the compactification of type-IIA string theory the
spectrum of 1/2-BPS states consists of the massless states described by 9D supergravity,
coupled to momentum and winding states associated with the circle. Denoting the cir-
cumference of the circle by L, the momentum states have masses of order 1/L, while the
winding modes have masses of order L. In the limit . — oo the momentum states become
massless and the theory decompactifies with massless states described by type-ITA super-
gravity. Obviously a second decompactification limit exists for L — 0, where the winding
states become massless. In the latter case the massless states are those described by type-
IIB supergravity. The momentum and winding modes belong to different representations
associated with different central charges of the 9D supersymmetry algebra [8]. This is then
consistent with the fact that the massless spectra of ITA and IIB string theory are different.

The inequivalent representations of the massless states in type-IIA and type-1IB string
theory have also direct consequences for massless states when compactifying on a Calabi-
Yau three-fold. For a Calabi-Yau manifold with Hodge numbers hi; an his the massless
states of the N = 2 four-dimensional effective field theory on the IIA side correspond to the
states of N = 2 supergravity with hj; vector supermultiplets and hi2 + 1 hypermultiplets.
Likewise, the massless states on the IIB side correspond to those of N = 2 supergravity,
but now with hjy vector supermultiplets and hj; + 1 hypermultiplets. Those are the
two configurations that emerge in the circle decompactification limits of the type-II string
theories when compactified on a Calabi-Yau space times a circle. We should mention
that an additional intriguing feature of Calabi-Yau three-folds, which will not be directly
relevant for this paper, is that they appear in pairs which are topologically different and
related by the fact that his and hi1, which define the number of complex structure moduli
and of Kéhler form moduli, respectively, are interchanged. This surprising phenomenon is
known as mirror symmetry, and it can be combined with T-duality to obtain important
results for string effective actions (for an early reference, see e.g. [9]).

Some time ago it was demonstrated how to carry out the dimensional reduction of 5D
off-shell supergravity field configurations with eight supercharges to the corresponding 4D
ones, based on a corresponding reduction of the off-shell supersymmetry algebra [10] and
its representations. This reduction can be performed systematically on separate super-
symmetric invariants and in particular on actions containing higher-derivative couplings.



To accomplish the reduction one maps a supermultiplet in higher dimension to a cor-
responding, not necessarily irreducible, supermultiplet in lower dimension, possibly in a
certain conformal supergravity background. When considering the supersymmetry alge-
bra in the context of a lower-dimensional space-time, the dimension of the automorphism
group of the algebra (the R-symmetry group) usually increases, and this has to be taken
into account when casting the resulting supermultiplet in a form that is appropriate for
the lower-dimensional theory.

In three dimensions, the massless matter states can be characterized in terms of vector
and tensor supermultiplets (or of on-shell hypermultiplets). As is to be expected, the 4D
R-symmetry group (SU(2) x U(1))/Zs is enhanced to (SU(2) x SU(2))/Zs = SO(4) in
three dimensions. Under the c-map the two factors of the 3D R-symmetry group will be
interchanged and so are the vector and tensor supermultiplets. In addition the matter fields
of the Weyl multiplet, two scalars and one spinor, will change sign. A similar phenomenon
takes place for hypermultiplets, as their scalar fields parametrize a local product of two
quaternion-Kéhler spaces, each of them associated with one of the SU(2) factors of the R-
symmetry group.® Some of the final results of the dimensional reduction procedure can be
compared to existing results in the literature on N = 4 (conformal) supergravity theories in
three dimensions (see e.g. [15-20] where further references can be found). We will discuss
the details in due course.

As in [10], the off-shell reduction scheme is subtle, especially in view of the fact that
the 4D Weyl multiplet decomposes into a 3D Weyl multiplet and an additional (Kaluza-
Klein) vector multiplet. Both in four and in three dimensions, the matter multiplets
are defined in a superconformal background consisting only of the 4D or the 3D Weyl
multiplet fields, respectively. To fully establish this fact requires to also consider the
transformation rules beyond the linearised approximation. The fact that the R-symmetry
group is enhanced upon dimensional reduction requires a conversion of the spinor basis.
Furthermore, to realize the extended R-symmetry locally it is necessary to introduce an
SU(2)/U(1) local phase factor that ensures that the 4D and 3D local R-symmetries can
coexist. The central result of this paper is then to express the 4D off-shell fields in terms
of the 3D ones. This leads to a covariant dictionary which enables us to write any 4D
supersymmetric action in terms of its 3D counterparts by direct substitution. While this is
relatively straightforward for hypermultiplet and tensor multiplet Lagrangians quadratic in
derivatives, it is much more subtle for the vector multiplet Lagrangians. The reason is that
the number of vector multiplets is increased in the reduction by the addition a Kaluza-Klein
vector supermultiplet that originates from the 4D Weyl multiplet. Therefore the resulting
3D Lagrangian has to be completely reformulated to match the form of the generic 3D
tensor multiplet Lagrangians. In doing so, one establishes that the 3D vector Lagrangians,
although identical in structure to the 3D tensor Lagrangians, belong to a restricted class.
This can be inferred from the fact that they are manifestly invariant under both the vector
gauge symmetry and under local R-symmetry. Moreover they are invariant under a group
of rigid transformations that are characteristic for the dimensional reduction of 4D vector

'Our attention will, however, not be focused on the conversion to hypermultiplets [11-14].



multiplets (for an extensive classification, see [3]). None of these features are generically
present in the 3D tensor Lagrangians. Therefore not all the tensor multiplets can belong
to the image of the c-map. The corresponding phenomenon for hypermultiplets has been
noted long ago [1].

The supercovariant dictionary can straightforwardly be applied to any 4D off-shell su-
persymmetric Lagrangian including the ones with higher-derivative couplings. We present
a few examples of higher-derivative Lagrangians and discuss their implication for the c-
map. In principle these results are relevant for explicit four-dimensional type-II string
compactifications, such as given in [21]. This last topic definitely warrants further study,
but this is outside the scope of the present paper.

This paper is organized as follows. Section 2 presents the off-shell reduction to three
space-time dimensions of the 4D Weyl multiplet. After a first discussion of its reduction we
establish the resulting decomposition into the 3D Weyl multiplet and a separate Kaluza-
Klein vector supermultiplet. The necessary conversion of 4D into 3D spinors is introduced
in subsection 2.3. The resulting 3D Weyl multiplet corresponds to N = 4 conformal su-
pergravity and is considered in detail in section 3. Its characteristic features, in particular
those related to the c-map, are discussed and compared to the literature. Section 4 analyzes
the reduction of the supersymmetry transformations for the various 4D matter supermul-
tiplets: the vector supermultiplet, the tensor supermultiplet and the hypermultiplet, by
expressing all the 4D fields into 3D fields. All the results are then expressed in the form
of a supercovariant dictionary, which expresses all the 4D fields into the 3D fields. This is
done in section 5, where we also apply the dictionary to the4d D supersymmetric actions with
at most two derivatives. In a third subsection we then describe the conditions upon which
a 3D Lagrangian can be uplifted to two inequivalent 4D Lagrangians with a different field
content by making use of the c-map. A more novel application concerns the reduction of
higher-derivative couplings. This is the topic of section 6 where we present a few examples
and discuss their properties in relation to the c-map. Finally there are two appendices.
Appendix A discusses the relation between 4D and 3D Riemann curvatures, while the
more technical aspects of 4D to 3D spinor conversion are presented in appendix B.

2 Off-shell dimensional reduction; the Weyl multiplet

Starting from the super conformal transformations for 4D supermultiplets we compactify
one spatial dimension on a circle which will be shrunk to zero size, so that the space-time
dimension is reduced to 3D. Subsequently we reinterpret the results in terms of 3D super
conformal transformations. The first multiplet to consider is the Weyl multiplet, because
it acts as a background for the other supermultiplets: the vector and tensor multiplet
and the hypermultiplet. A second reason why the Weyl multiplet deserves priority, is
that it becomes reducible upon the reduction, unlike the other (matter) supermultiplets.
The N = 2 Weyl multiplet in D = 4 comprises 24 + 24 bosonic and fermionic degrees
of freedom, which, in the reduction to D = 3 dimensions will decompose into the Weyl
multiplet comprising 16 + 16 degrees of freedom, and a vector multiplet comprising 8 + 8
degrees of freedom. As we shall see, this decomposition takes a subtle form off-shell.



The independent fields of the Weyl multiplet of four-dimensional N = 2 conformal
supergravity consist of the vierbein ey, the gravitino fields 1,,%, the dilatational gauge
field by, the R-symmetry gauge fields Vys7 (which is an anti-hermitian, traceless ma-
trix in the SU(2) indices i,7) and Ay, an anti-selfdual tensor field Tap%, a scalar field
D and a spinor field x*. All spinor fields are Majorana spinors which have been decom-
posed into chiral components. Our 4D conventions are as in [22]. The three gauge fields
wirB, far and ¢y, associated with local Lorentz transformations, conformal boosts
and S-supersymmetry, respectively, are not independent as will be discussed later. The in-
finitesimal Q, S and K transformations of the independent fields, parametrized by spinors
¢ and ' and a vector Ax?, respectively, are as follows,?

A

Senr™ = @y Mhar + @ vt

A 1 g .
5'¢MZ = QDMEZ — gTABU’yAB’}/Mej — '}/MUZ

1. 3. 1 .
obyr = §€Z¢Mi — ZEZ'YMXZ' - 57721/}Mi +he. +Axtena,

1. 3. 1 .
0ANM = §1€Z¢Mi + ZIEZVM Xi + 517]%1\4@- +h.c.,
5VMij =2 Ej¢Mi — 3€;7m X+ 2n; Yot — (huc. ; traceless),

5TABU = 8E[iR(Q)ABﬂ ,

: 1 o1 ‘ Y .
Sy = _E,YAB IDTAB” €+ gR(V)MNZj’YMNﬁj _ glRMN(A)VMNGZ
: 1 .
+ D €' + E"}’ABTABUUJ' s
D=¢ pXi + € @Xi . (2.1)

The above supersymmetry variations and also the conventional constraints that we have
to deal with in due time, depend on a number of supercovariant curvature tensors, which
will be defined shortly. The full superconformally covariant derivative is denoted by Dy,
while Dj; denotes a covariant derivative with respect to Lorentz, dilatation, and chiral
SU(2) x U(1) transformations, e.g.

' 1 1 ) 1 .
Dye' = <3M — —wy P yap + 3 by + 2iAM> €+ B Vu'je . (2:2)

Under local scale and U(1) transformations the various fields and transformation parame-
ters transform as indicated in table 1.

The gauge fields associated with local Lorentz transformations, S-supersymmetry and

AB’ ¢

special conformal boosts, wps 2" and fas4, respectively, are composite and determined

2In four dimensions we consistently use world indices M, N, ... and tangent space indices A, B, . ... For
fields that do not carry such indices the distinction between 4D and 3D fields may not always be manifest,
but it will be specified in the text whenever necessary. We use Pauli-Kallén conventions with hermitian
gamma matrices and label the coordinates by 2™ = (z*, ', 2%, 2*), where 2 = (2", 22, 2%) with 2* = ia”.
Consistency with the four-dimensional results that we will use requires that e4123 = 1, v'7?~v% = 4*+® and
€123 = 1. From subsection 2.3 we will employ proper 3D gamma matrices, which are defined in appendix B.



4D Weyl multiplet parameters
field | ey Y by A Vu'; Tag? X' D | wif fut oumt| € n
w | -1 -1 0 0 0 1 320 0 1 -3 3
c 0o -3 0 0 0 -1 -3 0] 0 o -3|-3 -1
5 + + - + -

Table 1. Weyl and chiral weights (w and ¢) and fermion chirality (v5) of the Weyl multiplet
component fields and the supersymmetry transformation parameters in four space-time dimensions.

by conventional constraints. In this case these constraints are S-supersymmetry invariant
and they take the following form,

R(P)un* =0,
.3 .
YMR(Q)mn' + §'YNXZ =0,
= 1 i 9
6NB R(M)MNAB — IR(A)MA + gTABijTMB J — §D ema=0. (2.3)

The curvatures appearing in (2.3) take the following form,

1 - .

R(P)un" =20preny™ + 2bpreny” — 2w ey — §(¢[MWA¢N}1‘ +h.c.),
. . 1 g

R(Q)mN" =2Dpon)" — Ymdny' — 3 TP 5 A Yartowy; »

1
R(M)un? = 2000 — 20 Cwne? — dfprPen® + 5 (W’ 45 gy + hec)

Lo 35 T
+ <41/1M NI T8 — 11/1[1\4 Y Y xi = P v R(Q)AP +h.c.> ;

R(A)uNn =20 AN — i <2¢[M ONYi + P TN X~ h-C-> : (2.4)

2.1 Reduction ansatze

The reduction to three space-time dimensions is effected by first carrying out the standard
Kaluza-Klein decompositions on the various fields, to ensure that the resulting 3D fields
will transform consistently under four-dimensional diffeomorphisms. The space-time coor-

M _y (2%, 2"), where 2* denotes the (spatial) coordinate that

dinates are decomposed into x
will be suppressed in the reduction. Subsequently the vielbein field and the dilatational
gauge field are then written in special form, by means of an appropriate local Lorentz

transformation and a conformal boost, respectively. In obvious notation,

a B —1 a,u o aVBz/ b
ey = (eg ;ﬁbl ) : eaM = (60 e¢ > : by = (6‘) . (2.5)

On the right-hand side of these decompositions, we exclusively used three-dimensional
notation, with world and tangent-space indices, p,v,... and a,b, ..., taking three values.




Observe that the scaling weights for e and e, are equal to w = —1, while for ¢ we have
w = 1. The fields by and b, have weight w = 0. The above formulae suffice to express the
4D Riemann curvature tensor in terms of the 3D Riemann tensor and the fields ¢ and B,,.
The corresponding equations are collected in appendix A and will be needed later on.

We now turn to the supersymmetry transformations. Since we have imposed gauge
choices on the vielbein field and the dilatational gauge field, one has to include compensat-
ing Lorentz and special conformal transformations when deriving the 3D Q-supersymmetry
transformations to ensure that the gauge conditions are preserved. Only the parameter of
the Lorentz transformation is relevant, and it is given by,

e = _gto — —¢ (Ei’yawi + Ei’yazpi) , (2.6)
where we assumed the standard Kaluza-Klein decomposition on the gravitino fields,
- i+ Bt
Yu' = (dj” o "w) : (2.7)

which ensures that ¢ui on the right-hand side transforms as a 3D vector. Upon including
the extra term (2.6), one can write down the Q- and S-supersymmetry transformations on
the 3D fields defined above. As a result of this, the 3D and 4D supersymmetry transfor-
mation will be different. For instance, the supersymmetry transformations of the 3D fields
e ”, ¢ and By, read,

dep® = &7 b’ + @7 Pui,
5 = —¢? (€’ + Eqanhi)
5By = % (&7’ + Evuthi) + ¢ (€740’ + E7atui) | (2.8)
where the first term in 6 B,, originates from the compensating transformation (2.6). Conse-
quently the supercovariant field strength of B,, contains a term that is not contained in the

supercovariant four-dimensional curvature R(P) un2. Therefore the 4D spin-connection
components are not supercovariant with respect to 3D supersymmetry, as is exhibited

below,
ab
ab Wy 1 —2 7 ab BH
= —¢ “F(B
1 17 a R A A
wMa4 _ _5 (¢ F(B)u +¢(¢m’7 ¢ +'¢u vy ¢z)) o ¢—2Da¢ <BM> . (29)
0 1
Here we introduced the supercovariant field strength and derivative (with respect to 3D
supersymmetry),
F(B)MV =2 a[uBu] - ¢2 (TE[W%}W + &[ul’}/u]wl) - ¢Tﬁ[ui74¢y}i )
1 " i T
D¢ = (O = bp)d + 5% (Vpivath’ = D' vas) - (2.10)

Subsequently we write down corresponding Kaluza-Klein decompositions for some of
the other fields of the Weyl multiplet, which do not require special gauge choices,

; Vu'j + BV A, + B,A ; i+ B¢’
VM J= ( . Vz g j) ) AM = ( a A a > ) ¢M = <¢N gbz #d)) . (211)
J



Furthermore we define two complex 3D target-space vectors AT such that

Ta4ij — A; 52’]’) Tabij = Eabc A~ 5ij7

2.12
Tosij = Al €5, Tovij = —€abe AT€45, (212)

where A} and A, are related by complex conjugation. Here one has to bear in mind that we
are using Pauli-Kéllén notation, so that A} +A; is real when a denotes a spatial component,
and imaginary when a denotes the time component. This is reflected in the different sign
in the last two terms of (2.12). All gamma matrices are hermitian. We recall that the

convention for the Levi-Civita tensors is e%e0¢ = gab¢ and 123

= 1. Correspondingly for
the gamma matrices we have the conventions that v5 = v4v17273 and we note the useful

Yeyays, so that e.g. Tag” y4B =2 A7 %y, (1 + v5) €9,

relation 4% = gab°

2.2 Decomposition of the 4D Weyl multiplet

Hence we are now ready to consider the Q- and S-supersymmetry transformations of the
spinor fields originating from the 4D gravitino fields. Up to possible higher-order spinor
terms, one derives from (2.1),

. 1 . - 1
oy’ = [ 3O F(B)ay™ + ¢ 2lD¢74+1A] €+ Ve — T AT
- R B .
-9 174<771+2A Y4 €; _1¢ lF(B)aw“b'Mé)?
i L 1 1 Lo 1z i i A= i
6¢# =2 (9“ — Zw‘u Yab =+ ibﬂ =+ §1A'u' — §1¢ F(B);U' € +V/J4 j€ -+ A,u 19 ")/46]‘
A 1 . .
— Y <n’ + 5 AT e — 10 LF(B)ay™" 4 61) : (2.13)

where F(B)M = iesu,,pF(B)””. Although the results (2.8) and (2.13) are still incomplete,
they already exhibit some of the systematic features that will turn out to be universal.
Therefore let us first have a brief perusal of these initial results.

The fields whose transformations we have determined will belong to two 3D supermul-
tiplets, namely the Weyl and the Kaluza-Klein vector multiplet. Clearly, the fields e,* and
@Z)Mi belong to the Weyl multiplet, whereas ¢, B,, and " belong to the vector multiplet.
An obvious puzzle is the fact that we have identified only one real scalar, whereas the
3D vector multiplet contains three scalars. This is related to a generic feature of dimen-
sional reduction, namely that lower-dimensional results are often obtained in a gauge-fixed
version of the (local) R-symmetry group. Another aspect of this phenomenon is that the
vector fields A*, seem to play the role of a complex gauge field, because they appear to
covariantize the derivatives on ¢ and ¢ in (2.13), in spite of the fact that the A%, are
actually auxiliary fields in D = 4. As we shall see shortly, A*, combined with A, will
provide the SU(2) gauge fields associated with the enhancement of the U(1) factor of the
4D R-symmetry group. This additional SU(2) group emerges in the reduction, in addition
to the manifest SU(2) R-symmetry group of the 4D theory. Hence the full 3D R-symmetry
group equals (SU(2) x SU(2))/Zs = SO(4). This situation is in close analogy to what was



encountered in five dimensions [10], where the SU(2) R-symmetry group was enhanced to
SU(2) x U(1)/Zs. Observe that in both cases the fermions remain irreducible under the
extended R-symmetry group.

Just as in [10], we will discover that the higher-dimensional supersymmetry trans-
formations yield the lower-dimensional ones, but with parameters that involve additional
field-dependent terms. These field-dependent terms can be dropped eventually. We see this
already in the uniform field-dependent additions to the S-supersymmetry transformations
in (2.13) and we will discover similar modifications of the R-symmetry transformations
in due course. Some of those can be interpreted as compensating transformations related
to the fact that the formulation that we obtain is gauge-fixed. This gauge-fixing will be
removed at the end by introducing a local SU(2)/U(1) phase factor, which provides the
missing two fields to the Kaluza-Klein vector multiplet.

To demonstrate some of this in more detail, let us present the higher-order completion
of (2.13). The pattern that we find is repeated in the results for the matter supermultiplets
that will be presented in section 4. Explicit calculation leads to the following results,

, 1. . S . . .
§(eijp*) = —iF(B)ab’Yab eije + " (Dudraeie + A pe) +iC peyyel + Y Oy €

S 1. . 1~ .
— dyaeii (7 +7) + 51\7;‘7 (ejud”Y") + 52 eijva(e® ) ,
5’ =2 (0 — TP + Sby+ SIAL )€ Ve A e
V' = w g Wn ’Yab+§u+§1u €+ Vuje + A, e7n¢€;
i i L+ o lel
—vu(n +n)+§Aj¢,/—§z €9y - (2.14)
Here we have used the definition,
L. o
C=¢A—5i¢* Py,
i i i 3 - i
V0= ¢? (Vj + 3 QY s — 2¢¢l74¢l5j> : (2.15)

Obviously the field Y0! j will correspond to the auxiliary field of the Kaluza-Klein vector
multiplet. The field C' will turn out to belong to the 3D Weyl multiplet.

Furthermore we have introduced six vector fields which are related to the two sets of
SU(2) gauge fields associated with the 3D R-symmetry group,

A0 = Ay = 367 E(B), - S0

Ay~ = e Ay + dei by + %¢2 eij V' vuad

Ayt =€, AT + e i + %¢2 e Pivuvathy

V' =Vl + <Z><l/_}pi’74¢j + Py e — %5ij(@/_)uk'74¢k + l/_Jk’YA‘%k))

+ ¢2 (@Z_}i’%u@z)j - ééij @ZkVulbk) . (2'16)



The remaining quantities are given by
W R Loz ab., i
n = 541 vaeve; — 40 F(B)apy*"v1€
L 2 7G0) Tioa Gy i
+ 507 (01 € + U a€ + Dty mae)

. o 1 _
A =2¢ (QMW +Yivae — 507 (Eryae” + ¢k746k)> ;

7= () g

? bl N

YT = ()" =2¢eie (2.17)

and are related to the various field-dependent transformations mentioned above. They will
appear universally for all fields and define the decomposition of the 4D Q-supersymmetry
variations, in terms of the 3D Q-supersymmetry variations combined with a field-dependent
S-supersymmetry transformation, a field-dependent SU(2) R-symmetry transformation,
and a field-dependent SU(2)/U(1) chiral transformation. The latter should be regarded
as compensating transformations associated with the fact that the reduction leads to a
gauge-fixed formulation with respect to the new (local) R-symmetry transformations,

reduced

5Q(6) 4D U= 5Q(6)|3D\Ij + 5S(ﬁ)‘3D\P + 5SU(2) (A)‘gp\ll + 5SU(2)/U(1)(2)‘3D\P . (2‘18)

To give a meaning to the right-hand side one has to identify fields ¥ that transform
covariantly in the 3D setting, so that all transformations in the above decomposition are
clearly defined. The identification of these fields is done iteratively. Here one has to realize
that the 4D transformations for the Weyl multiplet are defined in a background consisting
of the 4D Weyl multiplet, whereas the 3D transformations of the matter multiplets are
defined in the 3D background. But the field-dependent parameters in (2.18) still depend
on a variety of the 4D Weyl multiplet fields. When these parameters are associated with
proper 3D symmetries they can be safely suppressed and this is what we will do henceforth.
Obviously this concerns the parameters 7 and A, but not . The fate of ©* will be
become clear shortly in the next subsection 2.3.

Let us examine some further properties of the newly defined fields (2.15) and (2.16)
before proceeding. First of all, an explicit calculation reveals the following transformations
under S-supersymmetry,

5sC =0,
. . 1 _
5sY" ;0 = ¢ (V'n; — bjn') — 5523' & (Ve — Pen®)

Lo i
5s A, = 51(1/1,“‘77 —Pu'mi) s

6s A, = —ei utyan’
6s AT = —9 dvam;,
i < R S -
0sVu'j = vu'nj — Yuin' — 55 (0 e — ). (2.19)

Note that the S-supersymmetry transformations of the fields .,4“0, Aljf and V,fj are very
similar, which confirms that they will indeed provide the connections associated with the
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SU(2) x SU(2) R-symmetry group. Note also that the Q- and S-supersymmetry trans-
formations of the gravitini in (2.14) no longer contain any auxiliary fields, but only the
connections associated with the local Lorentz group, dilatations, and R-symmetry.

The structure of the 3D Weyl supermultiplet is almost covered completely at this
stage, except for the auxiliary spinor x* and the scalar D. To see what they will represent
in the 3D theory, let us consider the variation of the S-invariant scalar C', defined in (2.15).
Under Q-supersymmetry it transforms as

1
0C = B ie'y4x; +hec., (2.20)
where y; equals
. 5
Xi = 5% Xilap (2.21)
2 2 At e g A — 2V — 2 PB) A i
+3¢')’4JD¢1+3¢A Eww +i¢ (% lD(b’sz‘i'gb Vi ¢j 12 ( )ab'Y Vi,

where the right-hand side is expressed in terms of the original 4D fields and covariant
derivatives. In this result we used that the components of the 4D S-supersymmetry gauge
field are given by (up to terms cubic in fermions)

S 2 1 _ A
61" = ¢ x|, + ngW ts ¢ 'YV F(B) st — 6 A"y,
4 , 1. . 1 . R o :
on' = bu'lyp + S A MM — 0T F(B)an™ vt + 5 F(B)ay™w’ + 5 %Xy
2 A 1 L
— 3% (e +7%v) (DaW + ¢ LE(B) oy ' + 77 %6”%’) : (2.22)

The definition of the 3D S-supersymmetry gauge field qbui will be discussed in section 3.
The scalar field of the Weyl multiplet related to the 4D scalar D can be identified by
analyzing the supersymmetry transformations on the spinor y; defined in (2.21),

. , 1 o
0X' =2iv PC€ + D|y, € + 3 Y4 ePCR(V) ' j€
1 . B .. . . _ .
— 5 M £ e tey? (20,4, + i4,°A, Jvage; + 1(RW(.AO) +id," A1)
A
+2Cyn = 58 Y ny;, (2.23)
where the scalar D|s3p equals

2 _ N 1, 1 : .
D:2D\4D—§¢Dal)a¢ L4 % (Do 1)2+6¢ 2F(B)ab2—|—02+§¢ 2y 0ty 09, (2.24)

Neither in (2.23) nor in (2.24) did we include higher-order fermionic terms. Observe that
the bracket in the second line of (2.23) will lead to the field strengths associated with the
new SU(2)r symmetry. Here and in the formulae below we will include the 3D conformal
gauge field f,* in the second-order covariant derivatives, D, D¢ = D, D*¢p+w f,*¢, where
w = 1 is the Weyl weight of ¢. The gauge field f,* will be defined explicitly in section 3.
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We now give the expressions for the components of the 4D conformal gauge fields fy;4.
The first one, f,* is defined in terms of the 3D fields by

1 1 1 _ 1 _
fu® = fua}3D+Z¢ ? F(B)acF(B)uc—mezF(B)bCQ]+2¢[DuDa¢ l—geuanDbéf) !
1

1. _ 1 _ _ _
-3 ie, " Dy(Cp™) + 3 [AT A7+ A7 AT — e, " AT, A™"] - Ze,ﬂD‘w, (2.25)
up to fermionic terms. The remaining components are f;¢, fu4 and f214, and are given by
(we recall that 4 denotes the tangent space index and 4 the world index associated with
the compactified coordinate)

1 3 1
Ji* = =507 Do(w)F(B)* + 567 F(B)™ Dyo — 4 e [R(A)pe + Co™" F(B)y]
+ éeabc A_bA+Ca
1 _ v 3 v 1 : a — a
fut= ¢ ' D"(w)F(B)u + ¢ 2F(B), D"¢ + 7 1€ab [R(4) by Co F(B)Y)
+ % € Lab AiaA+b )
fit= Ip D=t — Lp SF(B)w? — 1¢—1 D|,,+ 1¢—1A— At (2.26)
O 48 @y ap T gY e ' '

With the exception of the last equation in (2.26), all the linear combinations of D,Dy¢
and (D,¢)? appearing in equations (2.24), (2.25) and (2.26) are conformally invariant.

2.3 Gauge compensator and the Kaluza-Klein vector supermultiplet

At several occasions it was already pointed out that the 4D R-symmetry group is enhanced
to a larger symmetry group upon dimensional reduction. More specifically the U(1) factor
of the 4D R-symmetry group is extended to the group SU(2). Hence in 3D one is dealing
with two SU(2) factors in the R-symmetry group, one that was originally present in 4D
and another one that emerges in the reduction. Therefore 3D spinors will carry two
indices, namely one index denoted by i,7,... = 1,2 that is carried already by the 4D
fields, and an additional index denoted by p,q,... = +,—, that indicates the 4D U(1)

charge to be equal to —i—% or respectively. Every 3D spinor can thus be written as

1
27
UiP. Tt satisfies a Majorana constraint, so that it comprises eight components, just as in
the N = 2, 4D setting. Here it is crucial that spinors in 3D Minkowski space are real
two-component spinors. The expressions for the 3D spinors in terms of 4D ones involve
an arbitrary phase factor and the relative phase factors between the spinors belonging to
different 3D supermultiplets will eventually follow from insisting on uniformity of the R-
symmetry assignments in various supersymmetry transformations. The group-theoretical
aspects of all this is described in detail in appendix B, where we also present the relation
between the 4D and 3D gamma matrices.
However, at this stage the new R-symmetry transformations are not realized locally,
whereas the ones originating from 4.D are, as is standard in the superconformal formulation.
This phenomenon is well known and was, for instance, also observed in the dimensional
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reduction from five to four dimensions [10]. As it turns out the resulting lower-dimensional
theory is always obtained in a gauge where all the new gauge degrees of freedom are put
to zero. In the case at hand, this can be avoided by simply re-introducing the missing
gauge degrees of freedom. This is done by introducing a new field ®?,, which is an element
of SU(2),

PeSUQ2) =20 =1y, detd=1. (2.27)

and which is assigned the following transformation under the new local SU(2) and the

—iAp/2
oV (e ; ) : (2.28)

original local U(1),

0 eiAA/Q

were V' denotes the new (local) SU(2)g transformation and A denotes the parameter
of the original U(1)r group. Obviously, when fixing ® to the identity, there is only one
gauge transformation that is left unaffected, corresponding to the diagonal U(1) subgroup.
Subsequently we require that ® transforms as follows under Q-supersymmetry,

10 -2t
O =~ | - 2.2
2 (2— 0 ) ’ (2.29)

where ©F is defined in (2.17). It is important to observe that, when proceeding to the
special gauge ® = 1, one will induce compensating SU(2) transformations proportional to
S+ in the supersymmetry transformation. This implies that in the fully local version of
the extended R-symmetry, those terms will cancel. In due course we see that this is indeed
the case. We will subsequently redefine all spinors by multiplying them with ®, so that
they will transform locally under SU(2) x SU(2). Before doing so we have to specify the
correct 3D spinor basis for the various fields. For the fields corresponding to the 4D fields
wui and ¢, the spinor parameters of Q- and S-supersymmetry €' and 7', their conjugate
spinors, the S-supersymmetry spinor gauge fields gb,f and ¢,;, and the matter spinors of
the Weyl multiplet, denoted by ¥*, the required expressions follow from appendix B,

wuip _ <€ij Y4 1'/}#]' wip — ¢2 e 74 wj
Yy’ ’ P 7
v — (7 me v = 7
€ ’ it ]
_ ieij & _ eij IV
p=1 . |, mp=|""1.
”J (—mm) v ( i1
6,7 = —icY ¢y iv _ (7 .
1 i,.y4¢“z ) )v(z

Redefining the spinors will also affect the bosonic expressions that emerge upon apply-

(2.30)

>

ing supersymmetry and there will be extra terms in the supersymmetry transformations
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proportional to % as a result of (2.29), which cancel corresponding terms in the Q-
supersymmetry transformation rules (2.14) and (2.23) originating from the 4D transfor-
mations. This cancellation is a non-trivial check on the correctness of our strategy. A first
example of the modification of the bosonic fields concerns the gauge fields 4,7, associated
with the new SU(2)g, which follow from the second equation in (2.14), and take the form,

. 1 Vg L[4 A
o (ﬂ8u+2AM><I>—2<AM_ o | (2.31)

where the quantities on the right-hand side are the ones obtained previously from the
4D theory, which were listed in (2.16). From the above result one can directly derive an
equation for the field strengths associated with the new SU(2)r gauge fields,

_ 1
ot <8[“.A,,] + 5./1[# , .A,,}) P
_(FI0AN" 0 AT L (AR AT (AT A
o o |+ AL A A (2.32)
OpAu)™ 10 AyY 2\ Ap” A Ay 1Ay
Obviously the gauge fields A, transform under local SU(2) transformations as

A, = VAV 29, vV (2.33)

Likewise, the scalar field ¢ originating from the 4D metric will now be extended to a
triplet of scalar fields encoded in an anti-hermitian matrix quo that transforms under the
new SU(2) R-symmetry. Subsequently we use the phase factor ® to define L%,

0 =a <_5¢ 3}) o, L0 (LYY =viIOVT, (2.34)
1

which now transforms consistently under SU(2) and is invariant under the 4D U(1) R-

symmetry. Let us first decompose the triplet quo according to [5, 11]
—% iz0

’UO
quo(fc,v,v)=< o 1. 0), (2.35)

1
v 51113‘

A priori there is no restriction on the sign of 2° as the phase factor ® can also change
2% to —2°. Under the new SU(2) R-symmetry LP,° transforms as specified in (2.34). For

infinitesimal transformations defined as

1[ix0 »t
Val + 5 (—E_ _i20> ) (236)
where Y is real and ¥~ = (X7)*, the components 2°, v" and ©° thus transform as a triplet,
1
Ssuv” =1 <20 0+ 2E+x0> , sy’ =i(E70 =20, (2.37)
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The SU(2) covariant derivative then equals
1
D,L° = 9,L° + 3 (A, . L. (2.38)

Let us now return to (2.8) and consider the supersymmetry transformation of LP; .
We first note that d¢ in terms of the spinors (2.30) takes the following form,

8¢ = i ' —ig_yt . (2.39)
The supersymmetry transformation of LP % then follows from combining (2.29) with (2.39),
SLP" = 260" — Py & ', (2.40)

where the spinors have been modified by including the phase factor ® by 1'P — ®P /%9,
so that they will transform consistently under all the local R-symmetry transformations.
Hence the Kaluza-Klein vector multiplet consists of the three fields contained in quo,
together with the modified spinor, ¢*?, the gauge field B, and the triplet of auxiliary fields
Yijo defined in (2.15). We can now continue and consider the variation of the spinor 97,
the vector field B, and the auxiliary fields y? jo using the same conventions. In that way
one finds,

oY'P = ﬂLquelq — B F(B)ab’yabelp -+ Cquo ed4 Yljo P+ quO 77“1 ,
5Bu = Eip’?ﬂuwip + quO Eip@buiq >
(5Yij0 =2 Ejpﬂwip — quO Ejpxiq -2 ngplﬁip — ﬁjplﬁip — (trace) , (2.41)

where the 3D gamma matrices are defined in appendix B. Here we employ a supercovariant
and SU(2) covariant derivative, defined by

1 1 o
DuLPy” = (8 — bu) L7 + AU L0 — 5 A" 17,0 — (nig® — trace).  (2.42)

Note that, because of the fermion redefinitions that involve the phase factor @, the terms
in the supersymmetry transformation rules proportional to % have disappeared. Further-
more, none of the fields transform under the U(1) local symmetry of the 4D theory. This
completes the derivation of the 3D Kaluza-Klein vector supermultiplet.

Apart from ensuring that the 4D and 3D fields can transform consistently under their
respective R-symmetry groups, the role of the phase factor ® is also to sweep out the vector
defined by (2.34) over a sphere S? such that it will take the form (2.35). This requirement
fixes the phase factor in terms of the tensor quo up to a single phase which is related to
the U(1)gr local symmetry of the 4D theory. The result is as follows,

- 1 eTIAA/2 (L0 1 Lg0)  _giha/2 0
V2LO (L0 + dav) \ meT R0 (L0 4 5at) )

1 1
L0 = /det[L0P,] = \/—2L0pq Lo4, = \/UO|2 + 1(1’0)2- (2.43)

-
Il
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Note that there is no obvious singularity in the limit v — 0 when z° > 0. In that
case ® becomes equal to the identity matrix. Considering the same limit when z° < 0,
there are obviously some factors that become singular in (2.43), but the final result for the
phase factor remains well defined and tends to a different finite matrix, whose effect is to
interchange the two two eigenvalues of the matrix L?,? in (2.35).

Since the phase factor ® is only defined up to the phase A, which is related to the
exact U(1)r symmetry of the 4D theory, it is an element of the SU(2)/U(1) coset space,
which is indeed isomorphic to the sphere S?. This aspect gives rise to some subtle features.
For instance, we have already derived that the SU(2) acts on (2, v°, ©%) according to (2.37),
while on the other hand we have defined the SU(2) transformation on ® in (2.28). However,
it turns out that the change of ® induced by the transformations of (2%, 0% ©°) will only
be consistent with (2.28), if one introduces at the same time a change of the phase Ax.
To see this we explicitly perform the transformations (2.37) on ® and note that they are
subject to the following equation,

1[ix0 »t 0P
Squ(n® = = D+ 6Ap —— 2.44
SU(2) 9 <—E_ —iEO> +0AA oA’ ( )
where o W
fAy =30 D U AU (2.45)

2(LO + $29)

The first term on the right-hand side of (2.44) corresponds to (2.28).

The same structure is repeated for all scalar triplets, since the phase factor ® is used
to consistently translate the 4D fields to 3D fields that are covariant with respect to the
emergent SU(2). In order to illustrate this, let us now consider the following convenient
formula for a general triplet, (x,v, D), that is repeatedly used later on,

& (20,0, 0% L(z,v,0) ®(z2°, 0%, 0°)

1 0 —0 ~ 0 0 0o U 0 — v’
—51(:/63: +2v0v +2vv) —zv'+vr! — —————— v
1 LO+%$O
= m ’U’UO o ’U’UO . (246)
x@o—l_).ﬁo—mf)o %I(JTZCO+2’U’[_JO+2Q_)'UO)

Here we have suppressed the phase factor parametrized by A, which is subject to the exact
R-symmetry of the 4D theory. The result (2.46) indeed reduces to (2.35) when z = 2° and
v = %, upon identifying ¢ with LY, thus confirming the correctness of (2.43). Under the
SU(2) transformations (2.37) the expression in (2.46) is, however, not invariant. As follows
from (2.44) the phase Ap is again switched on under the SU(2) transformations (2.37) by
an amount dAa specified by (2.45), thus leading to

dsu(2) (q’fl(l‘O? 00, 0%) L(z,v,0) ®(2°,0°, @0))

= %i(SAA [(é _01> , (CI)_l(xo,vO,@O) L(z,v,0) @(mo,vo,ﬁo))] . (2.47)
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This is the expected result, because it indicates that the 3D SU(2) transformation of a
4D field takes the result of a field-dependent U(1) transformation associated with the 4D
R-symmetry.

Substituting (2.43) into (2.31) one obtains the explicit expressions for the 4D quantities
AMO and A, ~, defined in (2.16). In principle this result must be expressed in terms of the
SU(2 covariant derivatives of the components of LP,(z%,v° ©°), but in view of the above,
this will only be the case up to a field-dependent U(1) transformation of A,° and A,~.
To exhibit the complexities let us first calculate the explicit expressions for AMO and A,~,
following the definition (2.31),

—it°(0® D, 0°) + (L0 + 220) (00 Dy 2°)
2(L0)2(L0 + %xO) ’

i 0 le —UO
A, ((L ;02 )_i(L0+;x°)>]}’ (2.48)

where covariant derivatives are defined according to (2.38) and we again suppressed the
phase Ax. As is indicated by the structure of (2.47) the 4D quantity A,~ transforms
covariantly under SU(2). However, this is not the case for A, in view of the fact that the

A, =

1

Al = — —
H 2 L0(L0 + 120)

{ivo %M o0 + Tr

definition (2.31) contains a space-time derivative which has not been made explicit in the
master formula (2.46). Indeed explicit calculation reveals that A, ~ and A,° transform as

follows under SU(2),
Ssue)Au’ = 0udAa,  Osum Ay = Hi0Ax AT (2.49)

which takes precisely the form of the 4D infinitesimal U(1) transformation. We should
emphasize that the matrix-valued SU(2) connection 4,7, is implicitly contained in the
covariant derivatives on the right-hand side of (2.48) and only appears explicitly in the last
term for A,°.

3 N = 4 conformal supergravity in three dimensions

In the previous section we have already identified all the fields belonging the the 3D Weyl
multiplet. For the composite gauge fields associated with S-supersymmetry and conformal
boosts, gb#”’ and f,%, we did not yet present explicit expressions. The proper 3D spinor
field ¢,,'P follows from the same redefinition that led to n'? given in (2.30), followed by
a multiplication with the matrix ®. The additional fermion field y was defined in (2.21),
and its 3D definition was already given in (2.30) (again, up to the uniform multiplication
with the matrix ®).

Rather than to recast the 4D fields into the 3D fields we present the resulting 3D
superconformal theory directly in 3D. We emphasize that the results we are about to
describe are consistent with results previously reported in the literature, such as in [15—
18]. In particular they fully reproduce the non-linear results that were obtained in [19, 20].
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3D Weyl multiplet parameters
field | e,® ¥iP b, Vi AL, C XP D |wif fut oot | € 7

1 3 1

D=
DN|—

Table 2. Weyl multiplet component fields and supersymmetry parameters with their corresponding
Weyl weights in three space-time dimensions.

We start with the Q- and S-supersymmetry transformations and the conformal boosts,
acting on the independent fields,

5€ua _ Eip7a¢pip,
51/}Mip = QDMe”’ — Vu n'?,
1 1

5b,u = 5 Eipd)uip - 5 ﬁip¢uip + Ak“ €ua >

W'y = Eptu'” =20 €0u"" = €p 7 X'P + Mjpthu’” — (trace)
SAP G = €iqpu'? +2C &P + Egyu X' + i g0 P — (trace)
1 )
(SC — 5 E’L'p X”Lp \
. . . 1 . 1 . . .
5sz — lecew + DeEP 4 5 R(A)abpq,yabezq _ 5 R(V)asz’)/abG‘jp + Qanp’
5D = DX — iy X7 (3.1)
where V,; and AP, are the SU(2) x SU(2) R-symmetry gauge fields with corresponding

field strengths R(V),."; and R(A),.P,, respectively. Furthermore we will use covariant
derivatives with respect to Lorentz, dilatation, and R-symmetry transformations, such as

) 1 1 ’ 1... 1 ;
Dye'? = (8“ - Zwuab Yab+ 5 bl‘) P+ Vil €0+ AL g€, (3.2)

while D), denotes the covariant derivative with respect to all superconformal symmetries.
We stress that the Q-supersymmetry transformation of b, does not coincide with the result
that one obtains from the 4D variation given in (2.1). This is not an issue because the
difference can be viewed as a field-dependent shift that can be absorbed into the conformal
boosts. Since b, is the only independent field that transforms under conformal boosts,
this has no effect somewhere else, other than that it changes the field-dependent terms in
the commutation relations (which we are not making use of explicitly). Finally the scalar
fields C' and D were identified in the 4D theory in (2.15) and (2.24), respectively. We have
summarized the field content of the 3D Weyl multiplet in table 2.

Note that the two SU(2)r gauge fields do not appear symmetrically in (3.1), as the
terms proportional to the auxiliary fields are odd under the exchange of indices. We
therefore find that the Weyl multiplet is symmetric under the interchange

VSii+e— Aty C——C, X'P——x'"", D— -D, (3.3)

while the vielbein and the gravitini are invariant. Similar properties have been observed
before in three-dimensional extended supergravity [16], but actually this property could
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also have been inferred from [15] (see also [17, 18]). Altogether this Weyl multiplet has
16 + 16 degrees of freedom. The gravitational field e,?, the R-symmetry connections
and the two scalar fields comprise 2, 6, 6, 2 bosonic degrees of freedom, respectively. The
gravitini, and the spinor y comprise 4 and 4 fermionic degrees of freedom, respectively. The
covariant fields are described by a real scalar superfield of Weyl weight w = 1, subject to
the constraint that the second-order superspace derivative D, P D® 4 is proportional to the
trace with respect to the SO(4) indices [18, 20]. Furthermore the transformation (3.3) can
be understood as a parity transformation in the internal euclidean four-space parametrized
by coordinates X! ~ X', The fields C and D transform both as pseudoscalars under
this parity operation whereas the R-symmetry gauge fields consist of linear combinations
of three vectors and three pseudovectors. Note that the 3D results that have appeared in
the literature are usually in the context of the SO(N) R-symmetry group; the case N =4
is special because the R-symmetry group factorizes.

As in 4D, the gauge fields associated with local Lorentz transformations,
S-supersymmetry and special conformal boosts, w,ﬂb , qbuip and f,%, respectively, are com-
posite and determined by conventional constraints. These constraints are S-supersymmetry
invariant and they take the following form,

R(P)w" = R(Q);wip = R(M)#Vab =0, (3.4)

where the relevant curvatures appearing in (3.4) are given by

1 - )
R(P)Mua =2 a[u eu]a +2 b[u eu}a -2 w[,uab €ulb — 5 ¢[mp’)’a"¢u]lp )
R(Q)uuip =2 D[,u,dju]ip - ’Y[,u,qsz/]ip s

1 - .
R(M)W,ab = 26[Mwy}“b — QUJ[uach}cb — 4f[u[a6’y]b] + B d}[mp’}/ab gf)y}w . (3.5)
The constraints (3.4) can be solved directly,

a via via blo c a blv 1 7 a 7 a A
wub = —2¢ [ 6[Mey]b} —e [ €b} eucaa'ey — 26M[ eb] by — Z (2¢uip7[ Wﬂ P +¢ip7uwb p> )

. 1 ,
¢u'P = 57”"7#7%%”’,

1 1, - A 1 _ .
fu® = R(w, e)ua T en” R(w,e) + B €p d’[m‘p 7ab gz)V]”D ) en’ Ypip V" o', (3.6)

where R(w,e),* = R(w),»"ep” is the non-symmetric Ricci tensor, and R(w,e) the cor-

ab

responding Ricci scalar. The curvature R(w),,* is associated with the spin connection

field wu"b.

The transformations of w,ﬂb, gbuip and f,* are induced by the constraints (3.4). We
present their Q- and S-supersymmetry variations up to terms cubic in fermions, as well as
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the transformations under conformal boosts, as

1 . 1 .
6w“ab _ _§€ip,yab¢“zp - 5 ﬁip,yabwuzp + 2AK[aeMb] 7
. ) 1 L .
0pu't = =2 fu"va€'? + 3 Y, (ROV)ab 'y €07 + R(A)ap %y €9)
+2 Dunip + AKa’Yaw,uip )

1 : 1. apee i i i
0fu” = 9 EiPVabR(S)ubzp + 1 "eip (ROV)be 40’ P 4+ R(A)pePothp'?)

1 .
+ 5 nip7a¢ulp + DuAKa . (37)
Note that the curvature, R(S) Mb”’, of the S-supersymmetry gauge field appears explicitly, as

one cannot solve for it in terms of other fields. This is familiar from the curvature R(M ) W‘lb

in higher dimensional theories, but in the three dimensional theory this property extends
to the field strengths of all composite gauge fields.

In order to exhibit this difference with higher dimensions, we consider the Bianchi
identities for R(P),,%, R(Q),,” and R(M),,*, which lead to

D[aR(P)bc]d + R(M)[bca}d = 5fiaR(D)bc} = R(D)ab =0,
D R( Q)" = 1aR(S)g'? = YR(S)w'” =0,
e D R(M)p. % = 2" R(K )y = 4 R(K) =0, (3.8)

where in the second step in each line we used the conventional constraints (3.4), to obtain

simple constraints on the curvatures R(D),, R(9),,* and R(K),.°.

In particular, the
constraints for R(S),,”” and R(K),,* are identically satisfied for the composite gauge fields
in (3.6). These results are generally in agreement with earlier off-shell results [15, 16, 18-20]

as well as with on-shell results [23, 24].

4 Off-shell dimensional reduction: matter multiplets

In this section we consider the off-shell reduction of three 4D supermultiplets in a back-
ground of conformal supergravity: the vector multiplet, the tensor multiplet and the hy-
permultiplet. The strategy is the same as previously followed for the Weyl and the Kaluza-
Klein vector multiplet and the results turn out to be mutually consistent. At the end we
note that there exists a second 3D hypermultiplet that arises upon applying (3.3).

The vector multiplet. In four space-time dimensions the vector supermultiplet consists
of a complex scalar X, a chiral spinor doublet §2;, a gauge field W, and a triplet of auxiliary
field Y;; which transform under Q- and S-supersymmetry transformations as follows,

0X =éQ;,

1 1 4 -
0 = QlDXEi + igij <FZB — 4XTABM6M)’7AB€J + }/;jﬁj +2Xn;,
W = Eijéi(’yMQj + QwMjX) + Eijgi(’yMQj -+ 21/JMjX) ,
5Y;j =2 E(ZEQ]) + 2 EikEjl E(kﬂQl) , (4.1)
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where (Y¥)* = Y = 5Z~k5jlYkl, and F,,y denotes the anti-selfdual supersymmetrized
component of the field strength Fyyn = OpWxn — OnWiys. Under local scale and chiral
transformations the fields transform according to the weights shown in table 3.

Upon reduction to three dimensions, the vector field decomposes into a 3D vector field
W, and a scalar field W = W} according to the standard Kaluza-Klein decomposition

Was = (W“ ;VB“W) . (4.2)

As it will turn out, it is convenient to define the following linear combinations for the
fermions and the auxiliary triplet,

Q= Qi+ ¢ Wei
Yij = Yij + 0> WeaV's + 8 Wik yenn — ¢° X Py — ¢° X einep o)
— 097 Q) — eanei 9 AN . (4.3)

The supersymmetry variations then take the following form,

L 1.
6X — EZQZ - 527 (ZSW,
5(¢W) = 6ij€i’74éj + 6ij€i’)/4éj + Y X + i+X,
6 =2D(ANX e+ oW A ¢
+eiP(oW)nae — (X AT + X A7) yaeize
1 A . o .
+ §€ijF(W)ab’yab€] + Y:L‘jej +iC (2X’y461' + ¢W€ij6])
. 1 ~ o -
+2X 0 — o Wysegn’ + 5 Steimnt,
W, = €9 (1Y + 205X + ¢ W ej3math,”) + hec.,
0Yi; = 2 P(A")) — & AT Qe

where we have again suppressed the field-dependent S-supersymmetry and SU(2) transfor-
mations with parameters 7; and A;/ as in (2.17). In deriving the above result all higher-
order terms in the fermions were taken into account, with the exception of those appearing
in the variation of the auxiliary fields. The covariant derivative D, (A%) is 3D Lorentz
covariant and contains the modified U(1) gauge field defined in (2.16). The latter ap-
pears always in combination with terms proportional to Alf that will eventually provide
the full SU(2) covariantization. Furthermore, we have used various expressions defined
in (2.15), (2.17) and (2.21). Finally, note that the spinor Y was defined in (2.21) and
that in all the expressions we use the 3D Q- and S-supersymmetry gauge fields identified
in section 2.

The expressions found above can be compared to the expressions given for the Kaluza-
Klein multiplet, derived in the previous section. As it turns out, the 3D supersymmetry
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4D vector multiplet tensor multiplet hypermultiplet
field | X W, Q YY| LY E, 0 G| A~ ¢
w 1 0 3 2 2 0 5 3 1 3
c | -1 0 =% 0 0 0o -3 1| 0 —1
V5 + - -

Table 3. Weyl and chiral weights (w and ¢) and fermion chirality (v5) of the vector multiplet, the
tensor multiplet and the hypermultiplet component fields in four space-time dimensions.

transformations for the latter coincide with those given above upon introducing the appro-
priate redefinitions of fields in three dimensions,

oW 2iX \ __ : . , —yy Y
P, = & ol vi.=cky,. QPr=9| ' ) 4.5
I (21X —i¢W) DT Tk (Ezmj (4.5)

We can then write the supersymmetry variations (4.4) as
SLP, =26, QP — 6P, &, Q"
: : 1 : o : .
0P = PLPye't — S F(W)any™e'? + Vjel? + C Ly + Ly,

Wy = &P + LPq &'
(5Yij =2 Ejpwﬂip — qu Ejpxiq -2 Céijip — ﬁijip — (trace) . (4.6)

In these relations, we employ the 3D gamma matrices defined in appendix B and the deriva-
tives, D,, are covariant with respect to all 3D superconformal transformations including the
emergent SU(2)g, as in (2.42) with corresponding gauge fields defined according to (2.31).
Note that the terms ©F have been cancelled by the variation of the phase factor @, just as
before. The Weyl weights for the 3D fields are given in table 4.

The tensor multiplet. The tensor multiplet in four dimensions comprises an SU(2)
triplet of scalars L;;, a chiral spinor doublet ¢;, a two-form gauge field Ey;y and an aux-
iliary complex scalar field, G. The Weyl and chiral weights of these fields are summarized
in table 3. In a superconformal background the - and S-supersymmetry transformations
of the 4D tensor supermultiplet fields take the following form,

SLij = 2&up5) + 2emej e (4.7)
oot = PLY ¢; +9 FPej — G+ 2L p;,
, g 1 g .
0G==-2D¢" — ¢ (6 LY x; + 1 ”yABTABjk Vv 8”Ekl> + 270",
SEun = i€ymuney ij — t&@vunej e + 21 Lij e @ypong, — 21 LY e &yprton”

1

. . 1 ,
SEA = Eij EZ’}/ABDBC,O] + ZEZ’)/A <6 €ij Xk Lk — 1

: 3 . )
TBCij’YBCE]kQDk> + §n27Ag0]s¢j +h.e..
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Here, the derivatives Dy, are covariant with respect to Lorentz transformations, dilatations
and R-symmetry transformations. The vector, EM | denotes the superconformally covariant
field strength

EM _ 116—1 SMNPQ

1. -, : 1. - T o
X |ONnEpqg — §1¢§WPQ<PJ €ij + ilez"YPQ%’jg” —iLie* Yn"ypgr|,  (4.8)

associated with the tensor field Fjsy; the latter is subject to tensor gauge transformations
parametrized by a vector A\ps,

SEMN = 20 AN - (4.9)

The Kaluza-Klein decomposition of the tensor gauge field reads

E 2B, E, —F
Eyn = ( p +E [w =] . “) ; (4.10)
v

where F,, = Efl,u' The tensor gauge transformation parameter decomposes accordingly
into Ayr = (A, A), where A = Ay, so that the 3D tensor and vector fields, E,, and E,
transform as

0Eu =20,M — 2B o\, 6B, = ). (4.11)

Let us now proceed and determine the reduction of the 4D tensor field strength. First we
note that Expc = EAMENE-T v En p) decomposes as follows,

Eupe = ed'ep”e’ (8[;LE1/p] + F(B)[,ul/ Eu]) >

Fus = ~30 F(B)as. (412

where F(E),, = 0,E, —0,E,. Note that Eg,. and Eqp4 have Weyl weight w = 3, and they
correspond to the bosonic part of the field strength (4.8) written with tangent-space indices.
We can now write Eg. as a 3D real scalar of weight w = 3 by defining EF* = %ieabc FEape.
Indeed, a comparison with a two-rank tensor field in three dimensions shows that it repre-
sents only one degree of freedom (the 3D tensor has three degrees of freedom from which
one must subtract two gauge degrees of freedom). Hence, we can base ourselves exclu-
sively on the scalar E* and ignore the underlying tensor field, without loss of generality.
Therefore the field strength (4.8) written with tangent-space indices is precisely equal to

. 1 . 1 S
Bt = iisabcEabc e o — §i¢6ach(E)bc +on (4.13)

where the dots denote the fermionic bilinears. Henceforth E* will be regarded as a super-
covariant scalar, as was explained above, whereas F(E)ab denotes the supercovariant field
strength associated with the 3D gauge field E,,.

We are now ready to present the result of the reduction to three dimensions for the

supersymmetry transformation rules. To this end, we find it useful to rescale the scalar
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triplet by ¢ to obtain a triplet of unit Weyl weight, and introduce the quantities
@i = ¢ i+ Ly
o . 1 o o o 1 o
E=¢ 'E'+ 5 iV L% — ey’ — e9p; — 5 #LY iy e,
y B S S
G=¢"'G— Py’ - 3 LY ;. (4.14)
With these definitions, we can write the reduced result as follows,
8(¢p L) = 26445 + 2eineq €F Y
. y 1 y o o
6@ = D(¢p7 L) e + 516_1€MVPF(E)W, Yoele; + Eeye5 — Ge',
g g 1 - .
—i¢ LY Cyuej+ ¢ LYy + R R
SE, = ieij@ @’ — i Lije?* Equbur + hec.,
. ‘ 1 " ' R B
OE = eij€'v <lD(A0)<PJ 3 Aty Ejk(Pk) —iCey '@’ + 5 eij® L7" @y

1 R
+ 5 E€ij Glyan? — 5 TG +he. ,

v . 1 .. . ..
6G = —2¢ <$(AO)¢Z -3 ATy e%j) +2iCEn @ — ¢ LY &X;
+7p +ETE, (4.15)
where we retained all fermionic terms in the variations of L;;, ¢ and E,,, but considered only
the variations linear in the fermions for G and E. In these expressions we used once again
the covariant derivative D,,(A°) that contains the modified U(1) gauge field in (2.16). We

have again suppressed the field-dependent S-supersymmetry and SU(2) transformations in
the above result.

To write the supersymmetry variations (4.15) in three-dimensional form, we employ a
definition of fields that transform covariantly under the the local R-symmetry,

: : iE —id : i gt
Ly=¢ ' e* Ly, YP,=0( « L)', gr=a( 7 |. (416
—iG —iF iyg e’ @j
The supersymmetry variations resulting upon use of these definitions are as follows
0L’y =2€,¢'" = 8'jep o7,
o' = PL'; P — 5 F(E)ay™e? + YP e1—CL; P+ L P,
5EH = Eip’yucpip + Lij Eipd)ujp,
SYP, =26 ,Dp'? + L' € ,X'P +2C & g0"" — 0l gp'P — (trace). (4.17)

Once again, the variations proportional to 2+ cancel. All the fields and the gamma matrices
refer to 3D; the covariant derivative, D), also includes the gauge fields associated with the
extra local SU(2)g symmetry, just as in (2.42). The Weyl weight of the component fields
are summarized in table 4.
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3D vector multiplet tensor multiplet hypermultiplet
field | L?, W, QP Yy| Ly E, P YR | A° ¢

3 3 1

Table 4. Matter multiplet fields with corresponding Weyl weights of the vector multiplet, the
tensor multiplet and the hypermultiplet fields in three space-time dimensions.

Note that the supersymmetry transformations for the tensor multiplet (4.17) are very
similar to those of the vector multiplet given in (4.6). In fact they are related precisely by
the exchange symmetry noted for the Weyl multiplet in (3.3). We will return to this issue
later in this section.

The hypermultiplet. The hypermultiplets are not realized off-shell, but they can be
coupled to conformal supergravity provided the target-space geometry is restricted to a
hyperkahler cone. For rigid supersymmetry it is sufficient that the target space is hy-
perkéahler, but in order for the action to be superconformally invariant the target space
must also admit a homothetic conformal Killing vector. This in turn implies that the
homothetic Killing vector can locally be expressed in terms of the so-called hyperkéhler
potential which also defines the target-space metric [11, 26]. Assuming that these conditions
are met, let us now introduce the local Q- and S-supersymmetry transformations of the
hypermultiplet fields, which only close modulo the equations of motion of the fermion fields,
0A; X + 5¢BFBQ5AZ"8 =2 @ica -+ QSijGaBQB,—Y gjc’? s
0C% + 664 Tu% (7 = DA € + A%,
5%+ 0 T 475 CF = DA™ e+ A%, (4.18)
where we employ the local sections of an Sp(r) x Sp(1) bundle, denoted by A;“, for a =
1,2,...,2r. The Weyl and chiral weights of these quantities are shown in table 3. We
also note the existence of a covariantly constant hermitian tensor GoB (which is used in
raising and lowering indices) and of a covariantly constant skew-symmetric tensor .
(and its complex conjugate 0os satisfying QE@QB'_V = —(5@5 ). Covariant derivatives contain
the Sp(r) connection I'y%g, associated with rotations of the fermions. The sections A;*
are pseudo-real, i.e. they are subject to the constraint, eijQ&BGBVAﬂ = AP = (Ajﬁ)*.
For our purpose the geometry of the hyperkahler cone is not relevant and we assume
for simplicity that the cone is flat, so that the target-space connections and curvatures
will vanish. The sections can then be identified with the fields, and the tensors G and
Qs are constant [25, 26]. The extension to non-trivial hyperkdhler cone geometries is
straightforward.
The Weyl and chiral weights of the sections and the fermion fields are listed in table 3.
The 3D hypermultiplet fields will be rescaled, however, so that they have the appropriate
canonical dimension in 3D. This motivates the following field redefinitions,

Aia _ ¢_1/2Aia,
o B o 1 N )
SRS T

el - a1 ia
(F =712 (O 5 ¢! P ATy (4.19)
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Upon dimensional reduction the supersymmetry transformation rules (4.18) can be cast in
the form,

(Liia =2 Eifo‘ + 25ijGaBQB§ Ejéﬁ )
v o ) 1 o . 1 -~ 3 oo 1 o .
56 = DA€+ 51014,-0‘7462 + 3 EfGaﬁQB;y v 7+ 5 A;%n', (4.20)

where all fermionic terms were taken into account and where D), denotes the supercovariant
derivative in three dimensions. Again we suppressed the field-dependent SU(2) and S-
supersymmetry transformations. Subsequently we further redefine the fermion such as to
incorporate their consistent transformation behaviour under local R-symmetry,

—iGeBQ. T

cor —g [ 1€ f}gvf . (4.21)
4 ¢

The Weyl weights of the 3D quantities A;* and (% have been shown in table 4. With these

redefinitions we obtain the following 3D supersymmetry transformations of the 3D fields,

5Aia =2 gipgap )
5COP = PAL € — %CAZ-%“” + %Aﬂnip , (4.22)

expressed in terms of 3D gamma matrices and supercovariant derivatives. The terms
proportional to * have again disappeared as they should.

As we alluded to at the beginning of the section, there is an alternative hypermultiplet
that transforms under the other SU(2) factor of the R-symmetry, which cannot emerge
under dimensional reduction. For future reference we give its transformation rules below,
relying on the reflection (3.3),

6;1;00( = 2Eip5ai ,

_ . 1 .. 1 . .
00T = PAS P 4 S C AT 4 D AT (4.23)

5 Four and three-dimensional fields and invariant Lagrangians

In this section we express the 4D fields in terms of the 3D ones; subsequently we convert
the known supersymmetric 4D Lagrangians by direct substitution in terms of the super-
symmetric 3D Lagrangians. The section is divided into three subsections. In the first one
we express the 4D bosonic fields in terms of the 3D ones that were identified in the pre-
vious sections based on the off-shell supersymmetry transformations. The fermionic fields
are ignored, as the supersymmetry transformations are fully known in both 3D and 4D.
In the second subsection we consider three 4D supersymmetric Lagrangians quadratic in
derivatives and derive the corresponding expressions for the bosonic terms belonging to
the reduced 3D Lagrangians. Because the reduction procedure is fully off-shell (with the
exception of the hypermultiplets that are not defined as genuine off-shell multiplets) there
is no need for additional adjustments. In the third subsection we discuss some features of
the c-map and compare to results in the literature.
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5.1 The supercovariant dictionary: expressing 4D fields in terms of 3D fields

Some of the 4D and 3D fields are identical, except that the latter will no longer depend on
the fourth coordinate. For instance, the vierbein fields, which contain the three-dimensional
fields e,* as a submatrix, belong to this class. For other fields the relation is more involved.
In particular for the Kaluza-Klein scalar ¢, matters are more subtle, as this field is contained
in a 2 x 2 anti-hermitian traceless matrix L?, defined in (2.34) by absorbing a phase factor
®, introduced in subsection 2.3 to realize the new local SU(2) factor of the 3D R-symmetry
group. As a result the expressions for the 4D fields are invariant under the new local SU(2)
R-symmetry that emerges in the reduction, up to a term that takes the form of a 4D U(1)
R-symmetry.

The 3D vector and tensor matter supermultiplets contain scalar fields that were con-
veniently written in terms of anti-hermitian traceless 2 x 2 matrices. For instance, the
Kaluza-Klein multiplet contains the scalar quo with Weyl weight w = 1, as well as a
similar field Yijo of weight w = 2. The vector multiplets corresponding to the matter 4D
vector supermultiplets also contain these fields, LP, and y? j» which depend linearly on the
components of the 4D vector multiplet. The same situation arises for the tensor multiplet,
but with the indices p,q and 4, j interchanged. Hence these multiplets contain fields Lij
and Y?,, with Weyl weights w = 1 and w = 2, respectively. Obviously, in the context
of Lagrangians that are at most quadratic in derivatives, the fields L correspond to the
physical scalars and the fields Y to the auxiliary fields.

Although the matrix form of the scalar is convenient when considering the supersym-
metry transformations, it is not always easy to write the results in the form of matrix
products and traces thereof. Therefore we will use a uniform decomposition in terms of
the three independent components transforming as a vector under the appropriate SU(2)
R-symmetry group. Hence for the vector multiplet we have

1 1.
_ —5ix v ; _ —3lYy w
LPy(z,v,0) = < 2- a:) , Y'(y,w,w) = ( 2- > , (5.1)

(Sl

1 -
—U i —w 5iy

and for the tensor multiplet we have corresponding definitions for Lij(m,v,@) and
Y?,(y,w,w). Obviously, in Lagrangians with both vector and tensor multiplets, these
multiplets should in principle be labelled by different indices. We recall the components of
D,L*; and DuLij for convenience,

1
Dy LPq = (0 — bu)LPq + B [A, L]pq ;
i | i
DML j= (8M — bM)L g+ 5 [VM , L] js (52)

which is in agreement with (2.38).

Let us now consider the 4D Weyl multiplet, whose fields can be expressed in terms
of the fields of the 3D Weyl multiplet and the Kaluza-Klein vector multiplet (restricting
ourselves to the bosonic fields and ignoring that the redefined bosonic fields may also
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contain fermionic bilinears),

eyt = e,”,
eMA _ €M4 _ WMO (LO)—I’
e;* =0,
644 = (LO)_l)
1
LO _ \/|'U02 + Z(xO)Q — \/_Lp OLqpo’
By, :Wuov
ni'il,p = Vi'j = VMJ+WOYZO(LO)
Jlap = V4J_Y7'O(LO)
A=A+ L pawo w.lc
AM — 1 LO [ ( )N+ 1 :| )
Ap= (I 1C,
-0
Tabij = %1 (LU)72 g €abe |:(’DO gcx()) ~ 70 “ 1.0 (UO gcﬁo):| )
Ty = Lo + 5T
T, = L (10)-2 i = G N 052 o
aa” = 3i e | (0° Dax”) 05 10 (V" DoY) |,
2
D Ly Lo Laoy-1pep, 10+ Lroy-2(p, 10V
i = 3P~ = gL TP L+ (LD (PaL)
1 _ 1 1 _ : .
o E(LO) 2F(W0)ab2 . 502 _ Z(LO) 2yzj0 Y]i()’ (5'3)

where the covariant derivatives contain the connections A,”, associated with the second 3D
SU(2) R-symmetry group and R denotes the three-dimensional Ricci scalar. As explained
in section 2 the fields LP,°(z,v,v), W,° and Y*;° denote the bosonic fields of the Kaluza-
Klein supermultiplet. The remaining fields belong to the 3D Weyl multiplet and were
discussed in section 3. The connection A,° was defined in the second equation of (2.48).
Its explicit form is not relevant, but it is important to realize that under local 3D SU(2) it
transforms as the connection of the 4D U(1) R-symmetry.

Subsequently we consider the 4D vector multiplet, which upon reduction leads to a 3D
vector multiplet. The bosonic fields of the latter are denoted by LPy(x,v,v), W, and Y,

X 1. (20" —oaY oY —od? 0
= ——i - U
4 Lo LO(LO + 320) |’
LP Lq
W, =W, +W, 0 (L0)2 ,
Wy = LP, L)
4 9 (L0)2 )
Lr, L1,
Yij = —¢ik [ij + Yk ) (LO) ] ) (5.4)
where we note that 1
r, L1 = —5563:0—11170—6110. (5.5)
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For the 3D vector multiplet the following transformations will define an invariance,

SLPy = aLPY, 6LP0 =0,
Wy =W/, oW’ =0, (5.6)
5yzj = aYsz, 5YZ]‘O = O,

where « is constant parameter, because the 4D vector components remain invariant un-
der (5.6), with the exception of W;. The latter is shifted by a constant which represents
a remnant of the full 4D gauge transformations. This shows that (5.6) defines an invari-
ance for any 4D locally supersymmetric Lagrangian that involves vector multiplets upon
dimensional reduction. In principle there are additional invariances, as discussed in [3],
but those are not immediately relevant for what follows. The tensor multiplet and the
hypermultiplet do not give rise to symmetries such as (5.6).

The 4D tensor multiplet reduces to the 3D tensor multiplet. The bosonic fields of the
latter are L', E, and Y?,(y,w, ),

Lij = —ex LF; L,
pA _ ) B =5l e F(E)ye,
Et=iyr L0+ 10 viP,
E4M =E,,
1. wv? —wod
G = 51 [—yUO + UIl'O - WU()] s (57)

We note an alternative expression for the scalar X of the 4D vector multiplet and a
corresponding one for the auxiliary scalar G of the tensor multiplet,

1. 1 I L0 o
X—21U—41[x— 70 L0+%x0’
- 1 1 Y?, L1,0 o0
o970 |t - - q~'p
G=2L [21w—41[y— 70 :|L0+§ZUO , (5.8)

which will turn out to be useful later on.

Finally we consider the 4D hypermultiplet which reduces to a 3D hypermultiplet,
where we have only a single bosonic quantity represented by the local sections A;“. Upon
the reduction these sections are redefined according to

A®ap = (L0124, . (5.9)

This completes the dictionary between the 4D and 3D fields. The reader may now ver-
ify explicitly that under an SU(2) R-symmetry transformation of the 3D fields, the 4D fields
remain invariant up to a 4D U(1) R-symmetry transformation. This is guaranteed by the
relations discussed in subsection 2.3 and more in particular by the equations (2.44)—(2.49).
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5.2 Lagrangians quadratic in derivatives

We now turn to the 4D Lagrangians quadratic in space-time derivatives and reduce them to
three dimensions in terms of the 3D fields that we have derived. We will restrict ourselves
to the bosonic expressions, because supersymmetry is ensured in the off-shell reduction. We
start with the hypermultiplet Lagrangian, because that is the simplest one. Subsequently
we will discuss the tensor multiplet Lagrangian and finally the vector Lagrangian.

5.2.1 The hypermultiplet Lagrangian

The 4D bosonic Lagrangian for hypermultiplets reads [26],
1 i amyM 4 B ays Bl 1
Lhyper|,p = —5EQape” | DA DYA - ACAT 1 2R+ 5D | (5.10)

Upon reduction to three dimensions, the first term becomes

1 o 1 g
- iE Qaﬁ gt DMAZ‘a ’DMA]B = —56 Qaﬁ gt

1 1 . .
X | DuA* DFA + A A7 [ — 507 D" Dyg + %¢_2(Du¢)2 - oYY Y]PH ,

where we suppressed a total derivative. Note that the covariant derivatives D, A;* on the
right-hand side contain the 3D SU(2) gauge fields V,*;. Next we turn to the second term
in (5.10). Making use of (A.3), which relates the 4D and 3D Ricci scalars, and of (5.3),
which gives the relation between the 4D and 3D D-fields, the two terms readily combine
into the 3D Lagrangian,

1 g 1 1
e_lﬁhyper‘?)D = —5 Qaﬁ e D“Aia D“Ajﬁ — Z Al'aAj’g <2R—|— D — 02>:| s (511)

which agrees with the expression given in [16]. Observe that all the components of the
Kaluza-Klein vector multiplet decouple from the hypermultiplet Lagrangian, so that the
well-known property that vector multiplets and hypermultiplets have no direct interaction
in the ungauged case, is preserved under the reduction. We will return to this feature in
due course.

Of course, there exists a second 3D hypermultiplet Lagrangian, which is obtained
from applying the reflection symmetry (3.3). We have already given its transformation
rules in (4.23). The corresponding Lagrangian takes the form

. 1~ . I a|
e Lhyper|sp = —5 Qape™ | DyAy” DHAP — 1 A%ASP <2 R—D— 02>] . (5.12)

Such a Lagrangian can only be obtained from 4D upon reducing a vector multiplet and
applying 3D vector-scalar duality. However, as we shall see in subsection 5.2.3, these
hypermultiplet Lagrangians will belong to a restricted class.
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5.2.2 The tensor multiplet Lagrangian

Here we consider the tensor multiplet Lagrangian in four space-time dimensions, which
reads as (we follow the notation of [5]),

1 . /1
Liensor| 4 = —5EF(L)1s Dy Lij! DMLY  F(L)ry Li" L7 (SR - D)
+ EF(L)y (BEx EM7 — EMTY) Ly " &%+ GIGY)
1 .
+ §i€MNPQ F(L)[JK” EMNI apLikJ aQleK Ekl s (513)

where the tensor multiplets have been labelled with indices I, J,.... Here the functions
Frj(L) depend on the tensor multiplet scalars L;; and are invariant under the SU(2) R-
symmetry group and homogeneous of degree —1. Furthermore Fj ;i denotes the deriva-
tive of F7; with respect to Lin . The EM ! are the bosonic field strengths associated with
the tensor fields Ejysn?, which follow from (4.8).

For any 4D rigidly or locally supersymmetric tensor multiplet Lagrangian, the func-
tions Fr;(L) must satisfy the following equations [5, 27],

Fryg” = Fum” FryxrM = 0. (5.14)
These conditions suffice to prove that there must exist a function F(z,v,?) such that
0?F (z,v,0) 0?F (z,v,0) 0’F(z,v,0) 0*F(x,v,0)
Fr;= = — —, = , (5.15)
ox! Ox’ ovl ov/ ox! ov’ Ox’ Ov!
where we have used L2/ = %ixl and L' = v! which is consistent with earlier defini-

tions. For superconformally invariant Lagrangians (as well as all locally supersymmetric
Lagrangians) the function F'(x,v,0) can be chosen to be homogeneous of first degree and
invariant under phase transformations of the components v/ and o/ [11], so that

o OF (z,v,0) Lol OF (z,v,0) Lol OF (z,v,0)

ozt ovl ovl = Flz,v,9),
OF (z,v,0) _;O0F(x,v,0)
I I
v 50T -0 ST =0. (5.16)

The SU(2) invariance and the homogeneity of the functions Fj;(L) imply the equation
. 1 .
Fry™ L™ = =50 Fr (5.17)

Unlike the functions Frj, the function F(x,v,v) is not invariant under the full SU(2)
R-symmetry group, but only under a U(1) subgroup.

In the superconformal case it is convenient to introduce also an SU(2) invariant quan-
tity whose second derivative generates the metric of the tensor multiplet scalars,

Xtensor(L) = 2 Fry L9 L7 (5.18)

which is a homogeneous function of first degree invariant under SU(2). This tensor-
potential Ytensor Satisfies the following equations,

aXtensor (L)
OLUI

62X‘censor (L)

oL loL, ~ 2Fd) €. (5.19)
i J

=2 F;(L) LY, €kl
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Not surprisingly there exists a relation between Xtensor(L) and the function F(z,v,v),
o1 P (@0, 0)
ox! ’
which can be established by making use of the equations (5.15) and (5.16). The right-hand
side of (5.20) coincides with the expression for the hyperkahler potential Xhyper(v, 0, w, W)

Xtensor (L) = Fry (xIxJ + 41)117]) =—F(v,0,x)+ (5.20)

given in [11] for the hyperkéhler cones that one obtains upon dualizing the tensor fields to
scalars. In that case OF(x,v,)/0x! is identified with w! + @', so that one is performing
a Legendre transformation [5]. The reason that only the real part of w! appears is that
the hypermultiplet Lagrangian will have an abelian isometry for every tensor multiplet.

Observe that the last term in (5.13) specifies a coupling of the tensor gauge fields to
Fr7i", the derivative of Fy; with respect to LUK . This coupling does not involve the
tensor field strengths, but is nevertheless invariant under tensor gauge transformations.
The reason is that the term Frjx® OpLii” 8QleK M satisfies the equation,

O (Fryx™ 0pLiw” g Ly M) =0, (5.21)

by virtue of the properties satisfied by F7;. This result implies that one can write (locally)

Fry" opLiy” 9gLj™ e = Op Az, v,0)q)r . (5.22)

One particular solution for the space-time vectors A(x, v, 0)as 1 is defined in terms of second
derivatives of the function F(z,v, ) introduced in (5.15), and reads

0?F(x,v,0) B O?F(x,v,0)
Ozl 00”7 ozl v’

Clearly these space-time vectors are only determined up to a gauge transformation Ay; 5 —

A(SC,U,T))M[ = 8M17J 8MUJ, (523)

Aprr+0pAg. They are, however, only manifestly invariant under a (rigid) U(1) subgroup of
the full SU(2) R-symmetry transformations. Nevertheless, when applying an infinitesimal
SU(2) transformation with (local) parameter A;/(x) on the left-hand side of (5.22), one
obtains

Ssu(2) (F] 1K Op Ly 9L ekl> — pp [aQ]Aij Fry(L) Ly i) | (5.24)

where we made use of the SU(2) invariance of Frj(L). This result, which is in line
with (5.21), implies that the vectors A(z, v, v) 1 are invariant under (rigid) SU(2) up to an
abelian gauge transformation with field-dependent parameter. For the solution (5.23) one
can calculate this transformation explicitly in terms of multiple derivatives of the function
F(x,v,0).

A relevant question is whether it is possible to apply such a gauge transformation to
the 3D vector fields A(z,v,0)prr such that the results become exactly SU(2) invariant.
As was observed long ago [29], the answer to this question is in general negative: it is not
always possible to satisfy (5.22) with SU(2) invariant ‘potentials’ A(x,v,0)ns 1. However,
as we will establish in the next subsection, there do exist specific models where both the
gauge invariance and the SU(2) invariance is manifest. Hence we may distinguish two
distinct classes of tensor interactions characterized by the fact whether or not the vector
fields Aj(x,v, D)y can be globally extended to full SU(2) invariants or will be at most be
invariant under a U(1) subgroup.
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Many of the 4D features related to tensor gauge invariance and R-symmetry invariance
remain relevant in 3D. Hence let us turn to the reduction of the Lagrangian (5.13) to three
dimensions by using the expressions for the 4D fields summarized in (5.7) and (5.3) and
the Ricci scalar in (A.3). Starting from the first line in (5.13), we find

1 . . 1
— S EFiy Dy Lij! DMLY + E Fry Ly’ 197 (3}2 + D)
1 . . 1 : . 1
= e Fi, DL DL — 5 e Fu i’ (2 R+D— 02>

+ %e Fry¢ 2 (LT Y09) (LR Y0, (5.25)

where we used the homogeneity of Fr; to express it in terms the 3D scalars Lij defined
in (5.7).3 We also suppressed a total derivative term (for this it is convenient to make use
of the first equation (5.19)). Subsequently we consider the next few terms of (5.13) and
reduce them to three dimensions,

EF(L)1y (BEx EM7 — EMIV Ly e 4 G1GY)

1 Lo ori 1oi v
= —5eF(L)1y |50 2L YT (LR YY) + F(B) W' F(E* + qufyqpf]
1 4 .
— S F(L)1, F(E), L7 v,7,. (5.26)

Combining all these contributions with those coming form the last term in (5.13), we obtain
the final result,

1 . . 1 . 4 1
Liensor|5p = SeF(D)1s DL DML — S eF(L)1 IR <2 R+ D — C2>

1
~ S P [F(B)w! FEP™ +Y7,1 v,

1. . ,
— 51" F(L) 1y F(E)w! L'V,
+ie"PF(L) ki’ 8,L%" 0,LF ;7 E,X | (5.27)

where we note that the Kaluza-Klein vector multiplet again manifestly decouples. This
should not come as a surprise as one can dualize the 3D vector field E, to a scalar and
then obtain a hypermultiplet Lagrangian, for which we have noted the same decoupling
phenomenon. Let us stress that all the properties of the 4D tensor Lagrangians related
to the tensor potential Xtensor(L) carry over to the three-dimensional context. However,
the definition (5.18) in terms of the fields L; acquires an explicit minus sign because
LlL; 7 = L4 13,7, As a result the equations (5.18) and (5.19) take the following form,

Xtensor(L) = _2FIJ LijI LjiJ y
8Xtensor L)

: = 2F (L)L’
aszI IJ( ) )
a2Xtensor(L) i
ZAtemsorr ™) 9 Fy (L) 67 2
AL, OLk;7 15(L)0 (5.28)

#We remind the reader that the L’; are anti-hermitian.
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5.2.3 The vector multiplet Lagrangian

Finally, we turn to the bosonic Lagrangian for vector multiplets, whose evaluation is con-
siderably more complicated, as the Kaluza-Klein vector multiplet will not decouple in this
case. Therefore the number of vector multiplets will increase by one under the reduction.
To avoid confusion with the discussion in subsection 5.2.2, we will use indices A, X, =, ...
to label the n 4 1 off-shell 4D vector multiplets. With the Kaluza-Klein vector multiplet
we will thus obtain n 4+ 2 3D vector multiplets. As before we start from the bosonic terms
of the 4D Lagrangian, which take the form,

_ 1 1 .. _
Luector|,p, = E Nas [XAXE <6R - D) + Yy YR = Dy XA DY XE]
1 1
_ gE NAE FMNA FMNE _ T61€MNPQ RAE FMNA FPQE
1 _ y 1 _ _ y
+3F [XANAEFABE TapYe;; — gXANAEXE (Tapei)” + h.c.] , (5.29)
and is encoded in a holomorphic function F(X) that is homogeneous of second degree. Its
multiple derivatives are denoted by Fy=... and the second derivatives are decomposed into
two real tensors, Nay; = —iFy; + iFay; and Ray, = Fix: + Fay;, which we have used in the

above expression.
As before, we reduce (5.29) in steps, starting with the first two terms,

_ 1 1 »
E Njx [XAXZ <6R - D) 1 gYijA Y”E]
1 v [1 1 _ .
= ged  NanX X [2 R-D+C*+ ¢ 2(FW)w?)? + ¢~ 2(Dyo)?

_ *€¢_1NAZ [YZjA Y]iz 4 (Z)—QquA Lqu YZjZ inO}

8
1 - 1 . .

+ e ¢ 3Ny [XAXE —~ §¢_2quA L9,0 > LSTO] yi0yi0 (5.30)
where we made use of (5.3), (5.4) and (A.3), and we employed the identifications ¢ = L°
and LP A 090 = —1aA20 — Ap0 — 5800, The next terms related to the kinetic terms of

a Lp 2

XA and the various field-strengths reduce to
oy 1
—~ ENas Dy XA DY X* - 5 F Nax Fyn® PMNE — L MNPQ Ry o Fyn™ Fpg™
= —e¢ 'Nag [X*X¥ C? + D, X D, X*]

1 o
+ —¢ 2N (XN DuXE) eMPE(W),,°

4
1 Y _ "
— g¢9 'Nas [F(W)u*F(W)HE + ¢ 2LP A 19,0 F(W) 0 = F (W)
+ ie ® 3 Nas BX x> % 2rr A0t LSTO} FW) " F(Ww)m°
1
élfpr Ras [F A + §¢_2quA Lqpo F(W)WO] 8p (Cb_QLTsE LSTO)
1
~ 16¢ 9 Nan O (p72LP A L,0) 0 (¢ L7 L*,°) . (5.31)
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In the left hand side of this relation, D, X A denotes a U(1) covariant derivative with the
connection A,0 that was defined in (2.48),

DX = (9, — b, +14,0) X (5.32)
Finally we reduce the remaining terms

1 » 1 _ _ »
B [XANanFAPY Typ¥ey; — c XANpp X™ (Tapeij)’] +hec.
-0
v

I GA (=03 0
_gled) Nan X [(U Dux)_m

00 B,

1
X [¢ (¢ 2LP " L9,0) + e~ et P (F(W),,” + §¢_2qu2 LqpoF(W)VPO)}

o° © 2
m (UO /Da'L_)O):| + h.C. . (533)
2

1 = “
+ 16 ¢~0 Nps XA X> [(@0 Dar’) —
Because the number of vector multiplets is increased by the presence of the Kaluza-
Klein vector multiplet, we extend the range of the indices {A} to {A} = {0,A}, where
the index A = 0 refers to the Kaluza-Klein vector multiplet. Up to terms that involve
derivatives of the scalar fields and the epsilon tensor, the 3D Lagrangian can then be

written as
1 p Arq B 1 2
ﬁvector\3D:—§efAB(L)L L7 |gR=D-C
1 ) )
— 5eFap(L) [FW)* F(W)mB 4yt Ayi Bl (5.34)

Here we have simply collected all the corresponding terms of (5.30) and (5.31), which lead
to the following expressions for the tensor Fap(L),

1
=—N
Fas = 75 Nas,
1
Frao = Foa = m AEquZLqpoa
1 A . 3quA Lqu LTSE Lsro
Fo0 = 15703 (1073 Nas [qu L7y~ + 2 (L0)2 (5.35)

Furthermore, one easily verifies that the direct analogue of the tensor potential that was
introduced earlier in (5.18),4

Xvector = —2FARB quA Lqu
B _NAE 17 ALq - quA Lqu LTSE Lsro
0 2 (L0)2
2 Nay XAXE
=5 (5.36)

“Note that a minus sign has to be introduced in the definition below because the quadratic form L%, L7,
that we are using here is non-positive!
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is a homogeneous function of first degree and is manifestly invariant under the symme-
tries (5.6). To prove the identity between the second and third line one may use the
following convenient expression for X* (cf. (5.8)),

1, 4 1 [ A quALq,,O} o0

XA = Ziph — 5 .
510 ik 70 Lo—i—%xo

(5.37)

The reader may verify that the application of a 3D SU(2) transformation on the right-
hand side of (5.37) takes the form of an U(1) transformation on the left-hand side with
parameter A4 defined in (2.45). Therefore U(1) invariant products such as X* X* should
take an SU(2) invariant form. In particular we find
quA Lqu LTSZ LSTO
2 (L9)2 ’
which indeed confirms the last identity in (5.36). Likewise Fix(X) is also U(1) invariant,
and must therefore be SU(2) invariant as well. From this observation it follows directly

—8XWX® = ALeE 4 (5.38)

that Nay = —i(Fay — Fax), the functions Fap and Xyector are all SU(2) invariant as well.
We should point out that all properties derived above are so far consistent with the fact
that there exists a reflection associated with (3.3) that correspondingly interchanges the
vector and the tensor multiplets. This explains the different sign of the terms proportional
to the field D in the two Lagrangians (5.27) and (5.34). We will see that this relation
between tensor and vector supermultiplets is also valid for the remaining terms in the
full Lagrangians. Therefore, the remainder of this section will be devoted to a detailed
derivation of the bosonic terms of the vector Lagrangian in order to isolate the intricate
features that are crucial for establishing the relationship with the tensor Lagrangian.
Before specifying the remaining terms in the Lagrangian (5.34), we present a convenient
expression based on the derivatives of X with respect to the components of quA,

00500 — 0600

T 2L0(LO + La0)

- -0 r. 0ra A =0 r. 0 ra A
1v |:<(5£EA+(SCEO q p >+ v 0<5UA+(5’UOH)

SXA

S 4I0 2(L0)2 L0+ iz 2(L0)2
o’ —A -0 quo Lqu

Using that Fyx(X) is the second derivative of a holomorphic homogeneous function of
degree two, we derive the following two identities,
OFAs(X)  0F\=(X) OF)s(X)  0Fzx(X) L™, L*,=

aquE B aquE ) aquO - aquE 2(L0)2 ) (540)

where the second equation follows directly from (5.39). Furthermore we note the identities

oLr,= 1 " 9Le,E OL1,=
OFas(X) 1vo_ _ypo0Fan(X) _ . 0Fan(X)
T e i (5.41)
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Subsequently we make use of the fact that Fyx(X) is a homogeneous function of
zeroth degree, so that it is invariant under complex scale transformations of the 4D fields
X=. When regarding Fyx(X) as function of the 3D fields, it must be an SU(2) invariant
homogeneous function of zeroth degree. Moreover, close inspection based on (5.37) shows
that it must be a homogeneous function of the quE and quo separately. Exploiting the
second equation (5.40), we thus derive the following results based on homogeneity and

SU(2) invariance,

OFsx; 0 OFs; = OFrsy ) 0
~IP° =0 —= I ==0 P, =0
oLr=E 1 TooLrE T ©ooLe0 e ’
aFAZ - 0 LstO LtsE
—(LP =+ I ————— ] =0 5.42
o ( S i) <o, (5.42)

where the first equation, while consistent with homogeneity, is actually derived from (5.39).
Furthermore the homogeneity of F'(X) implies that 6 Fyy under any variations 6 X= must
satisfy 6 Fps; X2 = 0, so that

OFzs

LA (5.43)

A 0 % 0
|:qu/\ Lqp2+ qu Lqp LTS LST :| :07

2(L0)2

where we again made use of (5.38).

The above results can straightforwardly be used to derive a number of specific results
that confirm the relation with the tensor multiplet Lagrangians. First of all, we may verify
by using (5.40) and (5.43) that the derivative® of Fap in (5.35) with respect to LP,“,
denoted by Fapc?,, satisfies

Fapcq = Fapcyy, (5.44)

which corresponds to the first equation given in (5.14) in the context of the tensor multi-
plets. Then we have already argued that the Fyp(L) must be SU(2) invariant; moreover
they are manifestly homogeneous functions of degree —1 in terms of the 3D fields F' qu.
Therefore we derive the identity

1
FABqu Lrpc - _§5pq -FABa (545)

which is precisely analogous to (5.17), considered in the context of the tensor Lagrangian.
Furthermore, from (5.43) one can verify the following relations,

82 Xvector (L)
9LP, A OL"

8Xvector
oLp,A

= —2FapL9,5, = —2Fap(L)5,". (5.46)

5Observe that with the definitions of this paper we have

aLx,

oL’ L9’
L™

=" 6%, =

dLP,0 200"
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which are analogous to the equations (5.28) derived for tensor multiplets. For future use
we give the explicit expressions for the independent components of F4pc?y,

Faselq = 5 SIJEILEE ;
Faso’q = 3 (20)3 Nax quo + S (20)3 gi\[;; L"EFLs9,
Pt = g Mo [V + S
_ 8(L10)3 gi\(’ii rEreE
]:000pq - 32 (L0)? Naz [LTSA LSTE quo +2 LTSA LSTO quz + > LTSA gs(iol)zuz L qu()
L ONps LTALSELE U (5.47)

16(L0)5 OL9,E

where we made use of the relations (5.40) and (5.43). To verify their correctness one can,
for instance, verify the validity of (5.45).

To continue we will also need the following result for the covariant derivatives D, X A
in terms of the three-dimensional fields,

1 A 1.[DM$ADMLP,1ALQPO] oY

2 Tk 4 Lo L0+ 120
) LP ALq 0 o @O —
—i W [(UO Dut’) = 7510 DMUO)] : (5.48)
2

which has been derived by making use again of (5.39). One then proceeds to evaluate the
remaining terms of the action which all involve derivatives of the scalar fields. First let us
collect all the terms quadratic in these derivatives from (5.30), (5.31) and (5.33),

1 _ _
e Nps [2¢—3 XAXE(D,¢)? — ¢ ' D, XA DX
0
v

0, 1.0
L—|—2x
0

1 — A= 2
0O KAR (20 D) - (v* D" +he.

U

1. 5= P = _
+ i XN (0 D) - 04 10 (v Du0") |0 (67207, 1,°) + hec.
2

_ %(ﬁ O (¢72quA Lqu) " (‘75721‘/"8E LSTO)} : (5-49)
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To write this expression in terms of the 3D fields we first derive the following three

identities,
iXA (Y %,ﬂ:o) - Loioéazo (0" ZH)MUO)] + h.c.
=L, Ap, 19,0~ L;LLOO 7D, L7°
D, XA DX
= _éDuLPqA DHL,® — 16 (1LO)2 2D, L9 L O D Le, >
- W D, LP) DHLY," — LlréO(IL/(S);iA D, L7 L1, D L!,0 L0
+ = (20)6 quA Lqpo .= 1s,0 ‘(@0 g/ﬁo) - LOiO;;UO (UO %MDO) 2’
(0" BHZL‘O) — Lo_?_olwo (v° guﬁo)‘z
2
— —2(L%*(D,L”,° D*19,°) — (LP,° D,L%,0)°. (5.50)

The right-hand side of these expressions is manifestly invariant under the emergent 3D
SU(2) R-symmetry, as is to be expected because the expressions on the left-hand side
are invariant under the the 4D U(1) R-symmetry. Collecting the various terms one can
verify that all the terms quadratic in the derivatives of the scalar fields combine into the

following form,
1
£vect0r’3D = 56 -}-AB(L) DuquA DHLqu . (551)

What remains to evaluate are the terms linear in the field strengths. Collecting those
terms gives rise to

1 _
ie"P N, [ — me?(XA ?)MXE) F(W),,°
-0
v

_|_ -
L0+ 120

¢° (XA [(UO D ua®) — (@° BHUO)] + h.c)

oo =

< (B V)™ + 307700, LR O0),,0)|

1 1
+ gie“”" Rps [F(W)WA + §¢_2quA L4’ F(W)WO} 9p(¢72L" > L5,0) . (5.52)

These terms can be rewritten by using identities similar to the ones given in (5.50), which
lead to the following expression,

s _pUp 1 p 07rq A r X 3LstALtSO pX71q0 r 0 0
1€ NAEqu er D“Lp —WL(] L’I‘ D#Lp F(W)yp
1
~ SOP A rr'p,rr,° F(W),,px]
1 LpALqO LSELtO
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This expression is manifestly invariant under local SU(2) transformations as well as under
gauge transformations of the fields WMA. This is in contrast with the situation encountered
for generic tensor multiplets discussed in subsection 5.2.2, where we argued that this is not
the case in general (see, in particular the discussion related to the equations (5.21)—(5.24)).
Hence we conclude that the models obtained by dimensional reduction from 4D vector
multiplets belong to a restricted class. As we shall discuss in the next subsection 5.3, this
implies that certain tensor multiplet models are not in the image of the c-map. This does
not come as a surprise as such a phenomenon has been noted earlier for hypermultiplets [1].
It remains to verify explicitly that (5.53) has the same structure as the two last terms
n (5.27). Let us therefore first extract the terms proportional to the SU(2) connections
A,Pq. We note that the covariant derivatives in (5.53) appear in the form tr [Ll Lo DuLg],
so that the terms proportional to the gauge connection A4, take the form
Sr(La Lo [A L] = Sn[L L] (Lo 4] — Sr[La L] [T A, (5.59)
where we have used that Lq, Lo, L3 and A, are traceless, anti-hermitian two-by-two matri-
ces. Collecting the various terms from (5.53) linear in the connection is now straightforward
and leads to

1,
£‘3D = _51&7“ P Fap(L) F(W)MVA quB App (5.55)

This term takes exactly the same form as the corresponding term in the Lagrangian (5.27).
Finally we have to show that the terms in (5.53) with an ordinary derivative are equal to

Ly, =ie"? Fapclq 0,19 0,17 P W, (5.56)

upon adding a total derivative. In this way the terms in (5.53) that involve Ry can be
written such that they become proportional to d,Rx times a bare gauge field. Making
use of (5.41) one then derives the following identity,
Lp A Le,p
IR 8,,]( (L0)2 )
1 ORAs
(L0)2 OLPF=
rt,A e 0 Z 750 0 07s= = 0750
T = S T s = = r S
+2(LO)2<8[HLP‘1 8V]L s L7, +6[Mqu 81,]L s L7y +28[HLP‘1 al,]L s L r>
LtuA LutO vaE LwUO
2(L0)2 (L0)2

Since FapcPy is defined in terms of Nyy and its derivatives, we have to convert these terms

|:8[#LPqA 8V]LTSE Lsro + a[#quA ay]LTso LSTE

O, LPy 0,L7 L*)P| . (5.57)

so that the result is either proportional to Nax: or to its derivative. This can be achieved
by making use of (5.41), from which one derives

gLnE D0 aL,E YT Tl 5meE (5:58)
With the above results, upon using (5.40), (5.42), and
1 1

e e L s AP - PP AT Ly AR (5.59)
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to rearrange the various contractions of SU(2) indices, one can verify that all terms lead
indeed to (5.56).

Combining the various results derived in this subsection, the resulting 3D vector mul-
tiplet Lagrangian reads as follows,

1 1 1
Evector|3D = 56 }—(L)AB DuquA ,D'qupB - 56 ./T"(L)AB quA Lqu <2R — D — CQ>

- %e F(L)ap[F(W)u* F(W)™B + Y1 AYd,B]

1. .,
— i F(L)ap FOW) AP P ALY,
+ie"? F(L)apcPq 0, L% 0, L7 P WL, (5.60)

which coincides with that of the tensor Lagrangian (5.27), except that the SU(2) indices
1,7,... have been interchanged by p,q,..., and the term proportional to the field D has
changed sign. Note that the above Lagrangian does not represent the most general La-
grangian of this type. First of all (5.60) can be written in a form that is manifestly invariant
under both the gauge transformations associated with the gauge fields WuA and the local
SU(2) transformations, as follows from (5.53). Secondly, this Lagrangian is invariant under
the n + 1 rigid abelian transformations noted in (5.6).° Both these properties are charac-
teristic for dimensionally reduced 4D vector multiplet Lagrangians and are not generic for
these 3D couplings.

Just as for the tensor multiplets (cf. (5.15)) a function F(z, v, v) should exist such that

O*F(z,v,0) _82]—"(:5,1),17) B O*F(z,v,0) 0*F(z,v,0)
9xAozB  ~  ovdooB  TAB oxAovB  92B ovA

The function F can be expressed in terms of the function F'(X) that encodes the 4D vector

(5.61)

multiplet Lagrangian and it takes the following form,

F (X (L))
COEE

where X*(L) is defined by (5.37). Clearly this function is homogeneous of degree +1 and

it is also manifestly invariant under the shift transformations (5.6). Note, however, that it

F(z,v,0) = -8 L° Im[ (5.62)

is not invariant under the full SU(2) R-symmetry group, but only under its U(1) subgroup.

One can explicitly show that this function indeed satisfies the differential equations (5.61).

Alternatively one can show that (5.62) satisfies the relation

SCA a'/—..(x7 v, ’U)
ozA

which is the exact analogue of (5.20). To prove this result we note the following useful

Xvector(L) = *-F(IU, v, $) + (563)

equations,
A0 FX(L) 1 Jenn P

ozA (092~ 2(L0)2 A~ (00)2
which follows upon using (5.39), (5.37) and (5.36).

XMEy |, (5.64)

SFrom the previous results in this subsection, the reader can verify that this is indeed the case. In fact
the Lagrangian is expected to have more rigid symmetries but those are ignored here.
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Obviously the function (5.62) is singular when imposing the SU(2) gauge condition

v = 0. In that case we have X" = %iDA, and the role of the function (5.62) is taken over

by a different function,

R N A 9 A=Y
Fla,v,0) = 22 [ x4 5 Vo] , (5.65)
which satisfies the same equations (5.61) for A, B = A, X, as well as
O F(x,v,0)

In [11] the result (5.65) was noted in the case of rigid supersymmetry (where x° equals
a constant) for the c-map between vector and tensor multiplets. It was later extended
to local supersymmetry in [12, 13]. Note, however, that the general context in [11-13]
is somewhat different than in this paper as it is primarily directed towards the study of
hypermultiplets.

Here we should add that different functions F(z,v,0) (as well as F(z, v, 0)) will cor-
respond to different Lagrangians that can, however, still describe the same theory, as
we can deduce from the existence of electric-magnetic duality of the 4D vector multiplet
Lagrangians. An analogous situation exists for the 4D tensor Lagrangians because of
‘tensor-tensor’ duality [11] (the existence of such tensor dualities is now also implied by
the c-map).

5.3 The c-map

We have now determined the 3D Lagrangian for systems of hypermultiplets, tensor mul-
tiplets and vector multiplets quadratic in space-time derivatives. As noted in subsec-
tion 5.2.1, there exist two different hypermultiplets, distinguished by the fact that their
scalar sections, A;* and A,%, transform under different SU(2) factors of the R-symmetry
group. Their corresponding Lagrangians are given in (5.11) and (5.12). Let us then summa-
rize the terms in the combined Lagrangian that contain the Ricci scalar, the two auxiliary
fields of the superconformal multiplet, C' and D, as well as the kinetic terms of the scalars
of the various supermultiplets,

e L= 4 (Xhyper + Xtensor + Xnyper + Xvector) (QR - CQ)

1 -
+ Z (thper + Xtensor — Xhyper — Xvector) D

1 - 1 - . - -
= 5 Qap e DA DHAP — 5 Qas ! DA DHAP

1 : ;1
+ 5L D, LY DL + 5 FAB D,LP,ADILE (5.67)
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Here we made use of the vector and tensor potentials as well as the hyperkédhler potentials,

which are homogeneous in the scalar fields and invariant under R-symmetry,
1 ;
Xhyper = 5 Qaﬁ e’ Aia A]ﬂ )
- 1~ o %
Xhyper = ) Qaﬁ eP? Apa Aqﬁ )
Xtensor = -2 FIJ LZ]I LjiJ )
Xvector = —2FAB quA Lqu . (5.68)

The above equations represent the generic situation in three dimensions.” It seems
that there is a symmetric situation between the two sectors corresponding to (Xhyper +
Xtensor) and (Xhyper + Xvector); Which involves also the reflection (3.3) noted for the 3D
superconformal multiplet. While we have obtained these results by dimensional reduction
from four dimensions, starting with vector and tensor multiplets and only one type of
hypermultiplets, one may now consider the inverse procedure and ask which of these 3D
theories can be uplifted to four dimensions. A special subclass then consists of those
theories that can be uplifted to 4D in two different ways, meaning that the 3D Lagrangian
and its dual one with respect to the reflection (3.3) can both be uplifted. In that case there
will exist two inequivalent 4d Lagrangians that yield the same 3D theory upon dimensional
reduction. Henceforth we will concentrate on this subclass.

To have two possible uplifts, the 3D Lagrangian must obviously satisfy a number of re-
strictions. As already explained, under dimensional reduction as carried out in this paper,
the vector multiplet Lagrangian is of a restricted type. This implies that the alternative up-
lift to four space-time dimensions is only possible when also the tensor multiplet Lagrangian
belongs to this restricted class. A similar argument applies to the hypermultiplets. Since
the hypermultiplet Lagrangian associated with the hyperkahler potential Xpyper cannot be
obtained directly by dimensional reduction from 4D hypermultiplets, it can only emerge
via vector-scalar duality from the vector sector. Hence to have two alternative uplifts to
4D the two hyperkahler Lagrangians should both be such that they can be obtained from
scalar-vector duality from a restricted 3D vector Lagrangian. When dualizing n + 2 vector
multiplets one obtains a hyperkédhler cone of quaternionic dimension n + 2 with 2n + 3
tri-holomorphic abelian isometries.®

If one of the inequivalent 4D Lagrangians has n, (off-shell) vector multiplets and ny
(off-shell) tensor multiplets (ignoring the hypermultiplets for convenience), then the other
uplift should have ny — 1 (off-shell) vector and n, + 1 (off-shell) tensor multiplets (so that
the total number of off-shell vector and tensor multiplets in 3D equals ny + ny + 1). Obvi-
ously we have the condition that there must at least be one off-shell tensor supermultiplet
in either one of the two inequivalent 4D Lagrangians! The map between these two inequiv-
alent 4D theories is known as the c-map. From the perspective of the 10D ITA and IIB

"For simplicity we are ignoring the option of partially performing vector-scalar dualities in which case
one obtains an (on-shell) Lagrangian that consists of vector multiplets and hypermultiplets with mutual
interactions beyond the ones induced by the coupling to the fields of the superconformal theory.

8Note that for the on-shell theory the corresponding quaternion-Kihler manifold of quaternionic dimen-
sion n + 1 has only n + 2 commuting quaternionic abelian isometries [3].
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supergravities compactified on the circle S* times a six-dimensional internal manifold that
preserves eight supersymmetries, the resulting reduction to 3D leads to a Lagrangian that
can be uplifted to 4D in two different ways. Those will then correspond to the compact-
ified ITIA and the compactified IIB theories. In string theory these two theories emerge
in the compactification of type-II string theory on a circle in its two decompactification
limits, where either the momentum modes or the winding modes become massless. Hence
this property of lower-dimensional matter-coupled supergravities can thus be seen as a
consequence of T-duality for type-II strings [1].

6 The c-map for higher-derivative couplings

The off-shell reduction scheme introduced in this paper can be straightforwardly applied
to higher-derivative Lagrangians. Higher-derivative couplings in 4D can be generated by
coupling a number of vector multiplets to the Weyl multiplet (its covariant quantities con-
stitute a chiral multiplet with the anti-selfdual tensor Tj," as its lowest component, in the
same way as the covariant quantities of the vector multiplet define a chiral multiplet with
the holomorphic scalar X as its lowest component), by means of a chiral invariant [28].
To consider a similar coupling on the tensor multiplet side is, however, more complicated,
although this can be handled by the standard technique of making use of composite mul-
tiplets. For instance, one can write an off-shell vector multiplet in terms of off-shell tensor
multiplets [5], or an off-shell tensor multiplet in terms of vector multiplets. Since these com-
posite multiplets contain two derivatives, their substitution into a standard two-derivative
Lagrangian will lead to four space-time derivatives. Another way to generalize higher-
derivative couplings is by making use of the so-called ‘kinetic multiplet’, which leads in
principle to non-chiral invariants [22, 30, 31].

For simplicity, we will first consider the Lagrangians derived in the previous section
and replace some of the elementary vector and/or tensor multiplets by composite ones.
In this way we will naturally obtain higher-derivative actions that can be uplifted to two
different 4D theories, which are thus related by the c-map. In the next subsection we will
first introduce the key formulae for these composite multiplets. In the last subsection we
will briefly consider the coupling to a composite chiral multiplet consisting of the square
of the Weyl multiplet.

6.1 Higher derivative couplings through composite matter multiplets

In order to discuss higher-derivative actions for matter multiplets it is convenient to in-
troduce some elements of the multiplet calculus known in four dimensions, which can be
straightforwardly reduced to three dimensions, using the formulae in section 5.1.

In four dimensions, one may construct composite vector multiplets out of a set of tensor
multiplets [5]. The starting point is the lowest-weight components of the vector multiplets,
the complex scalars X™P  which take the form

X = (L) G' + f(L) 1" @]e] (6.1)
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where the f(L); are functions of the tensor multiplet scalars Lijl , which are homogeneous
of degree —1. The f(L)r;” then denote their derivatives with respect to L;;7, and G!
and ¢! denote the auxiliary fields and the spinor fields of the 4D tensor multiplets. The
functions f7 are subject to two additional constraints, namely

fr9 = fi', eIk ggﬁ? =0. (6.2)
These constraints are similar to the ones noted in subsection 5.2.2 for the function F7;
that appears in the 4D tensor multiplet action. In components their solution takes the
form (5.15) upon suppressing the first index I. The functions f(L); must be invariant
under the 4D SU(2) R-symmetry group, so that the composite scalar X “™P transforms as
as a proper 4D chiral multiplet scalar.
The remaining components of the composite multiplet are then identified straightfor-
wardly upon considering consecutive supersymmetry variations. As an example we present
the expression for the composite spinor associated with the composite vector multiplet,

1 4
QP = =2 fr| Poi’ + 3 Lif X + 3G Tap™ 7" Pep !
+2 fr5i; GT @ =2 f1," (DL — i BN or” + 2 fros™ o @'or? . (6.3)

where fUKijkl = 02 f1/OLY QL.
Also the reverse situation is possible, and one may construct a four-dimensional com-
posite tensor multiplets out of a set of vector multiplets. In this case, the lowest-weight

component is an SU(2) triplet of scalars L;§°™P, which is given by
1 _
L™ = g(X)p Vi — §Q(X)AE Q(z‘AQj)Z
_ 1 -
+ ke [ga(X) YA — ig(X)AZ QkAQD (6.4)

where the g (X) are holomorphic functions of the vector multiplet scalars X* which are
homogeneous of zeroth degree. The gax denote the derivative of g with respect to X>.
Again there is a constraint on the derivatives of the functions ga,

JgAS = gsA (6.5)

which implies that the gpn can be expressed in terms of a derivative of a holomorphic
function, gy = dg/0X™. Just as before the remaining components of this multiplet will
follow from applying consecutive supersymmetry variations of (6.4). As an example we
present the corresponding expression for the composite spinor,

PO = (ga + Gn) PN — Pga
1 ; 1 1 A
+ 35 9ax vt Qi — 11 9As <FABA — ;X Tasu Ekl)WABQJE

1 o _
+ a?]AEE gij YAV e QFAAPQE (6.6)
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The underlying reason why this construction works is related to the fact that the equations
of motion associated with a (two-derivative) vector multiplet Lagrangian transform as a
tensor multiplet, and vice versa. This remains true in a superconformal background. The
conditions (6.2) and (6.5) can be understood in this perspective: when these conditions
hold one can construct invariant Lagrangians based on such functions.

With the above results one can in principle obtain the corresponding 3D composite
multiplets by applying the dictionary given in section 5.1 to all the bosonic components of
the composite multiplets.

Starting from the composite vector multiplet defined by (6.1), we write both sides of
the equations in terms of the corresponding components of the 3D multiplets. The relevant
functions f(L); and ga are then written in terms of the proper 3D fields. The f; are written
in terms of the 3D of the Li;!, after extracting a uniform factor 1/(2 LY),

1

f(Lw)I — 570

FLPP) . (6.7)
The new function thus remains SU(2) invariant and homogeneous of degree —1 in the 3D
scalars. This is all dictated by the off-shell dictionary (see, in particular, (5.4) and (5.7)).
It is then straightforward to obtain the following results for the bosonic composite vector
multiplet components (suppressing their fermionic contributions),

qucomp — f(L)I quI’

. . 1 A . o .
F(W)uo™ = fr;7 Dy, L'y D, L*} — 3 FIL RO i + 0 lie " eyp0 f1 F(E)'],

. . 1/1 . .
Yzjcornp — fI |:D2szl + 5 <2R +D— C2> L2j1:| + fIJkl DMleI D,uszJ
1 .
+ 51 Y24 YT + F(E) F(B)a” — DL DL ]

1. . .
+ 51 ghvp [f[JZkD’LLijI — f]kaDMLZkI]F(E)VpJ . (68)

The derivation for the composite tensor multiplet proceeds along similar lines, except
that the Kaluza-Klein vector multiplet will now also contribute, Hence the sum over the
vector multiplets in (6.4) and (6.6) will now include an extra vector multiplet. The function
g is written in terms of the fields LP/* (thus including the Kaluza-Klein scalar). The degree
of homogeneity is changed because we have to absorb a factor 1/L°. This is all dictated
by the off-shell dictionary (see, in particular, (5.4) and (5.7)). It is then straightforward to
obtain the conversion to

- 1

[9(X) +9(X)], — 75 9(L*)a, (6.9)
with A = A, 0 and where
. g(L3P)p
g(L>")a = o(L°P)s P> L1 (6.10)
2 (L0)2
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As a consequence of (6.10) the resulting expressions will again be invariant under the
transformations (5.6). We now present the bosonic components of the composite tensor
multiplet, converted to 3D and suppressing fermionic contributions,

Lijcomp _ g(L)A YijA ,
1 .
F(E)w™™ = gapp? D[uLprA Dy quB - 5914 quA R(A)wp + N [1 e 1€V]po' gA F(W)WA] )

1/1
YPOmP = g, [D%P;‘ +3 <2R - D - C2> quA] +gap"s D L° DMIP P

1 . )
+ 5gAqu [ViAYI B+ F(W)™PAF(W)” — D, L7 DML P

1- v r r
+ 515“ P (gap? DuL” {* — gas"DuLP A F(W),,P . (6.11)

The components of the composite vector and tensor multiplets clearly share a common
structure. Apart from the fact that the indices are different (because they transform under
a different SU(2) factor of the R-symmetry group) and that an additional Kaluza-Klein
vector multiplet has emerged in the composite tensor multiplet, the only obvious difference
is that the field D appears with opposite signs in (6.8) and (6.11), which is consistent
with the reflection symmetry noted in (3.3). However, there is also another, more implicit,
difference associated with the field strengths F'(W),, ™ and F(E),°"P. One can show
that both of them satisfy a Bianchi identity, which implies that there should exist explicit
expressions for the corresponding composite gauge fields W,°™P and E,/°™P. However, as
we have already noted when discussing the Lagrangians with two derivatives in subsec-
tion 5.2, the expression for W,°™P is in general not invariant under the relevant SU(2)
R-symmetry, whereas the expression for £,/°™P will be manifestly invariant under the rele-
vant SU(2). This should not come as a surprise in view of the fact that the composites can
be associated with the field equations belonging to some appropriately chosen Lagrangian.
Since F'(E),,°°™P is therefore a field equation belonging to a vector multiplet Lagrangian,
E,fomP will thus be manifestly SU(2) invariant. For W, °™P the situation is different and
it will not necessarily be SU(2) invariant. Whether or not this is the case will depend on
the functions f(L); that one intends to use.

There is also another feature that is relevant, namely, as was already alluded to above,
the composite tensor multiplet components (6.8) will necessarily be invariant under the
transformations (5.6), whereas the vector multiplet components will in general not be
subject to such a symmetry. Hence consistency with the c-map will requires that the
functions f(L); will satisfy such a symmetry as well. Provided that this is the case, one
may construct the actions for vectors and tensors by including both the elementary and a
number of composite multiplets in the way that was described in section 5.2, because from
this construction there is no difference between elementary and composite multiplets. One
starts from a 4D Lagrangian describing n, elementary and n, composite vector multiplets
(the latter described in terms of ny elementary tensor multiplets), and a second Lagrangian
describing ny elementary tensor and 7 composite tensor multiplets (the latter expressed
in terms of the n, elementary vector multiplets). This then leads to a 3D action which,
under the conditions described above, can then also be uplifted to the sum of two 4D
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Lagrangians, one describing ny — 1 elementary and 7y composite vector multiplets (the
latter described in terms of n, + 1 elementary tensor multiplets), and a second one based
on ny + 1 elementary and n, composite tensor multiplets (the latter expressed in terms of
the ny — 1 elementary vector multiplets).

We refrain from working out some of these theories in detail and leave this to later
work. It is clear that, by considering composite multiplets that themselves depend on both
elementary and composite multiplets, one can successively construct interactions that will
involve even higher-order derivatives. In our next and last subsection we will briefly discuss
other higher-derivative Lagrangians and describe some details about their reduction to
three dimensions.

6.2 More higher-derivative couplings

As is well-known there exists a larger class of 4D higher-derivative actions for vector super-
multiplets, possibly involving the Weyl multiplet [22, 28, 30]. The latter is a reduced chiral
tensor multiplet, whose lowest-weight component equals &;; T4gY. In all cases it is the
square of the Weyl multiplet that enters, so that the resulting multiplet is a composite chi-
ral multiplet whose lowest-weight component equals the composite scalar A= (€ijTa BY)2.
For the subsequent discussion we also present the bosonic contributions to the highest-

weight component of this multiplet, which is denoted by C,

C' = 64R(M) Py R(M) 5P + 32 R(V) P, R(V) 17
— 327489 Dy DTy, (6.12)

where R(M)~“P,p is a generalization of the (anti-selfdual component) of the Weyl tensor.
Since this composite multiplet is a scalar chiral multiplet, it can be directly coupled to
vector multiplets as well as to (composite) tensor multiplets. A full discussion of these
couplings is outside the scope of the present paper, and here we will mainly confine our-
selves to a partial analysis of square of the the Weyl multiplet upon its reduction to three
dimensions.

Using the dictionary in subsection 5.1 we can express the components A and C in
terms of 3D fields (suppressing fermionic contributions),

4 o o9 2

~ <~
A — oA (DO Da 1170) - @ (UO Da @0) ’

(L)t
3
8
+16 [ROV)M' R(V),, ;s + 2 R(A)MP, R(A)
2
+ L30)2 [DFF"*°D,F, ) — 2D, F*° D’F,)]
2 ) ) . )
+ 702 L30)2 [D,Y' ) DFYIP +ietet? LY R(V),W' DY 70 + -+ (6.13)

C =32 [R" Ry, — = R?] + 64 (D,C)? + 48 D?

'y

where in C' we restricted ourselves to only some characteristic terms.
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To elucidate this result let us consider the bosonic terms of the 4D superconformal
action, which can be written as

s.c A R I
Loy =E C_EA(TABU@])Z +he., (6.14)

where the second term represents the bosonic contribution of the chiral superspace measure.
Upon its reduction to three dimensions, we write the result as a linear combination of two

terms,
eilﬁs'c"?)D =e 1Ly +e Ly, (6.15)
with
-1 64 pv 3 2 1 pv i J pvp q
e El = ﬁ R R:U'V - g R + §R(V) ] R(V)/U/ 7 + R(A) qR(.A)/J,y D
3
+2(D,C)? + 5 (D - c?)?, (6.16)
and
-1 64 wvp0 0 ur 0 o 0
e "Ly = W DHYF*PTD,F,, — 2D, F" " DPF,,

+D, Y P D'YI P +ie !t P LOR(V),u'y DY
1 ) )
+ 7 (C*=D)BY' Y7 + (Fu')”)

+ (;‘5)5 [3 (B2 (Foo)? +3 (Y L YI? +2v 0 YIP(FL)? | +--- . (6.17)
We should emphasize that the above expressions concern only a subset of the terms gen-
erated by the reduction and are thus incomplete. As we have already seen in section 5.2.3,
where we evaluated the 3D Lagrangian for vector multiplets, a full evaluation of the 3D
results can be rather tedious and this is particularly the case for Lagrangians with higher-
derivative couplings. Nevertheless the above results already show a number of noteworthy
features that will be present in the final result. Those will be briefly discussed below.

First of all this Lagrangian depends on both the fields of the 3D Weyl multiplet and
of the Kaluza-Klein vector multiplet. Clearly it is homogeneous of degree —1 in the latter
fields, and the super conformal fields appear in a non-linear fashion. This can be understood
on more general grounds, just as it was clear from the start that the Lagrangian should
contain fourth-order space-time derivatives.

The Lagrangian £q contains terms that are familiar from previous work on higher-
derivative Lagrangians for 3D (super)gravity, multiplied by a compensating (L°)~! factor
that is required by conformal invariance. The linearized result for the corresponding su-
pergravity invariant was given in [16] and exhibits all the quadratic bosonic terms present
in (6.16). However, there are some notable differences in the coefficients. One is that
the squares of the two SU(2) curvatures appear with different coefficients, unlike in [16]
where the coefficients are the same. The other one concerns the coefficient of the kinetic
term of the field C', which is positive. This discrepancy in the coefficients is no reason for
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concern: additional curvature terms may arise by commutators of covariant derivatives,
and the scalar kinetic terms are effected by the presence of additional terms, for instance
proportional to D“LO DHC', that we have not extracted but that will change the coefficient
of the (D,C)?. Obviously the terms shown in (6.17) have no bearing on the expression
in [16], because the presence of the components of the Kaluza-Klein vector multiplet is even
more crucial here. It should be of interest to evaluate the full 3D superconformal invariant,
either from the off-shell dimensional reduction or directly in three space-time dimensions.
The latter can be done by utilizing the off-shell multiplet calculus obtained in [19, 20].

The 4D Weyl multiplet can easily be coupled to vector multiplets. Schematically
one has a function F(X, fl), which can for instance be expanded in positive powers of A
according to

F(X,A) =) Fy(X) A, (6.18)

where each holomorphic function, F,(X) is of appropriate weight to ensure consistency with
respect to conformal invariance. Comparing with (6.13), where Ais expressed in terms of
derivatives of the compensating scalars, it is clear that each term in (6.18) contributes 2 g
first-order derivatives on the scalars. This can be compared to the situation in 4D, where
the off-shell Lagrangian contains only four-derivative interactions, while a similar series of
ever increasing derivatives appears when solving for the auxiliary tensor T4p".

Finally we emphasize that we have only briefly considered the coupling of the Weyl
multiplet to vector multiplets in this section. There also exist couplings that involve tensor
multiplets. Those will of course be relevant for establishing consistency with the c-map.
Assuming that this can be achieved, it may further clarify the effective action description
for topological amplitudes involving tensor multiplets or hypermultipets [14].
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A Relations between 4D and 3D Riemann curvatures
Based on (2.5) one can evaluate the relation between 4D and 3D curvature components. In

the equations below, derivatives D, are covariant with respect to 3D local Lorentz trans-
formations and dilatations. The results are as follows (in this appendix the 4D curvature
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N

components are consistently denoted by R),

R = By 4+ 567 [F(B)," F(B)Y + F(B),, F(B)")
~ By [267*F(B),)* D" + D, [6~2F(B)"]],
Ru™ = =Dy [¢7 F(B),"] = ¢ D¢ F(B)u
+ B[ 2DA07 %]+ 3o F(B)y FB)) .

A 1
R," = (D6 *F(B)"] + ¢ °F(B)," Do,

~ 9 1, a
R,;* = ~Dyl¢7*D] — 167 F(B)wF(B)™. (A.1)
With tangent-space indices, Rep?B takes the form,

A 1
Rod™ = Rea® + 5672 |[F(B)I F(B)d! + F(B).aF (B)")

Rei® = 567 DF(B)ea — 672 [D*0 F(B)ea — F(B)"icDg0]
Rea™ = L7 DF(B) — 672 [F(B)* Dot~ F(B) D]
Res™ = 6 Do()l97*D"0] — 167> F(B)uF(B)" (A2)

Note that these components satisfy the pair-exchange property of the Riemann tensor.
Contracted versions of the Riemann tensor take the form,

Rep™® = Ra® + 30 F(B)aF(B) — 9 Delg*D"],

RA4Ab _ é¢71 DQF(B)ab _ g(bfZ F(B)ab Da¢7
Ras™ = 6 Du(w)[672D"0] — 167> F(B)uF(B)"

] 1
Rap*’ = Rap® =29 Da[0™*D6] + 167 F(B)u, F(B)" . (A.3)
Furthermore one may consider the components of R[ 45°F RC DI|EF;

A

Rip™ Rogpr =0,

~

A~ 1 _ .
Rzl[aEF Rcd]EF =—0 D[a §¢ 2Rcd] fF(B)ef
+ é@ﬁ“‘ [F(B)?F(B)eq) + 2 F(B)* F(B)o F(B)yy]

—2¢7'F(B)  Dyg(Detp™ ") + F(B)q (D™ 1)?| . (A.4)

where we made use of the Bianchi identity on F(B) in the 3D Riemann tensor.
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B The conversion of 4D chiral to SU(2) x SU(2) covariant 3D spinors

The original 4D theory contains doublets of Majorana spinors that transform under the
chiral R-symmetry group SU(2) x U(1). Hence they transform irreducibly according to the
pseudo-real (4, 2). representation of Spin(3, 1) x SU(2) x U(1), where the subscript denotes
the chiral U(1) charge. When reducing to three dimensions, a 4D spinor decomposes into
two real 3D spinors and, as we shall demonstrate, the U(1) component of the R-symmetry
will then extend to a second SU(2) group, so that we obtain a pseudoreal irreducible
representation (2,2,2) of Spin(2,1) x SU(2) x SU(2). To obtain the spinor fields in their
3D form, we must convert the 4D spinors such that the 3D symmetry assignments become
manifest. This conversion is the topic of this section where we will base ourselves on
previous results presented in [4, 5]

The analysis starts from the underlying Clifford algebra for the 4D gamma matrices,
which has to be defined such that they act reducibly on the original spinor. We remind the
reader that the reduction amounts to compactifying the fourth coordinate #* on a circle
which is subsequently shrunk to zero size. The proper 3D gamma matrices are now defined
in terms of the 4D gamma matrices by

" =7"%, where 5= —iyus. (B.1)

The hermitian matrices 7, v4 and 75 are mutually anti-commuting, and square to the unit
matrix. Furthermore they commute with the 4. Hence we have obtained two mutually
commuting three-dimensional Clifford algebras, generated by the 4* and by (%,7v4,75),
respectively. Observe that we have the identity,

ylagbael — jeabeq (B.2)

showing that the two separate 3D Lorentz spinors into which a generic 4D spinor decom-
poses transform according in the same Clifford algebra representation. Starting from a
single 4D spinor one thus obtains a doublet of 3D spinors transforming under an extended
R-symmetry group SU(2) with generators (7,74,7s5), subject to Y475 = il. Obviously
the generator proportional to 75 corresponds to the generator of chiral U(1) R-symmetry
that is already present in 4D.

As a result of the redefinition of the 3D gamma matrices, the definition of the Dirac
conjugate will change, and consequently also the 4D charge conjugation matrix must be
redefined. The new Dirac conjugate and the new charge conjugation matrix read,

C=C3, $=497. (B.3)

Note, however, that it is still possible to further modify the charge conjugation matrix.
Indeed, the SU(2) x SU(2) covariant 3D spinor basis that we are about to construct will
require such a modification. Based on the present redefinitions one easily verifies the
following equations (using the properties of the charge conjugation matrix C' in 4D),

CAv;yaCAr—l _ _,S/aT’ C«T _ _é,
CraCt =", CAC™1 =47, CysCt = —5T . (B.4)
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Now we have to extend the previous analysis to the case of a doublet of 4D Majorana
fermions. It is convenient to still express the fermions in terms of 4D chiral components,
because those transform systematically under the action of the SU(2) R-symmetry group
that is manifest in 4D. The new SU(2) group that emerges in the reduction to 3D as an
extension of the 4D chiral U(1) group, will commute with the original 4D chiral SU(2).
To study the way in which the two SU(2) factors are realized, let us start from a positive-
chirality 4D spinor ¢ with U(1) charge +1/2, which we combine with the negative-chirality
conjugate 1;, which is provided by the 4D Majorana condition. The latter spinor thus has
U(1) charge equal to —1/2, respectively. Since the spinors transform uniformly under
the 3D Lorentz transformations we will only be concerned with the possible R-symmetry
transformations. Observing that the symmetry enhancement of the R-symmetry group
will be based on the generators (7,74, 75) identified before, one expects that the extended
symmetry involves the following infinitesimal variation,

O 1 (A +iadh —Byge ) [y
’ <¢Z) 2 ( —B’Mé‘z‘j] A —iaéﬂ) (%) ’ (B.5)

where Aij is an anti-hermitian traceless matrix, i.e. it satisfies the relations,
ANy=0 Apeh A% =0, A= (A, (B.6)

and «, B and (3 are the transformation parameters of the new SU(2). The normalization of
these parameters is of no concern at this point. The reader can directly verify that these
transformations form a group and that the new SU(2) group commutes with the original
one generated by the matrix Aij.

The representation (B.5) has the disadvantage that it involves spinor components of
opposite chirality. However, since we have reduced the space-time dimension, it is possible
to apply a further redefinition,

¢i+ = TzZ)Z ) T/Ji_ = _5ij Y4 ’QD] ) (B7)

where the superscripts + denote the sign of the U(1) charge. Because of the presence of
the matrix 4, the spinors are defined in the same eigenspace of v5 and we choose a positive
eigenvalue, i.e.,

(35 = Y= =0, (B.8)
so that in the new basis we have replaced the doublets " and v; of opposite chirality
by four equal-chirality spinors ¢**. For the Dirac conjugate spinors, the corresponding

relations follow from (B.3),
Gip = —ihiva,  Pio = —iey P, (B.9)

where on the left-hand side we have the 3D Dirac conjugate spinors and on the right-hand
side the 4D conjugate spinors. Note that we have ;1 (75 — 1) = 0. In this basis the
transformation rule (B.5) takes the form (p,q =+, —),

PP — UL VP e, (B.10)
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where U denotes the chiral SU(2) transformation that was originally present in 4D, and
V' the new SU(2) transformation that has emerged in 3D. In terms of the parameters

in (B.5), we have
1 ({ia B
Val+ - = . B.11
+ 2 (—5 —ia) ( )

The next topic is to derive the consequences of the Majorana property of the spinors.
For chiral 4D Majorana spinors the constraint on the chiral components is given by,

CTT = 6T =y,
C—lqziT _ C«—lqziT _ wi : (B.12)

where the left-hand side contains the Dirac conjugate according to the 4D and 3D defini-
tion, respectively, where the indices are lowered or raised as a result of complex conjugation.
From these constraints, one straightforwardly derives,

C i T = e, Cl T = —gijpup?™. (B.13)

Upon absorbing 7, into the definition of the charge conjugation matrix C , one then proves
the pseudo-reality relation
C_l QZi’pT = &ij Epq wj,q . (B.14)

Hence the appropriate charge conjugation matrix in the covariant SU(2) x SU(2) basis is
given by,
C = CHy, (B.15)

satisfying Cv2C~! = —4*T with CT = —C. In (B.14) and (B.15) and henceforth we
suppress the caret on 3D quantities. The indices p, ¢ = +, — refer to the spinor components
with positive and negative U(1) charge respectively. With these results we derive the
Majorana re-ordering for fermionic bilinears,

DipTYP = ey el ey €9 Py TYFT (B.16)

where the plus and the minus sign refer to I' = 1 and I' = +*, respectively.

Finally we redefine the 4D spinors such that the previous redefinitions can be applied
uniformly. This is done by choosing a chiral Majorana spinor and modify it such that
we obtain a field 9’ of positive chirality and positive U(1) charge. The field 1; then
follows from applying the 4D Majorana condition. However, this only determines 9* and
¥; up to a phase factor which implies that the SU(2) transformations induced by (B.5)
on the underlying fields, are also determined up to phase factors. Insisting that the 3D
supersymmetry transformations are manifestly covariant with respect to the additional
SU(2) R-symmetry component will fix these relative phase factors.

As an example let us start with the supersymmetry parameter ¢;, which has positive
U(1) charge and negative chirality. This identifies corresponding fields (¥?,1);) up to a
phase factor z,

Pi(e) = 2y ¢4, Yi(e) = Zeijya el . (B.17)
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As long as we consider a single field, we are free to fix the phase factor, so we will eventually
choose z = 1. However, for the remaining spinors we should then leave the phase factor
arbitrary. Hence for the remaining independent spinors we choose,

W(U) = anij n]a QJZ}Z(T]) = anij 77j,
Q) = zam Vi(Q) = Zava i, (B.18)
P(p) = Zp P, Yi(p) = Zp Pi -

The assignments of the conformal gauge fields ¢ui and gb,f are the same as those of the
transformation parameters € and 7, respectively. These ansiitze now lead to the corre-
sponding definitions of the quantities ¢?, ', Q% and ¢ which are all subject to the
Majorana condition (B.14). They are summarized as follows,

6”‘313 = zey 6]“4,3, ei_‘w = 26i‘4D’

TIH_‘?)D = zpe’! 77]"413’ 777:_‘313 = Zn 4 77i}4D’

QH_’SD = Z974Qi‘4Da Qi_‘:},D = —ZzZqeY Qj‘4D, (B.19)
SOiﬂgD = % SOi’4D7 SDZA_‘:),D = —Zpey SOJ"4D’

X lap = 2 uxilip, X lap = XX 4p -

For the convenience of the reader we also add the expressions for the Dirac conjugate

spinors,
€i+‘3D = iz¢ej Ej‘w’ Ei—‘w = iz EZ'74‘4/3’
it |ap = =12y 4|, p » Di-|ap = 120 7] 4p
Qi-f—‘g[) = izQQi}le’ Qi— 3p — iZQEiij’y4|4D, (B.QO)
Bit|sp = —1Z Pl » Bi-|sp = —izpci @4p
XH“Z&D = 12x & Xj‘w’ Xi_‘SD = —izy Eﬂ’4’413'

In the main text we have defined the set of phase factors consistent with supersymmetry
and R-symmetry, as

z=1, zy=-1, zo=1, zp=1 z,=1. (B.21)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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