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eight supercharges. In the reduction, the R-symmetry group is enhanced to local [SU(2)×

SU(2)]/Z2
∼= SO(4) and the c-map is effected by a parity transformation in the internal

space that interchanges the two SU(2) factors. Vector and tensor supermultiplets are each

others conjugate under the c-map and both can be dualized in three dimensions to (on-shell)

hypermultiplets.

As shown in this paper the off-shell formulation indeed leads to a clarification of many

of the intricate issues that play a role in the c-map. The results for off-shell Lagrangians

quadratic in space-time derivatives are analyzed in detail and compared to the literature.

The underlying reasons are identified why not all of the four-dimensional tensor multiplet

Lagrangians can be in the image of the c-map. The advantage of the off-shell approach is,

that it also enables a systematic analysis of theories with higher-derivative couplings. This

is demonstrated for a particular subclass of such theories, which, under certain conditions,

are consistent under the c-map. In principle, explicit results for realistic four-dimensional

type-II string compactifications can be explored in this way.
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1 Introduction

Dimensional reduction of supersymmetric theories is usually performed in the context of

on-shell field representations. For theories with a large number of supercharges this is

unavoidable, as off-shell representations are usually not available. For theories based on

off-shell representations it is often not worthwhile to define a full and consistent off-shell

dimensional reduction scheme, because the extra auxiliary fields contained in the off-shell

configuration can be removed by solving their corresponding (algebraic) field equations.

In the presence of higher-derivative couplings, however, these field equations are no longer

algebraic. In their on-shell form these couplings will therefore take the form of an iterative

expansion in ever increasing powers of space-time derivatives, which will completely obscure

their underlying structure. In this case an off-shell reduction scheme is indispensable, as
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one obtains a supercovariant dictionary expressing the higher-dimensional fields into the

lower-dimensional ones, so that different invariants can be reduced on a case by case basis.

The dimensional reduction of 4D N = 2 supergravity theories to 3D dimensions is

special and is relevant for the so-called c-map [1]. Because the number of supersym-

metries remains the same, four-dimensional theories with N = 2 supersymmetry yield

three-dimensional theories with N = 4 supersymmetry. Dimensional reduction is usu-

ally applied to Lagrangians that are at most quadratic in space-time derivatives and the

c-map has mainly been studied at the on-shell level [1–4]. In its original form it maps

vector multiplets into hypermultiplets. But in its off-shell form it maps vector into tensor

supermultiplets and vice versa [5]. Both these types of multiplets can be converted to

hypermultiplets in 3D by vector-scalar duality.

The c-map is related to T-duality for type-II string theories with one spatial dimen-

sion compactified on a circle [6, 7]. In the compactification of type-IIA string theory the

spectrum of 1/2-BPS states consists of the massless states described by 9D supergravity,

coupled to momentum and winding states associated with the circle. Denoting the cir-

cumference of the circle by L, the momentum states have masses of order 1/L, while the

winding modes have masses of order L. In the limit L → ∞ the momentum states become

massless and the theory decompactifies with massless states described by type-IIA super-

gravity. Obviously a second decompactification limit exists for L → 0, where the winding

states become massless. In the latter case the massless states are those described by type-

IIB supergravity. The momentum and winding modes belong to different representations

associated with different central charges of the 9D supersymmetry algebra [8]. This is then

consistent with the fact that the massless spectra of IIA and IIB string theory are different.

The inequivalent representations of the massless states in type-IIA and type-IIB string

theory have also direct consequences for massless states when compactifying on a Calabi-

Yau three-fold. For a Calabi-Yau manifold with Hodge numbers h11 an h12 the massless

states of the N = 2 four-dimensional effective field theory on the IIA side correspond to the

states of N = 2 supergravity with h11 vector supermultiplets and h12 + 1 hypermultiplets.

Likewise, the massless states on the IIB side correspond to those of N = 2 supergravity,

but now with h12 vector supermultiplets and h11 + 1 hypermultiplets. Those are the

two configurations that emerge in the circle decompactification limits of the type-II string

theories when compactified on a Calabi-Yau space times a circle. We should mention

that an additional intriguing feature of Calabi-Yau three-folds, which will not be directly

relevant for this paper, is that they appear in pairs which are topologically different and

related by the fact that h12 and h11, which define the number of complex structure moduli

and of Kähler form moduli, respectively, are interchanged. This surprising phenomenon is

known as mirror symmetry, and it can be combined with T-duality to obtain important

results for string effective actions (for an early reference, see e.g. [9]).

Some time ago it was demonstrated how to carry out the dimensional reduction of 5D

off-shell supergravity field configurations with eight supercharges to the corresponding 4D

ones, based on a corresponding reduction of the off-shell supersymmetry algebra [10] and

its representations. This reduction can be performed systematically on separate super-

symmetric invariants and in particular on actions containing higher-derivative couplings.
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To accomplish the reduction one maps a supermultiplet in higher dimension to a cor-

responding, not necessarily irreducible, supermultiplet in lower dimension, possibly in a

certain conformal supergravity background. When considering the supersymmetry alge-

bra in the context of a lower-dimensional space-time, the dimension of the automorphism

group of the algebra (the R-symmetry group) usually increases, and this has to be taken

into account when casting the resulting supermultiplet in a form that is appropriate for

the lower-dimensional theory.

In three dimensions, the massless matter states can be characterized in terms of vector

and tensor supermultiplets (or of on-shell hypermultiplets). As is to be expected, the 4D

R-symmetry group
(

SU(2) × U(1)
)

/Z2 is enhanced to (SU(2)× SU(2))/Z2
∼= SO(4) in

three dimensions. Under the c-map the two factors of the 3D R-symmetry group will be

interchanged and so are the vector and tensor supermultiplets. In addition the matter fields

of the Weyl multiplet, two scalars and one spinor, will change sign. A similar phenomenon

takes place for hypermultiplets, as their scalar fields parametrize a local product of two

quaternion-Kähler spaces, each of them associated with one of the SU(2) factors of the R-

symmetry group.1 Some of the final results of the dimensional reduction procedure can be

compared to existing results in the literature on N = 4 (conformal) supergravity theories in

three dimensions (see e.g. [15–20] where further references can be found). We will discuss

the details in due course.

As in [10], the off-shell reduction scheme is subtle, especially in view of the fact that

the 4D Weyl multiplet decomposes into a 3D Weyl multiplet and an additional (Kaluza-

Klein) vector multiplet. Both in four and in three dimensions, the matter multiplets

are defined in a superconformal background consisting only of the 4D or the 3D Weyl

multiplet fields, respectively. To fully establish this fact requires to also consider the

transformation rules beyond the linearised approximation. The fact that the R-symmetry

group is enhanced upon dimensional reduction requires a conversion of the spinor basis.

Furthermore, to realize the extended R-symmetry locally it is necessary to introduce an

SU(2)/U(1) local phase factor that ensures that the 4D and 3D local R-symmetries can

coexist. The central result of this paper is then to express the 4D off-shell fields in terms

of the 3D ones. This leads to a covariant dictionary which enables us to write any 4D

supersymmetric action in terms of its 3D counterparts by direct substitution. While this is

relatively straightforward for hypermultiplet and tensor multiplet Lagrangians quadratic in

derivatives, it is much more subtle for the vector multiplet Lagrangians. The reason is that

the number of vector multiplets is increased in the reduction by the addition a Kaluza-Klein

vector supermultiplet that originates from the 4D Weyl multiplet. Therefore the resulting

3D Lagrangian has to be completely reformulated to match the form of the generic 3D

tensor multiplet Lagrangians. In doing so, one establishes that the 3D vector Lagrangians,

although identical in structure to the 3D tensor Lagrangians, belong to a restricted class.

This can be inferred from the fact that they are manifestly invariant under both the vector

gauge symmetry and under local R-symmetry. Moreover they are invariant under a group

of rigid transformations that are characteristic for the dimensional reduction of 4D vector

1Our attention will, however, not be focused on the conversion to hypermultiplets [11–14].
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multiplets (for an extensive classification, see [3]). None of these features are generically

present in the 3D tensor Lagrangians. Therefore not all the tensor multiplets can belong

to the image of the c-map. The corresponding phenomenon for hypermultiplets has been

noted long ago [1].

The supercovariant dictionary can straightforwardly be applied to any 4D off-shell su-

persymmetric Lagrangian including the ones with higher-derivative couplings. We present

a few examples of higher-derivative Lagrangians and discuss their implication for the c-

map. In principle these results are relevant for explicit four-dimensional type-II string

compactifications, such as given in [21]. This last topic definitely warrants further study,

but this is outside the scope of the present paper.

This paper is organized as follows. Section 2 presents the off-shell reduction to three

space-time dimensions of the 4D Weyl multiplet. After a first discussion of its reduction we

establish the resulting decomposition into the 3D Weyl multiplet and a separate Kaluza-

Klein vector supermultiplet. The necessary conversion of 4D into 3D spinors is introduced

in subsection 2.3. The resulting 3D Weyl multiplet corresponds to N = 4 conformal su-

pergravity and is considered in detail in section 3. Its characteristic features, in particular

those related to the c-map, are discussed and compared to the literature. Section 4 analyzes

the reduction of the supersymmetry transformations for the various 4D matter supermul-

tiplets: the vector supermultiplet, the tensor supermultiplet and the hypermultiplet, by

expressing all the 4D fields into 3D fields. All the results are then expressed in the form

of a supercovariant dictionary, which expresses all the 4D fields into the 3D fields. This is

done in section 5, where we also apply the dictionary to the4D supersymmetric actions with

at most two derivatives. In a third subsection we then describe the conditions upon which

a 3D Lagrangian can be uplifted to two inequivalent 4D Lagrangians with a different field

content by making use of the c-map. A more novel application concerns the reduction of

higher-derivative couplings. This is the topic of section 6 where we present a few examples

and discuss their properties in relation to the c-map. Finally there are two appendices.

Appendix A discusses the relation between 4D and 3D Riemann curvatures, while the

more technical aspects of 4D to 3D spinor conversion are presented in appendix B.

2 Off-shell dimensional reduction; the Weyl multiplet

Starting from the super conformal transformations for 4D supermultiplets we compactify

one spatial dimension on a circle which will be shrunk to zero size, so that the space-time

dimension is reduced to 3D. Subsequently we reinterpret the results in terms of 3D super

conformal transformations. The first multiplet to consider is the Weyl multiplet, because

it acts as a background for the other supermultiplets: the vector and tensor multiplet

and the hypermultiplet. A second reason why the Weyl multiplet deserves priority, is

that it becomes reducible upon the reduction, unlike the other (matter) supermultiplets.

The N = 2 Weyl multiplet in D = 4 comprises 24 + 24 bosonic and fermionic degrees

of freedom, which, in the reduction to D = 3 dimensions will decompose into the Weyl

multiplet comprising 16 + 16 degrees of freedom, and a vector multiplet comprising 8 + 8

degrees of freedom. As we shall see, this decomposition takes a subtle form off-shell.

– 4 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
6

The independent fields of the Weyl multiplet of four-dimensional N = 2 conformal

supergravity consist of the vierbein eM
A, the gravitino fields ψM

i, the dilatational gauge

field bM , the R-symmetry gauge fields VMi
j (which is an anti-hermitian, traceless ma-

trix in the SU(2) indices i, j) and AM , an anti-selfdual tensor field TAB
ij , a scalar field

D and a spinor field χi. All spinor fields are Majorana spinors which have been decom-

posed into chiral components. Our 4D conventions are as in [22]. The three gauge fields

ωM
AB, fM

A and φM
i, associated with local Lorentz transformations, conformal boosts

and S-supersymmetry, respectively, are not independent as will be discussed later. The in-

finitesimal Q, S and K transformations of the independent fields, parametrized by spinors

ǫi and ηi and a vector ΛK
A, respectively, are as follows,2

δeM
A = ǭi γAψMi + ǭi γ

AψM
i ,

δψM
i = 2DM ǫi −

1

8
TAB

ijγABγM ǫj − γMηi

δbM =
1

2
ǭiφMi −

3

4
ǭiγMχi −

1

2
η̄iψMi + h.c. + ΛK

A eMA ,

δAM =
1

2
iǭiφMi +

3

4
iǭiγM χi +

1

2
iη̄iψMi + h.c. ,

δVM
i
j = 2 ǭjφM

i − 3ǭjγM χi + 2η̄j ψM
i − (h.c. ; traceless) ,

δTAB
ij = 8 ǭ[iR(Q)AB

j] ,

δχi = −
1

12
γAB /DTAB

ij ǫj +
1

6
R(V)MN

i
jγ

MN ǫj −
1

3
iRMN (A)γMN ǫi

+D ǫi +
1

12
γABT

ABijηj ,

δD = ǭi /Dχi + ǭi /Dχi . (2.1)

The above supersymmetry variations and also the conventional constraints that we have

to deal with in due time, depend on a number of supercovariant curvature tensors, which

will be defined shortly. The full superconformally covariant derivative is denoted by DM ,

while DM denotes a covariant derivative with respect to Lorentz, dilatation, and chiral

SU(2)×U(1) transformations, e.g.

DM ǫi =

(

∂M −
1

4
ωM

AB γAB +
1

2
bM +

1

2
iAM

)

ǫi +
1

2
VM

i
j ǫ

j . (2.2)

Under local scale and U(1) transformations the various fields and transformation parame-

ters transform as indicated in table 1.

The gauge fields associated with local Lorentz transformations, S-supersymmetry and

special conformal boosts, ωM
AB, φM

i and fM
A, respectively, are composite and determined

2In four dimensions we consistently use world indices M,N, . . . and tangent space indices A,B, . . .. For

fields that do not carry such indices the distinction between 4D and 3D fields may not always be manifest,

but it will be specified in the text whenever necessary. We use Pauli-Källén conventions with hermitian

gamma matrices and label the coordinates by xM = (x4, x1, x2, x3), where xµ = (x1, x2, x3) with x3 = ix0.

Consistency with the four-dimensional results that we will use requires that ε4123 = 1, γ1γ2γ3 = γ4γ5 and

ε123 = 1. From subsection 2.3 we will employ proper 3D gamma matrices, which are defined in appendix B.
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4D Weyl multiplet parameters

field eM
A ψM

i bM AM VM
i
j TAB

ij χi D ωAB
M fM

A φM
i ǫi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 −1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −

Table 1. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet

component fields and the supersymmetry transformation parameters in four space-time dimensions.

by conventional constraints. In this case these constraints are S-supersymmetry invariant

and they take the following form,

R(P )MN
A = 0 ,

γMR(Q)MN
i +

3

2
γNχi = 0 ,

eNB R(M)MNA
B − iR̃(A)MA +

1

8
TABijTM

Bij −
3

2
D eMA = 0 . (2.3)

The curvatures appearing in (2.3) take the following form,

R(P )MN
A = 2 ∂[M eN ]

A + 2 b[M eN ]
A − 2ω[M

AB eN ]B −
1

2
(ψ̄[M

iγAψN ]i + h.c.) ,

R(Q)MN
i = 2D[MψN ]

i − γ[MφN ]
i −

1

8
TABij γAB γ[MψN ]j ,

R(M)MN
AB = 2 ∂[MωN ]

AB − 2ω[M
ACωN ]C

B − 4f[M
[AeN ]

B] +
1

2
(ψ̄[M

i γAB φN ]i + h.c.)

+

(

1

4
ψ̄M

i ψN
j TAB

ij −
3

4
ψ̄[M

i γN ] γ
ABχi − ψ̄[M

i γN ]R(Q)AB
i + h.c.

)

,

R(A)MN = 2 ∂[MAN ] − i

(

1

2
ψ̄[M

iφN ]i +
3

4
ψ̄[M

iγN ]χi − h.c.

)

. (2.4)

2.1 Reduction ansätze

The reduction to three space-time dimensions is effected by first carrying out the standard

Kaluza-Klein decompositions on the various fields, to ensure that the resulting 3D fields

will transform consistently under four-dimensional diffeomorphisms. The space-time coor-

dinates are decomposed into xM → (x4, xµ), where x4 denotes the (spatial) coordinate that

will be suppressed in the reduction. Subsequently the vielbein field and the dilatational

gauge field are then written in special form, by means of an appropriate local Lorentz

transformation and a conformal boost, respectively. In obvious notation,

eM
A =

(

eµ
a Bµφ

−1

0 φ−1

)

, eA
M =

(

ea
µ −ea

νBν

0 φ

)

, bM =

(

bµ
0

)

. (2.5)

On the right-hand side of these decompositions, we exclusively used three-dimensional

notation, with world and tangent-space indices, µ, ν, . . . and a, b, . . ., taking three values.
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Observe that the scaling weights for eM
A and eµ

a are equal to w = −1, while for φ we have

w = 1. The fields bM and bµ have weight w = 0. The above formulae suffice to express the

4D Riemann curvature tensor in terms of the 3D Riemann tensor and the fields φ and Bµ.

The corresponding equations are collected in appendix A and will be needed later on.

We now turn to the supersymmetry transformations. Since we have imposed gauge

choices on the vielbein field and the dilatational gauge field, one has to include compensat-

ing Lorentz and special conformal transformations when deriving the 3D Q-supersymmetry

transformations to ensure that the gauge conditions are preserved. Only the parameter of

the Lorentz transformation is relevant, and it is given by,

εa4 = −ε4a = −φ
(

ǭiγ
aψi + ǭiγaψi) , (2.6)

where we assumed the standard Kaluza-Klein decomposition on the gravitino fields,

ψM
i =

(

ψµ
i +Bµψ

i

ψi

)

, (2.7)

which ensures that ψµ
i on the right-hand side transforms as a 3D vector. Upon including

the extra term (2.6), one can write down the Q- and S-supersymmetry transformations on

the 3D fields defined above. As a result of this, the 3D and 4D supersymmetry transfor-

mation will be different. For instance, the supersymmetry transformations of the 3D fields

eµ
a, φ and Bµ read,

δeµ
a = ǭiγ

aψµ
i + ǭiγaψµi ,

δφ = −φ2 (ǭiγ4ψ
i + ǭiγ4ψi) ,

δBµ = φ2 (ǭiγµψ
i + ǭiγµψi) + φ (ǭiγ4ψµ

i + ǭiγ4ψµi) , (2.8)

where the first term in δBµ originates from the compensating transformation (2.6). Conse-

quently the supercovariant field strength of Bµ contains a term that is not contained in the

supercovariant four-dimensional curvature R(P )MN
A. Therefore the 4D spin-connection

components are not supercovariant with respect to 3D supersymmetry, as is exhibited

below,

ωM
ab =

(

ωµ
ab

0

)

+
1

2
φ−2F̂ (B)ab

(

Bµ

1

)

,

ωM
a4 = −

1

2

(

φ−1F̂ (B)µ
a + φ (ψ̄µiγ

aψi + ψ̄µ
iγaψi)

0

)

− φ−2Daφ

(

Bµ

1

)

. (2.9)

Here we introduced the supercovariant field strength and derivative (with respect to 3D

supersymmetry),

F̂ (B)µν = 2 ∂[µBν] − φ2 (ψ̄[µiγν]ψ
i + ψ̄[µ

iγν]ψi)− φ ψ̄[µ
iγ4ψν]i ,

Dµφ = (∂µ − bµ)φ+
1

2
φ2 (ψ̄µiγ4ψ

i − ψ̄µ
iγ4ψi) . (2.10)

Subsequently we write down corresponding Kaluza-Klein decompositions for some of

the other fields of the Weyl multiplet, which do not require special gauge choices,

VM
i
j =

(

Vµ
i
j +BµV

i
j

V i
j

)

, AM =

(

Aµ +BµA

A

)

, φM
i =

(

φµ
i +Bµφ

i

φi

)

. (2.11)
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Furthermore we define two complex 3D target-space vectors A±
a such that

Ta4
ij = A−

a εij ,

Ta4 ij = A+
a εij ,

Tab
ij = εabcA

−c εij ,

Tab ij = −εabcA
+c εij ,

(2.12)

where A+
a and A−

a are related by complex conjugation. Here one has to bear in mind that we

are using Pauli-Källén notation, so that A+
a +A−

a is real when a denotes a spatial component,

and imaginary when a denotes the time component. This is reflected in the different sign

in the last two terms of (2.12). All gamma matrices are hermitian. We recall that the

convention for the Levi-Civita tensors is ε4abc = εabc, and ε123 = 1. Correspondingly for

the gamma matrices we have the conventions that γ5 = γ4γ1γ2γ3 and we note the useful

relation γab = εabc γcγ4γ5, so that e.g. TAB
ij γAB = 2A−

a γaγ4(1 + γ5) ε
ij .

2.2 Decomposition of the 4D Weyl multiplet

Hence we are now ready to consider the Q- and S-supersymmetry transformations of the

spinor fields originating from the 4D gravitino fields. Up to possible higher-order spinor

terms, one derives from (2.1),

δψi =

[

−
1

2
φ−2F̂ (B)abγ

ab + φ−2 /Dφγ4 + iA

]

ǫi + V i
j ǫ

j − φ−1 /A−εijǫj

− φ−1γ4

(

ηi +
1

2
/A−γ4ε

ijǫj −
1

4
φ−1F̂ (B)abγ

abγ4ǫ
i

)

,

δψµ
i = 2

(

∂µ −
1

4
ωµ

abγab +
1

2
bµ +

1

2
iAµ −

1

8
iφ−1F̂ (B)µ

)

ǫi + Vµ
i
jǫ

j +A−
µ εijγ4ǫj

− γµ

(

ηi +
1

2
/A−γ4ε

ijǫj −
1

4
φ−1F̂ (B)abγ

abγ4 ǫ
i

)

, (2.13)

where F̂ (B)µ = ieεµνρF̂ (B)νρ. Although the results (2.8) and (2.13) are still incomplete,

they already exhibit some of the systematic features that will turn out to be universal.

Therefore let us first have a brief perusal of these initial results.

The fields whose transformations we have determined will belong to two 3D supermul-

tiplets, namely the Weyl and the Kaluza-Klein vector multiplet. Clearly, the fields eµ
a and

ψµ
i belong to the Weyl multiplet, whereas φ, Bµ and ψi belong to the vector multiplet.

An obvious puzzle is the fact that we have identified only one real scalar, whereas the

3D vector multiplet contains three scalars. This is related to a generic feature of dimen-

sional reduction, namely that lower-dimensional results are often obtained in a gauge-fixed

version of the (local) R-symmetry group. Another aspect of this phenomenon is that the

vector fields A±
a seem to play the role of a complex gauge field, because they appear to

covariantize the derivatives on φ and ǫi in (2.13), in spite of the fact that the A±
a are

actually auxiliary fields in D = 4. As we shall see shortly, A±
a combined with Aµ will

provide the SU(2) gauge fields associated with the enhancement of the U(1) factor of the

4D R-symmetry group. This additional SU(2) group emerges in the reduction, in addition

to the manifest SU(2) R-symmetry group of the 4D theory. Hence the full 3D R-symmetry

group equals (SU(2)× SU(2))/Z2
∼= SO(4). This situation is in close analogy to what was
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encountered in five dimensions [10], where the SU(2) R-symmetry group was enhanced to

SU(2) × U(1)/Z2. Observe that in both cases the fermions remain irreducible under the

extended R-symmetry group.

Just as in [10], we will discover that the higher-dimensional supersymmetry trans-

formations yield the lower-dimensional ones, but with parameters that involve additional

field-dependent terms. These field-dependent terms can be dropped eventually. We see this

already in the uniform field-dependent additions to the S-supersymmetry transformations

in (2.13) and we will discover similar modifications of the R-symmetry transformations

in due course. Some of those can be interpreted as compensating transformations related

to the fact that the formulation that we obtain is gauge-fixed. This gauge-fixing will be

removed at the end by introducing a local SU(2)/U(1) phase factor, which provides the

missing two fields to the Kaluza-Klein vector multiplet.

To demonstrate some of this in more detail, let us present the higher-order completion

of (2.13). The pattern that we find is repeated in the results for the matter supermultiplets

that will be presented in section 4. Explicit calculation leads to the following results,

δ
(

εijφ
2ψj

)

= −
1

2
F̂ (B)abγ

ab εijǫ
j + γµ

(

Dµφ γ4 εijǫ
j +A−

µ φ ǫi
)

+ iC φεijǫ
j + Yi

j0εjk ǫ
k

− φ γ4εij
(

ηj + η̃j
)

+
1

2
Λ̃i

j(εjkφ
2ψk) +

1

2
Σ̃− εijγ4(ε

jk φ2ψk) ,

δψµ
i = 2

(

∂µ −
1

4
ωµ

abγab +
1

2
bµ +

1

2
iAµ

0

)

ǫi + Vµ
i
j ǫ

j +A−
µ εijγ4ǫj

− γµ
(

ηi + η̃i
)

+
1

2
Λ̃i

j ψµ
j −

1

2
Σ̃− εijγ4 ψµj . (2.14)

Here we have used the definition,

C = φA−
1

2
iφ2 ψ̄kγ4ψk ,

Y i
j
0 = φ2

(

V i
j + 3φ ψ̄iγ4ψj −

3

2
φ ψ̄lγ4ψl δ

i
j

)

. (2.15)

Obviously the field Y 0 i
j will correspond to the auxiliary field of the Kaluza-Klein vector

multiplet. The field C will turn out to belong to the 3D Weyl multiplet.

Furthermore we have introduced six vector fields which are related to the two sets of

SU(2) gauge fields associated with the 3D R-symmetry group,

Aµ
0 = Aµ −

1

4
φ−1F̂ (B)µ −

1

2
iφ2ψ̄kγµψk ,

Aµ
− = eµ

aA−
a + φ εij ψ̄µ

iψj +
1

2
φ2 εij ψ̄

iγµγ4ψ
j ,

Aµ
+ = eµ

aA+
a + φ εij ψ̄µiψj +

1

2
φ2 εij ψ̄iγµγ4ψj ,

Vµ
i
j = Vµ

i
j

∣

∣

4D
+ φ

(

ψ̄µ
iγ4ψj + ψ̄iγ4ψµj −

1

2
δij(ψ̄µ

kγ4ψk + ψ̄kγ4ψµk)

)

+ φ2

(

ψ̄iγµψj −
1

2
δij ψ̄

kγµψk

)

. (2.16)
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The remaining quantities are given by

η̃i =
1

2
/A−γ4ε

ijǫj −
1

4
φ−1F̂ (B)abγ

abγ4ǫ
i

+
1

2
φ2

(

ψ̄(iψj) ǫj + ψ̄iγaψj γaǫ
j + ψ̄iγ4ψj γ4ǫ

j
)

,

Λ̃i
j = 2φ

(

ǭiγ4ψ
j + ψ̄iγ4ǫ

j −
1

2
δi

j (ǭkγ4ψ
k + ψ̄kγ4ǫ

k)

)

,

Σ̃− = (Σ̃+)∗ = 2φ εij ǭ
iψj , (2.17)

and are related to the various field-dependent transformations mentioned above. They will

appear universally for all fields and define the decomposition of the 4D Q-supersymmetry

variations, in terms of the 3D Q-supersymmetry variations combined with a field-dependent

S-supersymmetry transformation, a field-dependent SU(2) R-symmetry transformation,

and a field-dependent SU(2)/U(1) chiral transformation. The latter should be regarded

as compensating transformations associated with the fact that the reduction leads to a

gauge-fixed formulation with respect to the new (local) R-symmetry transformations,

δQ(ǫ)
∣

∣

reduced

4D
Ψ = δQ(ǫ)

∣

∣

3D
Ψ+ δS(η̃)

∣

∣

3D
Ψ+ δSU(2)(Λ̃)

∣

∣

3D
Ψ+ δSU(2)/U(1)(Σ̃)

∣

∣

3D
Ψ . (2.18)

To give a meaning to the right-hand side one has to identify fields Ψ that transform

covariantly in the 3D setting, so that all transformations in the above decomposition are

clearly defined. The identification of these fields is done iteratively. Here one has to realize

that the 4D transformations for the Weyl multiplet are defined in a background consisting

of the 4D Weyl multiplet, whereas the 3D transformations of the matter multiplets are

defined in the 3D background. But the field-dependent parameters in (2.18) still depend

on a variety of the 4D Weyl multiplet fields. When these parameters are associated with

proper 3D symmetries they can be safely suppressed and this is what we will do henceforth.

Obviously this concerns the parameters η̃i and Λ̃i
j , but not Σ̃±. The fate of Σ̃± will be

become clear shortly in the next subsection 2.3.

Let us examine some further properties of the newly defined fields (2.15) and (2.16)

before proceeding. First of all, an explicit calculation reveals the following transformations

under S-supersymmetry,

δSC = 0 ,

δSY
i
j
0 = φ2

(

ψ̄iηj − ψjη
i
)

−
1

2
δij φ

2
(

ψ̄kηk − ψ̄kη
k
)

,

δSAµ
0 =

1

2
i
(

ψ̄µiη
i − ψ̄µ

iηi
)

,

δSAµ
− = −εij ψ̄µ

iγ4 η
j ,

δSAµ
+ = −εij ψ̄µiγ4 ηj ,

δSVµ
i
j = ψ̄µ

iηj − ψ̄µj η
i −

1

2
δij(ψ̄µ

kηk − ψ̄µk η
k) . (2.19)

Note that the S-supersymmetry transformations of the fields Aµ
0, A±

µ and Vµ
i
j are very

similar, which confirms that they will indeed provide the connections associated with the
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SU(2) × SU(2) R-symmetry group. Note also that the Q- and S-supersymmetry trans-

formations of the gravitini in (2.14) no longer contain any auxiliary fields, but only the

connections associated with the local Lorentz group, dilatations, and R-symmetry.

The structure of the 3D Weyl supermultiplet is almost covered completely at this

stage, except for the auxiliary spinor χi and the scalar D. To see what they will represent

in the 3D theory, let us consider the variation of the S-invariant scalar C, defined in (2.15).

Under Q-supersymmetry it transforms as

δC =
1

2
i ǭi γ4 χ̆i + h.c. , (2.20)

where χ̆i equals

χ̆i =
5

2
γ4 χi

∣

∣

4D
(2.21)

+
2

3
φγ4 /Dψi +

2

3
φ /A+ εijψ

j + iφ2Aψi − /Dφγ4 ψi + φ2 Vi
jψj −

1

12
F̂ (B)abγ

ab ψi ,

where the right-hand side is expressed in terms of the original 4D fields and covariant

derivatives. In this result we used that the components of the 4D S-supersymmetry gauge

field are given by (up to terms cubic in fermions)

φ4̂
i = φ−1γ4χ

i
∣

∣

4D
+

2

3
/Dψi +

1

6
φ−1γabF (B)abγ4ψ

i −
1

6
/A−γ4ε

ijψj ,

φµ
i = φµ

i
∣

∣

3D
+

1

2
/A−γ4ε

ijψµj −
1

4
φ−1F̂ (B)abγ

abγ4ψµ
i +

1

2
F̂ (B)abγ

abγµψ
i +

1

2
γµχ

i
∣

∣

4D

−
2

3
φγ4

(

eaµ + γaγµ
)

(

Daψ
i +

1

4
φ−1F̂ (B)abγ

bγ4ψ
i +

1

4
γ4 /A

−γaε
ijψj

)

. (2.22)

The definition of the 3D S-supersymmetry gauge field φµ
i will be discussed in section 3.

The scalar field of the Weyl multiplet related to the 4D scalar D can be identified by

analyzing the supersymmetry transformations on the spinor χ̆i defined in (2.21),

δχ̆i = 2 i γ4 /DC ǫi +D
∣

∣

3D
ǫi +

1

2
γ4 γc ε

abcR(V)ab
i
jǫ

j

−
1

2
γ4 γc ε

abc ea
µeb

ν
[(

2 ∂µAν
− + iAµ

0Aν
−
)

γ4ε
ijǫj + i

(

Rµν(A
0) + iAµ

−Aν
+
)

ǫi
]

+ 2iC γ4 η
i −

1

2
Σ̃− εijγ4 χ̆j , (2.23)

where the scalar D|3D equals

D = 2D
∣

∣

4D
−

2

3
φDaD

aφ−1+φ2(Daφ
−1)2+

1

6
φ−2 F (B)ab

2+C2+
1

2
φ−2 Y 0 i

j Y
0 j

i . (2.24)

Neither in (2.23) nor in (2.24) did we include higher-order fermionic terms. Observe that

the bracket in the second line of (2.23) will lead to the field strengths associated with the

new SU(2)R symmetry. Here and in the formulae below we will include the 3D conformal

gauge field fµ
a in the second-order covariant derivatives, DµD

aφ = DµDaφ+w fµ
aφ, where

w = 1 is the Weyl weight of φ. The gauge field fµ
a will be defined explicitly in section 3.
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We now give the expressions for the components of the 4D conformal gauge fields fM
A.

The first one, fµ
a is defined in terms of the 3D fields by

fµ
a = fµ

a
∣

∣

3D
+
1

4
φ−2

[

F (B)acF (B)µc−
1

12
eaµ F (B)bc

2

]

+
1

2
φ

[

DµD
aφ−1−

1

3
eµ

aDbD
bφ−1

]

−
1

4
iεµ

abDb(Cφ−1) +
1

8

[

A+
µA

− a +A−
µA

+ a − eµ
aA+

bA
− b

]

−
1

4
eµ

aD
∣

∣

4D
, (2.25)

up to fermionic terms. The remaining components are f4̂
a, fµ

4 and f4̂
4, and are given by

(we recall that 4 denotes the tangent space index and 4̂ the world index associated with

the compactified coordinate)

f4̂
a = −

1

4
φ−1Db(ω)F (B)ab +

3

4
φ−2 F (B)abDbφ−

1

4
iεabc [R(A)bc + Cφ−1 F (B)bc]

+
1

8
εabcA−

bA
+
c ,

fµ
4 = −

1

4
φ−1Dν(ω)F (B)µν +

3

4
φ−2 F (B)µν D

νφ+
1

4
iεµab [R(A)ab + Cφ−1 F (B)ab]

+
1

8
εµabA

− aA+ b ,

f4̂
4 =

1

3
DaD

aφ−1 −
7

48
φ−3F (B)ab

2 −
1

4
φ−1D

∣

∣

4D
+

1

8
φ−1A−

a A+ a . (2.26)

With the exception of the last equation in (2.26), all the linear combinations of DaDbφ

and (Daφ)
2 appearing in equations (2.24), (2.25) and (2.26) are conformally invariant.

2.3 Gauge compensator and the Kaluza-Klein vector supermultiplet

At several occasions it was already pointed out that the 4D R-symmetry group is enhanced

to a larger symmetry group upon dimensional reduction. More specifically the U(1) factor

of the 4D R-symmetry group is extended to the group SU(2). Hence in 3D one is dealing

with two SU(2) factors in the R-symmetry group, one that was originally present in 4D

and another one that emerges in the reduction. Therefore 3D spinors will carry two

indices, namely one index denoted by i, j, . . . = 1, 2 that is carried already by the 4D

fields, and an additional index denoted by p, q, . . . = +,−, that indicates the 4D U(1)

charge to be equal to +1
2 or −1

2 , respectively. Every 3D spinor can thus be written as

Ψi p. It satisfies a Majorana constraint, so that it comprises eight components, just as in

the N = 2, 4D setting. Here it is crucial that spinors in 3D Minkowski space are real

two-component spinors. The expressions for the 3D spinors in terms of 4D ones involve

an arbitrary phase factor and the relative phase factors between the spinors belonging to

different 3D supermultiplets will eventually follow from insisting on uniformity of the R-

symmetry assignments in various supersymmetry transformations. The group-theoretical

aspects of all this is described in detail in appendix B, where we also present the relation

between the 4D and 3D gamma matrices.

However, at this stage the new R-symmetry transformations are not realized locally,

whereas the ones originating from 4D are, as is standard in the superconformal formulation.

This phenomenon is well known and was, for instance, also observed in the dimensional
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reduction from five to four dimensions [10]. As it turns out the resulting lower-dimensional

theory is always obtained in a gauge where all the new gauge degrees of freedom are put

to zero. In the case at hand, this can be avoided by simply re-introducing the missing

gauge degrees of freedom. This is done by introducing a new field Φp
q, which is an element

of SU(2),

Φ ∈ SU(2) =⇒ ΦΦ† = 1l2 , detΦ = 1 . (2.27)

and which is assigned the following transformation under the new local SU(2) and the

original local U(1),

Φ → V Φ

(

e−iΛA/2 0

0 eiΛA/2

)

, (2.28)

were V denotes the new (local) SU(2)R transformation and ΛA denotes the parameter

of the original U(1)R group. Obviously, when fixing Φ to the identity, there is only one

gauge transformation that is left unaffected, corresponding to the diagonal U(1) subgroup.

Subsequently we require that Φ transforms as follows under Q-supersymmetry,

Φ−1δΦ =
1

2

(

0 −Σ̃+

Σ̃− 0

)

, (2.29)

where Σ̃± is defined in (2.17). It is important to observe that, when proceeding to the

special gauge Φ = 1l, one will induce compensating SU(2) transformations proportional to

Σ̃± in the supersymmetry transformation. This implies that in the fully local version of

the extended R-symmetry, those terms will cancel. In due course we see that this is indeed

the case. We will subsequently redefine all spinors by multiplying them with Φ, so that

they will transform locally under SU(2) × SU(2). Before doing so we have to specify the

correct 3D spinor basis for the various fields. For the fields corresponding to the 4D fields

ψµ
i and ψi, the spinor parameters of Q- and S-supersymmetry ǫi and ηi, their conjugate

spinors, the S-supersymmetry spinor gauge fields φµ
i and φµi, and the matter spinors of

the Weyl multiplet, denoted by χ̆i, the required expressions follow from appendix B,

ψµ
i p =

(

εij γ4 ψµ j

ψµ
i

)

,

ǫi p =

(

εij γ4 ǫj
ǫi

)

,

ǭi p =

(

iεij ǭ
j

−iǭiγ4

)

,

φµ
i p =

(

−iεijφµj

iγ4φµ
i

)

,

ψi p = φ2

(

εij γ4 ψj

ψi

)

,

ηi p =

(

−iεijηj
iγ4η

i

)

,

η̄i p =

(

εij η̄
j

η̄iγ4

)

.

χi p =

(

εij γ4 χ̆j

χ̆i

)

.

(2.30)

Redefining the spinors will also affect the bosonic expressions that emerge upon apply-

ing supersymmetry and there will be extra terms in the supersymmetry transformations
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proportional to Σ̃± as a result of (2.29), which cancel corresponding terms in the Q-

supersymmetry transformation rules (2.14) and (2.23) originating from the 4D transfor-

mations. This cancellation is a non-trivial check on the correctness of our strategy. A first

example of the modification of the bosonic fields concerns the gauge fields Aµ
p
q associated

with the new SU(2)R, which follow from the second equation in (2.14), and take the form,

Φ−1

(

1l ∂µ +
1

2
Aµ

)

Φ =
1

2

(

−iAµ
0 −Aµ

+

Aµ
− iAµ

0

)

, (2.31)

where the quantities on the right-hand side are the ones obtained previously from the

4D theory, which were listed in (2.16). From the above result one can directly derive an

equation for the field strengths associated with the new SU(2)R gauge fields,

Φ−1

(

∂[µAν] +
1

2
A[µ ,Aν]

)

Φ

=

(

−i∂[µAν]
0 −∂µAν]

+

∂[µAν]
− i∂[µAν]

0

)

+
1

2

(

−iA[µ
0 −A[µ

+

A[µ
− iA[µ

0

) (

−iAν]
0 −Aν]

+

Aν]
− iAν]

0

)

(2.32)

Obviously the gauge fields Aµ transform under local SU(2) transformations as

Aµ → V AµV
−1 − 2 ∂µV V −1 . (2.33)

Likewise, the scalar field φ originating from the 4D metric will now be extended to a

triplet of scalar fields encoded in an anti-hermitian matrix Lp
q
0 that transforms under the

new SU(2) R-symmetry. Subsequently we use the phase factor Φ to define L0 p
q,

Lp
q
0 = Φ

(

−iφ 0

0 iφ

)

Φ−1 , L0 → (L0)′ = V L0 V −1 , (2.34)

which now transforms consistently under SU(2) and is invariant under the 4D U(1) R-

symmetry. Let us first decompose the triplet Lp
q
0 according to [5, 11]

Lp
q
0(x, υ, ῡ) =

(

−1
2 ix

0 υ0

−ῡ0 1
2 ix

0

)

, (2.35)

A priori there is no restriction on the sign of x0 as the phase factor Φ can also change

x0 to −x0. Under the new SU(2) R-symmetry Lp
q
0 transforms as specified in (2.34). For

infinitesimal transformations defined as

V ≈ 1l +
1

2

(

iΣ0 Σ+

−Σ− −iΣ0

)

, (2.36)

where Σ0 is real and Σ− = (Σ+)∗, the components x0, υ0 and ῡ0 thus transform as a triplet,

δSU(2)υ
0 = i

(

Σ0 υ0 +
1

2
Σ+x0

)

, δSU(2)x
0 = i(Σ−υ0 − Σ+ῡ0) . (2.37)
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The SU(2) covariant derivative then equals

DµL
0 = ∂µL

0 +
1

2

[

Aµ , L
0
]

. (2.38)

Let us now return to (2.8) and consider the supersymmetry transformation of Lp
q
0.

We first note that δφ in terms of the spinors (2.30) takes the following form,

δφ = iǭi+ψ
i+ − iǭi−ψ

i− . (2.39)

The supersymmetry transformation of Lp
q
0 then follows from combining (2.29) with (2.39),

δLp
q
0 = 2 ǭi q ψ

i p − δpq ǭi r ψ
i r , (2.40)

where the spinors have been modified by including the phase factor Φ by ψi p → Φp
q ψ

i q,

so that they will transform consistently under all the local R-symmetry transformations.

Hence the Kaluza-Klein vector multiplet consists of the three fields contained in Lp
q
0,

together with the modified spinor, ψi p, the gauge field Bµ and the triplet of auxiliary fields

Y i
j
0 defined in (2.15). We can now continue and consider the variation of the spinor ψi p,

the vector field Bµ, and the auxiliary fields Y i
j
0 using the same conventions. In that way

one finds,

δψi p = /DLp
q
0ǫi q −

1

2
F̂ (B)abγ

abǫi p + C Lp
q
0 ǫi q + Y i

j
0 ǫj p + Lp

q
0 ηi q ,

δBµ = ǭi pγµψ
i p + Lp

q
0 ǭi pψµ

i q ,

δY i
j
0 = 2 ǭj p /Dψi p − Lp

q
0 ǭj pχ

i q − 2C ǭj pψ
i p − η̄j pψ

i p − (trace) , (2.41)

where the 3D gamma matrices are defined in appendix B. Here we employ a supercovariant

and SU(2) covariant derivative, defined by

DµL
p
q
0 = (∂µ − bµ)L

p
q
0 +

1

2
Aµ

p
r L

r
q
0 −

1

2
Aµ

r
q L

p
r
0 −

(

ψ̄µ iq ψ
ip − trace

)

. (2.42)

Note that, because of the fermion redefinitions that involve the phase factor Φ, the terms

in the supersymmetry transformation rules proportional to Σ̃± have disappeared. Further-

more, none of the fields transform under the U(1) local symmetry of the 4D theory. This

completes the derivation of the 3D Kaluza-Klein vector supermultiplet.

Apart from ensuring that the 4D and 3D fields can transform consistently under their

respective R-symmetry groups, the role of the phase factor Φ is also to sweep out the vector

defined by (2.34) over a sphere S2 such that it will take the form (2.35). This requirement

fixes the phase factor in terms of the tensor Lp
q
0 up to a single phase which is related to

the U(1)R local symmetry of the 4D theory. The result is as follows,

Φp
q(x

0, υ0, ῡ0) =
1

√

2L0
(

L0 + 1
2x

0)

(

e−iΛA/2
(

L0 + 1
2x

0
)

−eiΛA/2 iυ0

−e−iΛA/2 iῡ0 eiΛA/2
(

L0 + 1
2x

0
)

)

,

φ = L0 ≡
√

det[L0 p
q] =

√

−
1

2
L0 p

q L0 q
p =

√

|υ0|2 +
1

4
(x0)2 . (2.43)
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Note that there is no obvious singularity in the limit υ0 → 0 when x0 > 0. In that

case Φ becomes equal to the identity matrix. Considering the same limit when x0 < 0,

there are obviously some factors that become singular in (2.43), but the final result for the

phase factor remains well defined and tends to a different finite matrix, whose effect is to

interchange the two two eigenvalues of the matrix Lp
q
0 in (2.35).

Since the phase factor Φ is only defined up to the phase ΛA, which is related to the

exact U(1)R symmetry of the 4D theory, it is an element of the SU(2)/U(1) coset space,

which is indeed isomorphic to the sphere S2. This aspect gives rise to some subtle features.

For instance, we have already derived that the SU(2) acts on (x0, υ0, ῡ0) according to (2.37),

while on the other hand we have defined the SU(2) transformation on Φ in (2.28). However,

it turns out that the change of Φ induced by the transformations of (x0, υ0, ῡ0) will only

be consistent with (2.28), if one introduces at the same time a change of the phase ΛA.

To see this we explicitly perform the transformations (2.37) on Φ and note that they are

subject to the following equation,

δSU(2)Φ =
1

2

(

iΣ0 Σ+

−Σ− −iΣ0

)

Φ+ δΛA
∂Φ

∂ΛA
, (2.44)

where

δΛA = Σ0 −
Σ+ ῡ0 +Σ− υ0

2(L0 + 1
2x

0)
. (2.45)

The first term on the right-hand side of (2.44) corresponds to (2.28).

The same structure is repeated for all scalar triplets, since the phase factor Φ is used

to consistently translate the 4D fields to 3D fields that are covariant with respect to the

emergent SU(2). In order to illustrate this, let us now consider the following convenient

formula for a general triplet, (x, υ, ῡ), that is repeatedly used later on,

Φ−1(x0, υ0, ῡ0)L(x, υ, ῡ) Φ(x0, υ0, ῡ0)

=
1

2L0









−1
2 i
(

xx0 + 2 υ ῡ0 + 2 ῡ υ0
)

−x υ0 + υ x0 −
ῡ υ0 − υ ῡ0

L0 + 1
2x

0
υ0

x ῡ0 − ῡ x0 −
ῡ υ0 − υ ῡ0

L0 + 1
2x

0
ῡ0 1

2 i
(

xx0 + 2 υ ῡ0 + 2 ῡ υ0
)









. (2.46)

Here we have suppressed the phase factor parametrized by ΛA, which is subject to the exact

R-symmetry of the 4D theory. The result (2.46) indeed reduces to (2.35) when x = x0 and

υ = υ0, upon identifying φ with L0, thus confirming the correctness of (2.43). Under the

SU(2) transformations (2.37) the expression in (2.46) is, however, not invariant. As follows

from (2.44) the phase ΛA is again switched on under the SU(2) transformations (2.37) by

an amount δΛA specified by (2.45), thus leading to

δSU(2)

(

Φ−1(x0, υ0, ῡ0)L(x, υ, ῡ) Φ(x0, υ0, ῡ0)
)

=
1

2
iδΛA

[(

1 0

0 −1

)

,
(

Φ−1(x0, υ0, ῡ0)L(x, υ, ῡ) Φ(x0, υ0, ῡ0)
)

]

. (2.47)
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This is the expected result, because it indicates that the 3D SU(2) transformation of a

4D field takes the result of a field-dependent U(1) transformation associated with the 4D

R-symmetry.

Substituting (2.43) into (2.31) one obtains the explicit expressions for the 4D quantities

Aµ
0 and Aµ

−, defined in (2.16). In principle this result must be expressed in terms of the

SU(2 covariant derivatives of the components of Lp
q(x

0, υ0, ῡ0), but in view of the above,

this will only be the case up to a field-dependent U(1) transformation of Aµ
0 and Aµ

−.

To exhibit the complexities let us first calculate the explicit expressions for Aµ
0 and Aµ

−,

following the definition (2.31),

Aµ
− =

−iῡ0(υ0
↔

Dµ ῡ0) + i(L0 + 1
2x

0)(ῡ0
↔

Dµ x0)

2 (L0)2(L0 + 1
2x

0)
,

Aµ
0 =

1

2L0(L0 + 1
2x

0)

{

iυ0
↔

Dµ ῡ0 +Tr

[

Aµ

(

i(L0 + 1
2x

0) −υ0

ῡ0 −i(L0 + 1
2x

0)

)]}

, (2.48)

where covariant derivatives are defined according to (2.38) and we again suppressed the

phase ΛA. As is indicated by the structure of (2.47) the 4D quantity Aµ
− transforms

covariantly under SU(2). However, this is not the case for Aµ
0 in view of the fact that the

definition (2.31) contains a space-time derivative which has not been made explicit in the

master formula (2.46). Indeed explicit calculation reveals that Aµ
− and Aµ

0 transform as

follows under SU(2),

δSU(2)Aµ
0 = ∂µδΛA , δSU(2)A

±
µ = ±i δΛAA±

µ , (2.49)

which takes precisely the form of the 4D infinitesimal U(1) transformation. We should

emphasize that the matrix-valued SU(2) connection Aµ
p
q is implicitly contained in the

covariant derivatives on the right-hand side of (2.48) and only appears explicitly in the last

term for Aµ
0.

3 N = 4 conformal supergravity in three dimensions

In the previous section we have already identified all the fields belonging the the 3D Weyl

multiplet. For the composite gauge fields associated with S-supersymmetry and conformal

boosts, φµ
i p and fµ

a, we did not yet present explicit expressions. The proper 3D spinor

field φµ
i p follows from the same redefinition that led to ηi p given in (2.30), followed by

a multiplication with the matrix Φ. The additional fermion field χ was defined in (2.21),

and its 3D definition was already given in (2.30) (again, up to the uniform multiplication

with the matrix Φ).

Rather than to recast the 4D fields into the 3D fields we present the resulting 3D

superconformal theory directly in 3D. We emphasize that the results we are about to

describe are consistent with results previously reported in the literature, such as in [15–

18]. In particular they fully reproduce the non-linear results that were obtained in [19, 20].
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3D Weyl multiplet parameters

field eµ
a ψµ

i p bµ Vµ
i
j Aµ

p
q C χi p D ωAB

M fM
A φM

i ǫi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

Table 2. Weyl multiplet component fields and supersymmetry parameters with their corresponding

Weyl weights in three space-time dimensions.

We start with the Q- and S-supersymmetry transformations and the conformal boosts,

acting on the independent fields,

δeµ
a = ǭi pγ

aψµ
i p ,

δψµ
i p = 2Dµǫ

i p − γµ η
i p ,

δbµ =
1

2
ǭi pφµ

i p −
1

2
η̄i pψµ

i p + ΛK
a eµa ,

δVµ
i
j = ǭj pφµ

i p − 2C ǭj pψµ
i p − ǭj p γµ χ

i p + η̄j pψµ
i p − (trace) ,

δAµ
p
q = ǭi qφµ

i p + 2C ǭi qψµ
i p + ǭi q γµ χ

i p + η̄i qψµ
i p − (trace) ,

δC =
1

2
ǭi p χ

i p ,

δχi p = 2 /DC ǫi p +D ǫi p +
1

2
R(A)ab

p
qγ

abǫi q −
1

2
R(V)ab

i
jγ

abǫj p + 2C ηi p ,

δD = ǭi p /Dχi p − η̄i p χ
i p , (3.1)

where Vµ
i
j and Aµ

p
q are the SU(2)× SU(2) R-symmetry gauge fields with corresponding

field strengths R(V)µν
i
j and R(A)µν

p
q, respectively. Furthermore we will use covariant

derivatives with respect to Lorentz, dilatation, and R-symmetry transformations, such as

Dµǫ
i p =

(

∂µ −
1

4
ωµ

ab γab +
1

2
bµ

)

ǫi p +
1

2
Vµ

i
j ǫ

j p +
1

2
Aµ

p
q ǫ

i q , (3.2)

while Dµ denotes the covariant derivative with respect to all superconformal symmetries.

We stress that the Q-supersymmetry transformation of bµ does not coincide with the result

that one obtains from the 4D variation given in (2.1). This is not an issue because the

difference can be viewed as a field-dependent shift that can be absorbed into the conformal

boosts. Since bµ is the only independent field that transforms under conformal boosts,

this has no effect somewhere else, other than that it changes the field-dependent terms in

the commutation relations (which we are not making use of explicitly). Finally the scalar

fields C and D were identified in the 4D theory in (2.15) and (2.24), respectively. We have

summarized the field content of the 3D Weyl multiplet in table 2.

Note that the two SU(2)R gauge fields do not appear symmetrically in (3.1), as the

terms proportional to the auxiliary fields are odd under the exchange of indices. We

therefore find that the Weyl multiplet is symmetric under the interchange

Vµ
i
j ←→ Aµ

i
j , C → −C , χi p → −χi p , D → −D , (3.3)

while the vielbein and the gravitini are invariant. Similar properties have been observed

before in three-dimensional extended supergravity [16], but actually this property could
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also have been inferred from [15] (see also [17, 18]). Altogether this Weyl multiplet has

16 + 16 degrees of freedom. The gravitational field eµ
a, the R-symmetry connections

and the two scalar fields comprise 2, 6, 6, 2 bosonic degrees of freedom, respectively. The

gravitini, and the spinor χ comprise 4 and 4 fermionic degrees of freedom, respectively. The

covariant fields are described by a real scalar superfield of Weyl weight w = 1, subject to

the constraint that the second-order superspace derivative Dα
i pDαj q is proportional to the

trace with respect to the SO(4) indices [18, 20]. Furthermore the transformation (3.3) can

be understood as a parity transformation in the internal euclidean four-space parametrized

by coordinates XI ∼ Xi p. The fields C and D transform both as pseudoscalars under

this parity operation whereas the R-symmetry gauge fields consist of linear combinations

of three vectors and three pseudovectors. Note that the 3D results that have appeared in

the literature are usually in the context of the SO(N) R-symmetry group; the case N = 4

is special because the R-symmetry group factorizes.

As in 4D, the gauge fields associated with local Lorentz transformations,

S-supersymmetry and special conformal boosts, ωµ
ab, φµ

ip and fµ
a, respectively, are com-

posite and determined by conventional constraints. These constraints are S-supersymmetry

invariant and they take the following form,

R(P )µν
a = R(Q)µν

i p = R(M)µν
ab = 0 , (3.4)

where the relevant curvatures appearing in (3.4) are given by

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b −
1

2
ψ̄[µi pγ

aψν]
ip ,

R(Q)µν
i p = 2D[µψν]

i p − γ[µφν]
i p ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] +
1

2
ψ̄[µi p γ

ab φν]
i p . (3.5)

The constraints (3.4) can be solved directly,

ωab
µ = −2eν[a∂[µeν]

b] − eν[aeb]σeµc∂σeν
c − 2eµ

[aeb]ν bν −
1

4

(

2ψ̄µ i pγ
[aψb]i p + ψ̄a

i pγµψ
b i p

)

,

φµ
i p =

1

2
γρσγµDρψσ

i p ,

fµ
a = R(ω, e)µ

a −
1

4
eµ

aR(ω, e) +
1

2
eνb ψ̄[µi p γ

ab φν]
i p −

1

8
eµ

a ψ̄ρi p γ
ρσ φσ

i p , (3.6)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the cor-

responding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin connection

field ωµ
ab.

The transformations of ωµ
ab, φµ

i p and fµ
a are induced by the constraints (3.4). We

present their Q- and S-supersymmetry variations up to terms cubic in fermions, as well as
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the transformations under conformal boosts, as

δωµ
ab = −

1

2
ǭi pγ

abφµ
i p −

1

2
η̄i pγ

abψµ
i p + 2ΛK

[aeµ
b] ,

δφµ
i p = −2 fµ

aγaǫ
i p +

1

2
γabγµ

(

R(V)ab
i
j ǫ

j p +R(A)ab
p
q ǫ

i q
)

+ 2Dµη
i p + ΛK

aγaψµ
i p ,

δfµ
a = −

1

2
ǭi pγ

abR(S)µb
i p +

1

4
i εabcǭi p

(

R(V)bc
i
jψµ

j p +R(A)bc
p
qψµ

i q
)

+
1

2
η̄i pγ

aφµ
i p +DµΛK

a . (3.7)

Note that the curvature, R(S)µb
i p, of the S-supersymmetry gauge field appears explicitly, as

one cannot solve for it in terms of other fields. This is familiar from the curvature R(M)µν
ab

in higher dimensional theories, but in the three dimensional theory this property extends

to the field strengths of all composite gauge fields.

In order to exhibit this difference with higher dimensions, we consider the Bianchi

identities for R(P )µν
a, R(Q)µν

ip and R(M)µν
ab, which lead to

D[aR(P )bc]
d +R(M)[bc a]

d = δd[aR(D)bc] ⇒ R(D)ab = 0 ,

D[aR(Q)bc]
i p = γ[aR(S)bc]

i p ⇒ γabR(S)ab
i p = 0 ,

εabcDaR(M)bc
de = 2 εbc[dR(K)bc

e] ⇒ εbc[dR(K)bc
e] = 0 , (3.8)

where in the second step in each line we used the conventional constraints (3.4), to obtain

simple constraints on the curvatures R(D)µν , R(S)µν
ip and R(K)µν

a. In particular, the

constraints for R(S)µν
ip and R(K)µν

a are identically satisfied for the composite gauge fields

in (3.6). These results are generally in agreement with earlier off-shell results [15, 16, 18–20]

as well as with on-shell results [23, 24].

4 Off-shell dimensional reduction: matter multiplets

In this section we consider the off-shell reduction of three 4D supermultiplets in a back-

ground of conformal supergravity: the vector multiplet, the tensor multiplet and the hy-

permultiplet. The strategy is the same as previously followed for the Weyl and the Kaluza-

Klein vector multiplet and the results turn out to be mutually consistent. At the end we

note that there exists a second 3D hypermultiplet that arises upon applying (3.3).

The vector multiplet. In four space-time dimensions the vector supermultiplet consists

of a complex scalarX, a chiral spinor doublet Ωi, a gauge fieldWM and a triplet of auxiliary

field Yij which transform under Q- and S-supersymmetry transformations as follows,

δX = ǭiΩi ,

δΩi = 2 /DXǫi +
1

2
εij

(

F−
AB −

1

4
X̄TAB

klεkl

)

γABǫj + Yijǫ
j + 2Xηi ,

δWM = εij ǭi(γMΩj + 2ψMjX) + εij ǭ
i(γMΩj + 2ψM

jX̄) ,

δYij = 2 ǭ(i /DΩj) + 2 εikεjl ǭ
(k /DΩl) , (4.1)
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where (Y ij)∗ ≡ Yij = εikεjlY
kl, and F−

MN denotes the anti-selfdual supersymmetrized

component of the field strength FMN = ∂MWN − ∂NWM . Under local scale and chiral

transformations the fields transform according to the weights shown in table 3.

Upon reduction to three dimensions, the vector field decomposes into a 3D vector field

Wµ and a scalar field W = W4̂ according to the standard Kaluza-Klein decomposition

WM =

(

Wµ +BµW

W

)

. (4.2)

As it will turn out, it is convenient to define the following linear combinations for the

fermions and the auxiliary triplet,

Ω̆i = Ωi + φ2W εijψ
j ,

Y̆ij = Yij + φ2W εikV
k
j + φ3W ψ̄kγ4ψ(jεi)k − φ2X ψ̄(iψj) − φ2 X̄ εikεjlψ̄

(kψl)

− φ ψ̄(iγ
4Ω̆j) − εikεjl φ ψ̄(kγ4Ω̆l) . (4.3)

The supersymmetry variations then take the following form,

δX = ǭiΩ̆i −
1

2
Σ̃− φW ,

δ(φW ) = εij ǭiγ4Ω̆j + εij ǭ
iγ4Ω̆

j + Σ̃−X̄ + Σ̃+X ,

δΩ̆i = 2 /D(A0)X ǫi + φW /A−ǫi

+ εij /D(φW )γ4ǫ
i −

(

X /A+ + X̄ /A−
)

γ4εijǫ
j

+
1

2
εijF̂ (W )abγ

abǫj + Y̆ijǫ
j + iC

(

2Xγ4ǫi + φW εijǫ
j
)

+ 2X ηi − φW γ4εijη
j +

1

2
Σ̃+ εijγ4 Ω̆

j ,

δWµ = εij ǭi
(

γµΩ̆j + 2ψµjX + φW εjkγ4ψµ
k
)

+ h.c. ,

δY̆ij = 2 ǭ(i /D(A0)Ω̆j) − ǭk /A+ γ4Ω̆(iεj)k

+ 2iC ǭ(iγ4Ω̆j) − ǭ(i
(

2X χ̆j) + φW εj)kχ̆
k
)

− η(iΩ̆j) + h.c. , (4.4)

where we have again suppressed the field-dependent S-supersymmetry and SU(2) transfor-

mations with parameters η̃i and Λ̃i
j as in (2.17). In deriving the above result all higher-

order terms in the fermions were taken into account, with the exception of those appearing

in the variation of the auxiliary fields. The covariant derivative Dµ(A
0) is 3D Lorentz

covariant and contains the modified U(1) gauge field defined in (2.16). The latter ap-

pears always in combination with terms proportional to A±
µ that will eventually provide

the full SU(2) covariantization. Furthermore, we have used various expressions defined

in (2.15), (2.17) and (2.21). Finally, note that the spinor χ̆i was defined in (2.21) and

that in all the expressions we use the 3D Q- and S-supersymmetry gauge fields identified

in section 2.

The expressions found above can be compared to the expressions given for the Kaluza-

Klein multiplet, derived in the previous section. As it turns out, the 3D supersymmetry
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4D vector multiplet tensor multiplet hypermultiplet

field X Wµ Ωi Y ij Lij Eµν ϕi G Ai
α ζα

w 1 0 3
2 2 2 0 5

2 3 1 3
2

c −1 0 −1
2 0 0 0 −1

2 1 0 −1
2

γ5 + − −

Table 3. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the vector multiplet, the

tensor multiplet and the hypermultiplet component fields in four space-time dimensions.

transformations for the latter coincide with those given above upon introducing the appro-

priate redefinitions of fields in three dimensions,

Lp
q = Φ

(

iφW 2 i X̄

2 iX −iφW

)

Φ−1 , Y i
j = εik Y̆kj , Ωi p = Φ

(

−γ4 Ω̆
j

εij Ω̆j

)

. (4.5)

We can then write the supersymmetry variations (4.4) as

δLp
q = 2 ǭi q Ω

i p − δpq ǭi r Ω
i r ,

δΩi p = /DLp
qǫ

i q −
1

2
F (W )abγ

abǫi p + Ŷ i
jǫ

j p + C Lp
q ǫ

i q + Lp
q η

i q ,

δWµ = ǭi pγµΩ
i p + Lp

q ǭi pψµ
i q ,

δY i
j = 2 ǭj p /DΩi p − Lp

q ǭj pχ
i q − 2C ǭj pΩ

i p − η̄j pΩ
i p − (trace) . (4.6)

In these relations, we employ the 3D gamma matrices defined in appendix B and the deriva-

tives, Dµ are covariant with respect to all 3D superconformal transformations including the

emergent SU(2)R, as in (2.42) with corresponding gauge fields defined according to (2.31).

Note that the terms Σ̃± have been cancelled by the variation of the phase factor Φ, just as

before. The Weyl weights for the 3D fields are given in table 4.

The tensor multiplet. The tensor multiplet in four dimensions comprises an SU(2)

triplet of scalars Lij , a chiral spinor doublet ϕi, a two-form gauge field EMN and an aux-

iliary complex scalar field, G. The Weyl and chiral weights of these fields are summarized

in table 3. In a superconformal background the Q- and S-supersymmetry transformations

of the 4D tensor supermultiplet fields take the following form,

δLij = 2 ǭ(iϕj) + 2 εikεjl ǭ
(kϕl) , (4.7)

δϕi = /DLij ǫj + εij /̂E ǫj −Gǫi + 2Lij ηj ,

δG = −2 ǭi /Dϕi − ǭi

(

6Lij χj +
1

4
γABTABjk ϕl ε

ijεkl
)

+ 2 η̄iϕ
i ,

δEMN = iǭiγMNϕj εij − iǭiγMNϕj ε
ij + 2iLij ε

jk ǭiγ[MψN ]k − 2iLij εjk ǭiγ[MψN ]
k ,

δÊA = εij ǭ
iγABDBϕ

j +
1

4
ǭiγA

(

6 εijχk L
jk −

1

4
TBC ijγ

BCεjkϕk

)

+
3

2
η̄iγAϕjεij + h.c. .
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Here, the derivatives DM are covariant with respect to Lorentz transformations, dilatations

and R-symmetry transformations. The vector, ÊM , denotes the superconformally covariant

field strength

ÊM =
1

2
i e−1 εMNPQ

×

[

∂NEPQ −
1

2
iψ̄i

NγPQϕ
jεij +

1

2
iψ̄N iγPQϕjε

ij − iLijε
jkψ̄N

iγPψQk

]

, (4.8)

associated with the tensor field EMN ; the latter is subject to tensor gauge transformations

parametrized by a vector λM ,

δEMN = 2 ∂[MλN ] . (4.9)

The Kaluza-Klein decomposition of the tensor gauge field reads

EMN =

(

Eµν + 2B[µEν] −Eµ

Eν 0

)

, (4.10)

where Eµ ≡ E4̂µ. The tensor gauge transformation parameter decomposes accordingly

into λM = (λµ, λ), where λ ≡ λ4̂, so that the 3D tensor and vector fields, Eµν and Eµ

transform as

δEµν = 2 ∂[µλν] − 2B[µ ∂ν]λ , δEµ = ∂µλ . (4.11)

Let us now proceed and determine the reduction of the 4D tensor field strength. First we

note that EABC = EA
MEB

NEC
P ∂[MENP ] decomposes as follows,

Eabc = ea
µeb

νec
ρ
(

∂[µEνρ] + F (B)[µν Eν]

)

,

Eab4 = −
1

3
φF (E)ab . (4.12)

where F (E)µν = ∂µEν −∂νEµ. Note that Eabc and Eab4 have Weyl weight w = 3, and they

correspond to the bosonic part of the field strength (4.8) written with tangent-space indices.

We can now write Eabc as a 3D real scalar of weight w = 3 by defining E4 ≡ 1
2 iε

abcEabc.

Indeed, a comparison with a two-rank tensor field in three dimensions shows that it repre-

sents only one degree of freedom (the 3D tensor has three degrees of freedom from which

one must subtract two gauge degrees of freedom). Hence, we can base ourselves exclu-

sively on the scalar E4 and ignore the underlying tensor field, without loss of generality.

Therefore the field strength (4.8) written with tangent-space indices is precisely equal to

Ê4 =
1

2
iεabcEabc + · · · , Êa =

1

2
iφ εabc F̂ (E)bc + · · · , (4.13)

where the dots denote the fermionic bilinears. Henceforth Ê4 will be regarded as a super-

covariant scalar, as was explained above, whereas F̂ (E)ab denotes the supercovariant field

strength associated with the 3D gauge field Eµ.

We are now ready to present the result of the reduction to three dimensions for the

supersymmetry transformation rules. To this end, we find it useful to rescale the scalar
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triplet by φ to obtain a triplet of unit Weyl weight, and introduce the quantities

ϕ̆i = φ−1 ϕi + Lijγ4ψ
j ,

Ĕ = φ−1Ê4 +
1

2
εijV

i
k L

jk − εijψ̄
iϕj − εijψ̄iϕj −

1

2
φLij ψ̄iγ

4ψkεjk ,

Ğ = φ−1G− ψ̄iγ4ϕ
i −

1

2
φLij ψ̄iψj . (4.14)

With these definitions, we can write the reduced result as follows,

δ(φ−1Lij) = 2 ǭ(iϕ̂j) + 2 εikεjl ǭ
(kϕ̂l) ,

δϕ̆i = /D(φ−1Lij) ǫj +
1

2
i e−1εµνρF (E)µν γρ ε

ijǫj + Ĕ εijγ4 ǫj − Ğ ǫi ,

− iφ−1Lij C γ4ǫj + φ−1Lij ηj +
1

2
Σ̃−εijγ4 ϕ̆j ,

δEµ = i εij ǭ
iγµγ4ϕ̆

j − iφ−1Lij ε
jk ǭiγ4ψµk + h.c. ,

δĔ = εij ǭ
iγ4

(

/D(A0)ϕ̂j −
1

2
/A+γ4 ε

jkϕ̆k

)

− iC εij ǭ
iϕ̆j +

1

2
εijφ

−1Ljk ǭiγ4χ̆k

+
1

2
εij ϕ̄

iγ4η
j −

1

2
Σ̃+ Ğ+ h.c. ,

δĞ = −2 ǭi

(

/D(A0)ϕ̆i −
1

2
/A+γ4 ε

ijϕ̆j

)

+ 2 iC ǭiγ4 ϕ̆
i − φ−1Lij ǭiχ̆j

+ η̄iϕ̆
i + Σ̃− Ĕ , (4.15)

where we retained all fermionic terms in the variations of Lij , ϕ̆ and Eµ, but considered only

the variations linear in the fermions for Ğ and Ĕ. In these expressions we used once again

the covariant derivative Dµ(A
0) that contains the modified U(1) gauge field in (2.16). We

have again suppressed the field-dependent S-supersymmetry and SU(2) transformations in

the above result.

To write the supersymmetry variations (4.15) in three-dimensional form, we employ a

definition of fields that transform covariantly under the the local R-symmetry,

Li
j = φ−1 εikLkj , Y p

q = Φ

(

i Ĕ −i Ğ

−i ˘̄G −i Ĕ

)

Φ−1 , ϕi p = Φ

(

i ϕ̆i

iγ4 ε
ij ϕ̆j

)

. (4.16)

The supersymmetry variations resulting upon use of these definitions are as follows

δLi
j = 2 ǭj p ϕ

i p − δij ǭk p ϕ
k p ,

δϕi p = /DLi
j ǫ

j p −
1

2
F (E)abγ

abǫi p + Y p
q ǫ

i q − C Li
j ǫ

j p + Li
j η

j p ,

δEµ = ǭi pγµϕ
i p + Li

j ǭi pψµ
j p ,

δY p
q = 2 ǭi q /Dϕi p + Li

j ǭj qχ
i p + 2C ǭi qϕ

i p − η̄i qϕ
i p − (trace) . (4.17)

Once again, the variations proportional to Σ̃± cancel. All the fields and the gamma matrices

refer to 3D; the covariant derivative, Dµ also includes the gauge fields associated with the

extra local SU(2)R symmetry, just as in (2.42). The Weyl weight of the component fields

are summarized in table 4.

– 24 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
6

3D vector multiplet tensor multiplet hypermultiplet

field Lp
q Wµ Ωi p Y i

j Li
j Eµ ϕi p Y p

q Ai
α ζα

w 1 0 3
2 2 1 0 3

2 2 1
2 1

Table 4. Matter multiplet fields with corresponding Weyl weights of the vector multiplet, the

tensor multiplet and the hypermultiplet fields in three space-time dimensions.

Note that the supersymmetry transformations for the tensor multiplet (4.17) are very

similar to those of the vector multiplet given in (4.6). In fact they are related precisely by

the exchange symmetry noted for the Weyl multiplet in (3.3). We will return to this issue

later in this section.

The hypermultiplet. The hypermultiplets are not realized off-shell, but they can be

coupled to conformal supergravity provided the target-space geometry is restricted to a

hyperkähler cone. For rigid supersymmetry it is sufficient that the target space is hy-

perkähler, but in order for the action to be superconformally invariant the target space

must also admit a homothetic conformal Killing vector. This in turn implies that the

homothetic Killing vector can locally be expressed in terms of the so-called hyperkähler

potential which also defines the target-space metric [11, 26]. Assuming that these conditions

are met, let us now introduce the local Q- and S-supersymmetry transformations of the

hypermultiplet fields, which only close modulo the equations of motion of the fermion fields,

δAi
α + δφBΓB

α
βAi

β = 2 ǭiζ
α + 2 εijG

αβ̄Ωβ̄γ̄ ǭ
jζ γ̄ ,

δζα + δφA ΓA
α
β ζ

β = /DAi
α ǫi +Ai

α ηi ,

δζᾱ + δφA Γ̄A
ᾱ
β̄ ζ

β̄ = /DAiᾱ ǫi +Aiᾱ ηi . (4.18)

where we employ the local sections of an Sp(r) × Sp(1) bundle, denoted by Ai
α, for α =

1, 2, . . . , 2r. The Weyl and chiral weights of these quantities are shown in table 3. We

also note the existence of a covariantly constant hermitian tensor Gαβ̄ (which is used in

raising and lowering indices) and of a covariantly constant skew-symmetric tensor Ωαβ

(and its complex conjugate Ω̄ᾱβ̄ satisfying Ωᾱγ̄Ω̄
β̄γ̄ = −δᾱ

β̄). Covariant derivatives contain

the Sp(r) connection ΓA
α
β , associated with rotations of the fermions. The sections Ai

α

are pseudo-real, i.e. they are subject to the constraint, εijΩ̄ᾱβ̄Gβ̄γAi
γ = Aj β̄ ≡ (Aj

β)∗.

For our purpose the geometry of the hyperkähler cone is not relevant and we assume

for simplicity that the cone is flat, so that the target-space connections and curvatures

will vanish. The sections can then be identified with the fields, and the tensors Gαβ̄ and

Ωαβ are constant [25, 26]. The extension to non-trivial hyperkähler cone geometries is

straightforward.

The Weyl and chiral weights of the sections and the fermion fields are listed in table 3.

The 3D hypermultiplet fields will be rescaled, however, so that they have the appropriate

canonical dimension in 3D. This motivates the following field redefinitions,

Ăi
α = φ−1/2Ai

α ,

ζ̆α = φ−1/2ζα +
1

2
φ1/2Aj

αγ4ψj ,

ζ̆ᾱ = φ−1/2 ζᾱ +
1

2
φ1/2Aiᾱγ4ψi . (4.19)
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Upon dimensional reduction the supersymmetry transformation rules (4.18) can be cast in

the form,

δĂi
α = 2 ǭiζ̆

α + 2 εijG
αβ̄Ωβ̄γ̄ ǭ

j ζ̆ γ̄ ,

δζ̆α = /DĂi
α ǫi +

1

2
iC Ăi

αγ4ǫ
i +

1

2
Σ̃−Gαβ̄Ωβ̄γ̄ γ4 ζ̆

γ̄ +
1

2
Ăi

αηi , (4.20)

where all fermionic terms were taken into account and where Dµ denotes the supercovariant

derivative in three dimensions. Again we suppressed the field-dependent SU(2) and S-

supersymmetry transformations. Subsequently we further redefine the fermion such as to

incorporate their consistent transformation behaviour under local R-symmetry,

ζαp = Φ

(

−iGαβ̄Ωβ̄γ̄ ζ̆
γ̄

iγ4 ζ̆
α

)

. (4.21)

The Weyl weights of the 3D quantities Ai
α and ζα have been shown in table 4. With these

redefinitions we obtain the following 3D supersymmetry transformations of the 3D fields,

δAi
α = 2 ǭi pζ

αp ,

δζαp = /DAi
α ǫi p −

1

2
C Ai

αǫi p +
1

2
Ai

αηi p , (4.22)

expressed in terms of 3D gamma matrices and supercovariant derivatives. The terms

proportional to Σ̃± have again disappeared as they should.

As we alluded to at the beginning of the section, there is an alternative hypermultiplet

that transforms under the other SU(2) factor of the R-symmetry, which cannot emerge

under dimensional reduction. For future reference we give its transformation rules below,

relying on the reflection (3.3),

δÃp
α = 2 ǭi pζ̃

α i ,

δζ̃α i = /DÃp
α ǫi p +

1

2
C Ãp

αǫi p +
1

2
Ãp

αηi p . (4.23)

5 Four and three-dimensional fields and invariant Lagrangians

In this section we express the 4D fields in terms of the 3D ones; subsequently we convert

the known supersymmetric 4D Lagrangians by direct substitution in terms of the super-

symmetric 3D Lagrangians. The section is divided into three subsections. In the first one

we express the 4D bosonic fields in terms of the 3D ones that were identified in the pre-

vious sections based on the off-shell supersymmetry transformations. The fermionic fields

are ignored, as the supersymmetry transformations are fully known in both 3D and 4D.

In the second subsection we consider three 4D supersymmetric Lagrangians quadratic in

derivatives and derive the corresponding expressions for the bosonic terms belonging to

the reduced 3D Lagrangians. Because the reduction procedure is fully off-shell (with the

exception of the hypermultiplets that are not defined as genuine off-shell multiplets) there

is no need for additional adjustments. In the third subsection we discuss some features of

the c-map and compare to results in the literature.
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5.1 The supercovariant dictionary: expressing 4D fields in terms of 3D fields

Some of the 4D and 3D fields are identical, except that the latter will no longer depend on

the fourth coordinate. For instance, the vierbein fields, which contain the three-dimensional

fields eµ
a as a submatrix, belong to this class. For other fields the relation is more involved.

In particular for the Kaluza-Klein scalar φ, matters are more subtle, as this field is contained

in a 2×2 anti-hermitian traceless matrix Lp
q
0, defined in (2.34) by absorbing a phase factor

Φ, introduced in subsection 2.3 to realize the new local SU(2) factor of the 3D R-symmetry

group. As a result the expressions for the 4D fields are invariant under the new local SU(2)

R-symmetry that emerges in the reduction, up to a term that takes the form of a 4D U(1)

R-symmetry.

The 3D vector and tensor matter supermultiplets contain scalar fields that were con-

veniently written in terms of anti-hermitian traceless 2 × 2 matrices. For instance, the

Kaluza-Klein multiplet contains the scalar Lp
q
0 with Weyl weight w = 1, as well as a

similar field Y i
j
0 of weight w = 2. The vector multiplets corresponding to the matter 4D

vector supermultiplets also contain these fields, Lp
q and Y i

j , which depend linearly on the

components of the 4D vector multiplet. The same situation arises for the tensor multiplet,

but with the indices p, q and i, j interchanged. Hence these multiplets contain fields Li
j

and Y p
q, with Weyl weights w = 1 and w = 2, respectively. Obviously, in the context

of Lagrangians that are at most quadratic in derivatives, the fields L correspond to the

physical scalars and the fields Y to the auxiliary fields.

Although the matrix form of the scalar is convenient when considering the supersym-

metry transformations, it is not always easy to write the results in the form of matrix

products and traces thereof. Therefore we will use a uniform decomposition in terms of

the three independent components transforming as a vector under the appropriate SU(2)

R-symmetry group. Hence for the vector multiplet we have

Lp
q(x, υ, ῡ) =

(

−1
2 ix υ

−ῡ 1
2 ix

)

, Y i
j(y, w, w̄) =

(

−1
2 i y w

−w̄ 1
2 i y

)

, (5.1)

and for the tensor multiplet we have corresponding definitions for Li
j(x, υ, ῡ) and

Y p
q(y, w, w̄). Obviously, in Lagrangians with both vector and tensor multiplets, these

multiplets should in principle be labelled by different indices. We recall the components of

DµL
p
q and DµL

i
j for convenience,

DµL
p
q = (∂µ − bµ)L

p
q +

1

2

[

Aµ , L
]p

q ,

DµL
i
j = (∂µ − bµ)L

i
j +

1

2

[

Vµ , L
]i
j , (5.2)

which is in agreement with (2.38).

Let us now consider the 4D Weyl multiplet, whose fields can be expressed in terms

of the fields of the 3D Weyl multiplet and the Kaluza-Klein vector multiplet (restricting

ourselves to the bosonic fields and ignoring that the redefined bosonic fields may also
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contain fermionic bilinears),

eM
A =



















eµ
a = eµ

a ,

eµ
4 = Wµ

0 (L0)−1 ,

e4̂
a = 0 ,

e4̂
4 = (L0)−1 ,

L0 =

√

|υ0|2 +
1

4
(x0)2 =

√

−
1

2
Lp

q
0 Lq

p
0 ,

Bµ = Wµ
0 ,

VM
i
j

∣

∣

4D
=

{

Vµ
i
j = Vµ

i
j +Wµ

0 Y i
j
0 (L0)−2 ,

V4̂
i
j = Y i

j
0 (L0)−2 ,

AM =







Aµ = Aµ
0 +

1

L0

[1

4
F (W 0)µ +Wµ

0C
]

,

A4̂ = (L0)−1C ,

TAB
ij =















Tab
ij = 1

2 i (L
0)−2 εij εabc

[

(ῡ0
↔

D cx0)−
ῡ0

L0 + 1
2x

0
(υ0

↔

D cῡ0)

]

,

Ta4
ij = 1

2 i (L
0)−2 εij

[

(ῡ0
↔

D ax
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

D aῡ
0)

]

,

D
∣

∣

4D
=

1

2
D −

1

12
R−

1

3
(L0)−1DaDaL

0 +
1

6
(L0)−2

(

DaL
0
)2

−
1

12
(L0)−2 F (W 0)ab

2 −
1

2
C2 −

1

4
(L0)−2 Y i

j
0 Y j

i
0 , (5.3)

where the covariant derivatives contain the connections Aµ
p
q associated with the second 3D

SU(2) R-symmetry group and R denotes the three-dimensional Ricci scalar. As explained

in section 2 the fields Lp
q
0(x, υ, ῡ), Wµ

0 and Y i
j
0 denote the bosonic fields of the Kaluza-

Klein supermultiplet. The remaining fields belong to the 3D Weyl multiplet and were

discussed in section 3. The connection Aµ
0 was defined in the second equation of (2.48).

Its explicit form is not relevant, but it is important to realize that under local 3D SU(2) it

transforms as the connection of the 4D U(1) R-symmetry.

Subsequently we consider the 4D vector multiplet, which upon reduction leads to a 3D

vector multiplet. The bosonic fields of the latter are denoted by Lp
q(x, υ, ῡ), Wµ and Y i

j ,

X = −
1

4
i

[

x ῡ0 − ῡ x0

L0
−

ῡ υ0 − υ ῡ0

L0(L0 + 1
2x

0)
ῡ0

]

,

WM =















Wµ =Wµ +Wµ
0 Lp

q L
q
p
0

2 (L0)2
,

W4̂ =
Lp

q L
q
p
0

2 (L0)2
,

Yij = −εik

[

Y k
j + Y k

j
0 Lp

q L
q
p
0

2 (L0)2

]

, (5.4)

where we note that

Lp
q L

q
p
0 = −

1

2
xx0 − υ ῡ0 − ῡ υ0 . (5.5)
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For the 3D vector multiplet the following transformations will define an invariance,

δLp
q = αLp

q
0 ,

δWµ = αWµ
0 ,

δY i
j = αY i

j
0 ,

δLp
q
0 = 0 ,

δWµ
0 = 0 ,

δY i
j
0 = 0 ,

(5.6)

where α is constant parameter, because the 4D vector components remain invariant un-

der (5.6), with the exception of W4̂. The latter is shifted by a constant which represents

a remnant of the full 4D gauge transformations. This shows that (5.6) defines an invari-

ance for any 4D locally supersymmetric Lagrangian that involves vector multiplets upon

dimensional reduction. In principle there are additional invariances, as discussed in [3],

but those are not immediately relevant for what follows. The tensor multiplet and the

hypermultiplet do not give rise to symmetries such as (5.6).

The 4D tensor multiplet reduces to the 3D tensor multiplet. The bosonic fields of the

latter are Li
j , Eµ and Y p

q(y, w, w̄),

Lij = −εik L
k
j L

0 ,

EA =

{

Ea = 1
2 iL

0 εabc F (E)bc ,

E4 = 1
2Y

p
q L

q
p
0 + 1

2L
i
j Y

j
i
0 ,

E4̂µ = Eµ ,

G =
1

2
i

[

−y υ0 + w x0 −
w̄ υ0 − w ῡ0

L0 + 1
2x

0
υ0

]

, (5.7)

We note an alternative expression for the scalar X of the 4D vector multiplet and a

corresponding one for the auxiliary scalar Ḡ of the tensor multiplet,

X =
1

2
i ῡ −

1

4
i

[

x−
Lp

q L
q
p
0

L0

]

ῡ0

L0 + 1
2x

0
,

Ḡ = 2L0

[

1

2
i w̄ −

1

4
i

[

y −
Y p

q L
q
p
0

L0

]

ῡ0

L0 + 1
2x

0

]

, (5.8)

which will turn out to be useful later on.

Finally we consider the 4D hypermultiplet which reduces to a 3D hypermultiplet,

where we have only a single bosonic quantity represented by the local sections Ai
α. Upon

the reduction these sections are redefined according to

Ai
α|4D = (L0)1/2Ai

α . (5.9)

This completes the dictionary between the 4D and 3D fields. The reader may now ver-

ify explicitly that under an SU(2) R-symmetry transformation of the 3D fields, the 4D fields

remain invariant up to a 4D U(1) R-symmetry transformation. This is guaranteed by the

relations discussed in subsection 2.3 and more in particular by the equations (2.44)–(2.49).
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5.2 Lagrangians quadratic in derivatives

We now turn to the 4D Lagrangians quadratic in space-time derivatives and reduce them to

three dimensions in terms of the 3D fields that we have derived. We will restrict ourselves

to the bosonic expressions, because supersymmetry is ensured in the off-shell reduction. We

start with the hypermultiplet Lagrangian, because that is the simplest one. Subsequently

we will discuss the tensor multiplet Lagrangian and finally the vector Lagrangian.

5.2.1 The hypermultiplet Lagrangian

The 4D bosonic Lagrangian for hypermultiplets reads [26],

Lhyper

∣

∣

4D
= −

1

2
E Ωαβ ε

ij

[

DMAi
αDMAj

β −Ai
αAj

β

[

1

6
R+

1

2
D

]]

. (5.10)

Upon reduction to three dimensions, the first term becomes

−
1

2
E Ωαβ ε

ij DMAi
αDMAj

β = −
1

2
eΩαβ ε

ij

×

[

DµAi
αDµAj

β +Ai
αAj

β

[

−
1

2
φ−1DµDµφ+

3

4
φ−2(Dµφ)

2 −
1

8
φ−2 Y i

j
0 Y j

i
0

]]

,

where we suppressed a total derivative. Note that the covariant derivatives DµAi
α on the

right-hand side contain the 3D SU(2) gauge fields Vµ
i
j . Next we turn to the second term

in (5.10). Making use of (A.3), which relates the 4D and 3D Ricci scalars, and of (5.3),

which gives the relation between the 4D and 3D D-fields, the two terms readily combine

into the 3D Lagrangian,

e−1Lhyper

∣

∣

3D
= −

1

2
Ωαβ ε

ij

[

DµAi
αDµAj

β −
1

4
Ai

αAj
β

(

1

2
R+D − C2

)]

, (5.11)

which agrees with the expression given in [16]. Observe that all the components of the

Kaluza-Klein vector multiplet decouple from the hypermultiplet Lagrangian, so that the

well-known property that vector multiplets and hypermultiplets have no direct interaction

in the ungauged case, is preserved under the reduction. We will return to this feature in

due course.

Of course, there exists a second 3D hypermultiplet Lagrangian, which is obtained

from applying the reflection symmetry (3.3). We have already given its transformation

rules in (4.23). The corresponding Lagrangian takes the form

e−1L̃hyper

∣

∣

3D
= −

1

2
Ω̃αβ ε

pq

[

DµÃp
αDµÃq

β −
1

4
Ãp

αÃq
β

(

1

2
R−D − C2

)]

. (5.12)

Such a Lagrangian can only be obtained from 4D upon reducing a vector multiplet and

applying 3D vector-scalar duality. However, as we shall see in subsection 5.2.3, these

hypermultiplet Lagrangians will belong to a restricted class.
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5.2.2 The tensor multiplet Lagrangian

Here we consider the tensor multiplet Lagrangian in four space-time dimensions, which

reads as (we follow the notation of [5]),

Ltensor

∣

∣

4D
= −

1

2
E F (L)IJ DMLij

I DMLijJ + F (L)IJ Lij
I LijJ

(

1

3
R+D

)

+ E F (L)IJ
(

EM
I EM J − EM I VM

i
j Lik

I εjk +GIḠJ
)

+
1

2
iεMNPQ F (L)IJK

ij EMN
I ∂PLik

J ∂QLjl
K εkl , (5.13)

where the tensor multiplets have been labelled with indices I, J, . . .. Here the functions

FIJ(L) depend on the tensor multiplet scalars Lij
I and are invariant under the SU(2) R-

symmetry group and homogeneous of degree −1. Furthermore FIJK
ij denotes the deriva-

tive of FIJ with respect to Lij
K . The EM I are the bosonic field strengths associated with

the tensor fields EMN
I , which follow from (4.8).

For any 4D rigidly or locally supersymmetric tensor multiplet Lagrangian, the func-

tions FIJ(L) must satisfy the following equations [5, 27],

FIJK
ij = F(IJK)

ij , FIJKL
i[jk]l = 0 . (5.14)

These conditions suffice to prove that there must exist a function F (x, υ, ῡ) such that

FIJ =
∂2F (x, υ, ῡ)

∂xI ∂xJ
= −

∂2F (x, υ, ῡ)

∂υI ∂ῡJ
,

∂2F (x, υ, ῡ)

∂xI ∂υJ
=

∂2F (x, υ, ῡ)

∂xJ ∂υI
, (5.15)

where we have used L21 I = 1
2 ix

I and L11 I = υI , which is consistent with earlier defini-

tions. For superconformally invariant Lagrangians (as well as all locally supersymmetric

Lagrangians) the function F (x, υ, ῡ) can be chosen to be homogeneous of first degree and

invariant under phase transformations of the components υI and ῡI [11], so that

xI
∂F (x, υ, ῡ)

∂xI
+ υI

∂F (x, υ, ῡ)

∂υI
+ ῡI

∂F (x, υ, ῡ)

∂υI
= F (x, υ, ῡ) ,

υI
∂F (x, υ, ῡ)

∂υI
− ῡI

∂F (x, υ, ῡ)

∂υI
= 0 . (5.16)

The SU(2) invariance and the homogeneity of the functions FIJ(L) imply the equation

FIJK
ik Lkj

K = −
1

2
δij FIJ , (5.17)

Unlike the functions FIJ , the function F (x, υ, ῡ) is not invariant under the full SU(2)

R-symmetry group, but only under a U(1) subgroup.

In the superconformal case it is convenient to introduce also an SU(2) invariant quan-

tity whose second derivative generates the metric of the tensor multiplet scalars,

χtensor(L) ≡ 2FIJ L
ijI Lij

J , (5.18)

which is a homogeneous function of first degree invariant under SU(2). This tensor-

potential χtensor satisfies the following equations,

∂χtensor(L)

∂Lij
I

= 2FIJ(L)L
ijJ , εkl

∂2χtensor(L)

∂Lik
I ∂Ljl

J
= 2FIJ(L) ε

ij . (5.19)
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Not surprisingly there exists a relation between χtensor(L) and the function F (x, υ, ῡ),

χtensor(L) = FIJ (x
IxJ + 4 υI ῡJ) = −F (υ, ῡ, x) + xI

∂F (x, υ, ῡ)

∂xI
, (5.20)

which can be established by making use of the equations (5.15) and (5.16). The right-hand

side of (5.20) coincides with the expression for the hyperkähler potential χhyper(υ, ῡ, w, w̄)

given in [11] for the hyperkähler cones that one obtains upon dualizing the tensor fields to

scalars. In that case ∂F (x, υ, ῡ)/∂xI is identified with wI + w̄I , so that one is performing

a Legendre transformation [5]. The reason that only the real part of wI appears is that

the hypermultiplet Lagrangian will have an abelian isometry for every tensor multiplet.

Observe that the last term in (5.13) specifies a coupling of the tensor gauge fields to

FIJK
ij , the derivative of FIJ with respect to Lij

K . This coupling does not involve the

tensor field strengths, but is nevertheless invariant under tensor gauge transformations.

The reason is that the term FIJK
ij ∂PLik

J ∂QLjl
K εkl satisfies the equation,

∂[M
(

FIJK
ij ∂PLik

J ∂Q]Ljl
K εkl

)

= 0 , (5.21)

by virtue of the properties satisfied by FIJ . This result implies that one can write (locally)

FIJK
ij ∂PLik

J ∂QLjl
K εkl = ∂[PA(x, υ, ῡ)Q]I . (5.22)

One particular solution for the space-time vectors A(x, υ, ῡ)M I is defined in terms of second

derivatives of the function F (x, υ, ῡ) introduced in (5.15), and reads

A(x, υ, ῡ)M I =
∂2F (x, υ, ῡ)

∂xI ∂ῡJ
∂M ῡJ −

∂2F (x, υ, ῡ)

∂xI ∂υJ
∂MυJ , (5.23)

Clearly these space-time vectors are only determined up to a gauge transformation AM I →

AM I+∂MΛI . They are, however, only manifestly invariant under a (rigid) U(1) subgroup of

the full SU(2) R-symmetry transformations. Nevertheless, when applying an infinitesimal

SU(2) transformation with (local) parameter Λi
j(x) on the left-hand side of (5.22), one

obtains

δSU(2)

(

FIJK
ij ∂PLik

J ∂QLjl
K εkl

)

= ∂[P

[

∂Q]Λi
j FIJ(L)Ljk

J εki
]

, (5.24)

where we made use of the SU(2) invariance of FIJ(L). This result, which is in line

with (5.21), implies that the vectors A(x, υ, ῡ)M I are invariant under (rigid) SU(2) up to an

abelian gauge transformation with field-dependent parameter. For the solution (5.23) one

can calculate this transformation explicitly in terms of multiple derivatives of the function

F (x, υ, ῡ).

A relevant question is whether it is possible to apply such a gauge transformation to

the 3D vector fields A(x, υ, ῡ)M I such that the results become exactly SU(2) invariant.

As was observed long ago [29], the answer to this question is in general negative: it is not

always possible to satisfy (5.22) with SU(2) invariant ‘potentials’ A(x, υ, ῡ)M I . However,

as we will establish in the next subsection, there do exist specific models where both the

gauge invariance and the SU(2) invariance is manifest. Hence we may distinguish two

distinct classes of tensor interactions characterized by the fact whether or not the vector

fields AI(x, υ, ῡ)M can be globally extended to full SU(2) invariants or will be at most be

invariant under a U(1) subgroup.
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Many of the 4D features related to tensor gauge invariance and R-symmetry invariance

remain relevant in 3D. Hence let us turn to the reduction of the Lagrangian (5.13) to three

dimensions by using the expressions for the 4D fields summarized in (5.7) and (5.3) and

the Ricci scalar in (A.3). Starting from the first line in (5.13), we find

−
1

2
E FIJ DMLij

I DMLij J + E FIJ Lij
I Lij J

(

1

3
R+D

)

=
1

2
e FIJ DµL

i
j
I DµLj

i
J −

1

2
e FIJ L

i
j
I Lj

i
J

(

1

2
R+D − C2

)

+
1

4
e FIJ φ

−2
(

Li
j
I Y 0 j

i

) (

Lk
l
J Y 0 l

k

)

, (5.25)

where we used the homogeneity of FIJ to express it in terms the 3D scalars Li
j defined

in (5.7).3 We also suppressed a total derivative term (for this it is convenient to make use

of the first equation (5.19)). Subsequently we consider the next few terms of (5.13) and

reduce them to three dimensions,

E F (L)IJ
(

EM
I EM J − EM I VM

i
j Lik

J εjk +GIḠJ
)

= −
1

2
e F (L)IJ

[

1

2
φ−2

(

Li
j
I Y j

i
0
) (

Lk
l
J Y l

k
0
)

+ F (E)µν
I F (E)µνJ + Y p

q
I Y q

p
J

]

−
1

2
iεµνρ F (L)IJ F (E)µν

I Li
j
J Vρ

j
i . (5.26)

Combining all these contributions with those coming form the last term in (5.13), we obtain

the final result,

Ltensor

∣

∣

3D
=

1

2
e F (L)IJ DµL

i
j
I DµLj

i
J −

1

2
e F (L)IJ L

i
j
I Lj

i
J

(

1

2
R+D − C2

)

−
1

2
e F (L)IJ

[

F (E)µν
I F (E)µνJ + Y p

q
I Y q

p
J
]

−
1

2
iεµνρ F (L)IJ F (E)µν

I Li
j
J Vρ

j
i

+ iεµνρF (L)IJKi
j ∂µL

i
k
I ∂νL

k
j
J Eρ

K , (5.27)

where we note that the Kaluza-Klein vector multiplet again manifestly decouples. This

should not come as a surprise as one can dualize the 3D vector field Eµ to a scalar and

then obtain a hypermultiplet Lagrangian, for which we have noted the same decoupling

phenomenon. Let us stress that all the properties of the 4D tensor Lagrangians related

to the tensor potential χtensor(L) carry over to the three-dimensional context. However,

the definition (5.18) in terms of the fields Li
j acquires an explicit minus sign because

LijILij
J = −Li

j
I Lj

i
J . As a result the equations (5.18) and (5.19) take the following form,

χtensor(L) = −2FIJ L
i
j
I Lj

i
J ,

∂χtensor(L)

∂Li
j
I

= −2FIJ(L)L
j
i
J ,

∂2χtensor(L)

∂Li
k
I ∂Lk

j
J
= −2FIJ(L) δi

j . (5.28)

3We remind the reader that the Li
j are anti-hermitian.
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5.2.3 The vector multiplet Lagrangian

Finally, we turn to the bosonic Lagrangian for vector multiplets, whose evaluation is con-

siderably more complicated, as the Kaluza-Klein vector multiplet will not decouple in this

case. Therefore the number of vector multiplets will increase by one under the reduction.

To avoid confusion with the discussion in subsection 5.2.2, we will use indices Λ,Σ,Ξ, . . .

to label the n + 1 off-shell 4D vector multiplets. With the Kaluza-Klein vector multiplet

we will thus obtain n+2 3D vector multiplets. As before we start from the bosonic terms

of the 4D Lagrangian, which take the form,

Lvector

∣

∣

4D
= ENΛΣ

[

XΛX̄Σ

(

1

6
R−D

)

+
1

8
Yij

ΛY ijΣ −DMXΛDMX̄Σ

]

−
1

8
ENΛΣ FMN

Λ FMNΣ −
1

16
iεMNPQRΛΣ FMN

Λ FPQ
Σ

+
1

8
E

[

X̄ΛNΛΣF
ABΣ TAB

ijεij −
1

8
X̄ΛNΛΣX̄

Σ
(

TAB
ijεij

)2
+ h.c.

]

, (5.29)

and is encoded in a holomorphic function F (X) that is homogeneous of second degree. Its

multiple derivatives are denoted by FΛΣΞ··· and the second derivatives are decomposed into

two real tensors, NΛΣ = −iFΛΣ + iF̄ΛΣ and RΛΣ = FΛΣ + F̄ΛΣ, which we have used in the

above expression.

As before, we reduce (5.29) in steps, starting with the first two terms,

ENΛΣ

[

XΛX̄Σ

(

1

6
R−D

)

+
1

8
Yij

Λ Y ijΣ

]

=
1

2
e φ−1NΛΣX

ΛX̄Σ

[

1

2
R−D + C2 +

1

4
φ−2

(

F (W )ab
0
)2

+ φ−2
(

Dµφ
)2
]

−
1

8
e φ−1NΛΣ

[

Y i
j
Λ Y j

i
Σ + φ−2Lp

q
Λ Lq

p
0 Y i

j
Σ Y j

i
0
]

+
1

4
e φ−3NΛΣ

[

XΛX̄Σ −
1

8
φ−2Lp

q
Λ Lq

p
0 Lr

s
Σ Ls

r
0

]

Y i
j
0 Y j

i
0 , (5.30)

where we made use of (5.3), (5.4) and (A.3), and we employed the identifications φ = L0

and Lp
q
Λ Lq

p
0 = −1

2x
Λx0 − υΛῡ0 − ῡΛυ0. The next terms related to the kinetic terms of

XΛ and the various field-strengths reduce to

− ENΛΣDMXΛDMX̄Σ −
1

8
ENΛΣ FMN

Λ FMNΣ − 1
16 iε

MNPQRΛΣ FMN
Λ FPQ

Σ

= −e φ−1NΛΣ

[

XΛX̄ΣC2 +DµX
ΛDµX̄

Σ
]

+
1

4
φ−2NΛΣ

(

XΛ
↔

DµX̄
Σ
)

εµνρF (W )νρ
0

−
1

8
e φ−1NΛΣ

[

F (W )µν
ΛF (W )µνΣ + φ−2Lp

q
Λ Lq

p
0 F (W )µν

ΣF (W )µν0
]

+
1

4
e φ−3NΛΣ

[

1

2
XΛX̄Σ −

1

8
φ−2Lp

q
Λ Lq

p
0 Lr

s
Σ Ls

r
0

]

F (W )µν
0F (W )µν0

+
1

8
iεµνρRΛΣ

[

F (W )µν
Λ +

1

2
φ−2Lp

q
Λ Lq

p
0 F (W )µν

0

]

∂ρ
(

φ−2Lr
s
Σ Ls

r
0
)

−
1

16
e φNΛΣ ∂µ

(

φ−2Lp
q
Λ Lq

p
0
)

∂µ
(

φ−2Lr
s
Σ Ls

r
0
)

. (5.31)
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In the left hand side of this relation, DµX
Λ denotes a U(1) covariant derivative with the

connection Aµ
0 that was defined in (2.48),

DµX
Λ =

(

∂µ − bµ + iAµ
0
)

XΛ . (5.32)

Finally we reduce the remaining terms

1

8
E
[

X̄ΛNΛΣF
ABΣ TAB

ijεij −
1

8
X̄ΛNΛΣX̄

Σ
(

TAB
ijεij

)2]
+ h.c.

=
1

8
ie φ−3NΛΣX̄

Λ

[

(ῡ0
↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)

]

×

[

φ∂µ
(

φ−2Lp
q
Σ Lq

p
0
)

+ e−1εµνρ
(

F (W )νρ
Σ +

1

2
φ−2Lp

q
Σ Lq

p
0F (W )νρ

0
)

]

+
1

16
e φ−5NΛΣ X̄ΛX̄Σ

[

(ῡ0
↔

D ax
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

D aῡ
0)

]2

+ h.c. . (5.33)

Because the number of vector multiplets is increased by the presence of the Kaluza-

Klein vector multiplet, we extend the range of the indices {Λ} to {A} = {0,Λ}, where

the index A = 0 refers to the Kaluza-Klein vector multiplet. Up to terms that involve

derivatives of the scalar fields and the epsilon tensor, the 3D Lagrangian can then be

written as

Lvector

∣

∣

3D
= −

1

2
eFAB(L)L

p
q
A Lq

p
B

[

1

2
R−D − C2

]

−
1

2
eFAB(L)

[

F (W )µν
A F (W )µνB + Y i

j
A Y j

i
B
]

. (5.34)

Here we have simply collected all the corresponding terms of (5.30) and (5.31), which lead

to the following expressions for the tensor FAB(L),

FΛΣ =
1

4L0
NΛΣ ,

FΛ0 = F0Λ =
1

8 (L0)3
NΛΣ Lp

q
Σ Lq

p
0 ,

F00 =
1

16 (L0)3
NΛΣ

[

Lp
q
Λ Lq

p
Σ +

3Lp
q
Λ Lq

p
0 Lr

s
Σ Ls

r
0

2 (L0)2

]

. (5.35)

Furthermore, one easily verifies that the direct analogue of the tensor potential that was

introduced earlier in (5.18),4

χvector ≡ −2FAB Lp
q
A Lq

p
B

= −
NΛΣ

4L0

[

Lp
q
Λ Lq

p
Σ +

Lp
q
Λ Lq

p
0 Lr

s
Σ Ls

r
0

2 (L0)2

]

=
2NΛΣXΛX̄Σ

L0
, (5.36)

4Note that a minus sign has to be introduced in the definition below because the quadratic form Lp
q L

p
q

that we are using here is non-positive!

– 35 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
6

is a homogeneous function of first degree and is manifestly invariant under the symme-

tries (5.6). To prove the identity between the second and third line one may use the

following convenient expression for XΛ (cf. (5.8)),

XΛ =
1

2
i ῡΛ −

1

4
i

[

xΛ −
Lp

q
Λ Lq

p
0

L0

]

ῡ0

L0 + 1
2x

0
. (5.37)

The reader may verify that the application of a 3D SU(2) transformation on the right-

hand side of (5.37) takes the form of an U(1) transformation on the left-hand side with

parameter ΛA defined in (2.45). Therefore U(1) invariant products such as XΛ X̄Σ should

take an SU(2) invariant form. In particular we find

− 8X(Λ X̄Σ) = Lp
q
Λ Lq

p
Σ +

Lp
q
Λ Lq

p
0 Lr

s
Σ Ls

r
0

2 (L0)2
, (5.38)

which indeed confirms the last identity in (5.36). Likewise FΛΣ(X) is also U(1) invariant,

and must therefore be SU(2) invariant as well. From this observation it follows directly

that NΛΣ = −i(FΛΣ − F̄ΛΣ), the functions FAB and χvector are all SU(2) invariant as well.

We should point out that all properties derived above are so far consistent with the fact

that there exists a reflection associated with (3.3) that correspondingly interchanges the

vector and the tensor multiplets. This explains the different sign of the terms proportional

to the field D in the two Lagrangians (5.27) and (5.34). We will see that this relation

between tensor and vector supermultiplets is also valid for the remaining terms in the

full Lagrangians. Therefore, the remainder of this section will be devoted to a detailed

derivation of the bosonic terms of the vector Lagrangian in order to isolate the intricate

features that are crucial for establishing the relationship with the tensor Lagrangian.

Before specifying the remaining terms in the Lagrangian (5.34), we present a convenient

expression based on the derivatives of XΛ with respect to the components of Lp
q
A,

δXΛ =
υ0 δῡ0 − ῡ0 δυ0

2L0(L0 + 1
2x

0)
XΛ

−
i ῡ0

4L0

[(

δxΛ + δx0
Lp

q
0 Lq

p
Λ

2(L0)2

)

+
ῡ0

L0 + 1
2x

0

(

δυΛ + δυ0
Lp

q
0 Lq

p
Λ

2(L0)2

)

−
υ0

L0 − 1
2x

0

(

δῡΛ + δῡ0
Lp

q
0 Lq

p
Λ

2(L0)2

)]

. (5.39)

Using that FΛΣ(X) is the second derivative of a holomorphic homogeneous function of

degree two, we derive the following two identities,

∂FΛΣ(X)

∂Lp
q
Ξ

=
∂FΛΞ(X)

∂Lp
q
Σ

,
∂FΛΣ(X)

∂Lp
q
0

=
∂FΛΣ(X)

∂Lp
q
Ξ

Lr
s
0 Ls

r
Ξ

2(L0)2
, (5.40)

where the second equation follows directly from (5.39). Furthermore we note the identities

∂FΛΣ(X)

∂Lr
p
Ξ

Lr
q
0 = −Lp

r
0 ∂FΛΣ(X)

∂Lq
r
Ξ

= iL0 ∂FΛΣ(X)

∂Lq
p
Ξ

,

∂F̄ΛΣ(X̄)

∂Lr
p
Ξ

Lr
q
0 = −Lp

r
0 ∂F̄ΛΣ(X̄)

∂Lq
r
Ξ

= −iL0 ∂F̄ΛΣ(X̄)

∂Lq
p
Ξ

. (5.41)
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Subsequently we make use of the fact that FΛΣ(X) is a homogeneous function of

zeroth degree, so that it is invariant under complex scale transformations of the 4D fields

XΞ. When regarding FΛΣ(X) as function of the 3D fields, it must be an SU(2) invariant

homogeneous function of zeroth degree. Moreover, close inspection based on (5.37) shows

that it must be a homogeneous function of the Lp
q
Ξ and Lp

q
0 separately. Exploiting the

second equation (5.40), we thus derive the following results based on homogeneity and

SU(2) invariance,

∂FΛΣ

∂Lp
q
Ξ
Lp

q
0 = 0 ,

∂FΛΣ

∂Lp
q
Ξ
Lp

q
Ξ = 0 ,

∂FΛΣ

∂Lp
q
0
Lp

q
0 = 0 ,

∂FΛΣ

∂Lq
r
Ξ

(

Lp
r
Ξ + Lp

r
0 L

s
t
0 Lt

s
Ξ

2(L0)2

)

= 0 , (5.42)

where the first equation, while consistent with homogeneity, is actually derived from (5.39).

Furthermore the homogeneity of F (X) implies that δFΛΣ under any variations δXΞ must

satisfy δFΛΣXΛ = 0, so that

∂FΛΣ

∂LA t
u

[

Lp
q
Λ Lq

p
Σ +

Lp
q
Λ Lq

p
0 Lr

s
Σ Ls

r
0

2(L0)2

]

= 0 , (5.43)

where we again made use of (5.38).

The above results can straightforwardly be used to derive a number of specific results

that confirm the relation with the tensor multiplet Lagrangians. First of all, we may verify

by using (5.40) and (5.43) that the derivative5 of FAB in (5.35) with respect to Lp
q
C ,

denoted by FABC
q
p, satisfies

FABC
p
q = F(ABC)

p
q , (5.44)

which corresponds to the first equation given in (5.14) in the context of the tensor multi-

plets. Then we have already argued that the FAB(L) must be SU(2) invariant; moreover

they are manifestly homogeneous functions of degree −1 in terms of the 3D fields F p
q
A.

Therefore we derive the identity

FABC
q
r L

r
p
C = −

1

2
δpq FAB , (5.45)

which is precisely analogous to (5.17), considered in the context of the tensor Lagrangian.

Furthermore, from (5.43) one can verify the following relations,

∂χvector

∂Lp
q
A

= −2FAB Lq
p
B ,

∂2χvector(L)

∂Lp
r
A ∂Lr

q
B

= −2FAB(L) δp
q . (5.46)

5Observe that with the definitions of this paper we have

∂Lp
q

∂Lr
t

= δ
p
r δ

t
q ,

∂L0

∂Lp
q
0
= −

Lq
p
0

2L0
.
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which are analogous to the equations (5.28) derived for tensor multiplets. For future use

we give the explicit expressions for the independent components of FABC
p
q,

FΛΣΞ
p
q =

1

4L0

∂NΛΣ

∂Lq
p
Ξ
,

FΛΣ0
p
q =

1

8 (L0)3
NΛΣ Lp

q
0 +

1

8 (L0)3
∂NΛΣ

∂Lq
p
Ξ
Lr

s
Ξ Ls

r
0 ,

FΛ00
p
q =

1

8 (L0)3
NΛΣ

[

Lp
q
Σ +

3Lr
s
Σ Ls

r
0

2 (L0)2
Lp

q
0

]

−
1

8 (L0)3
∂NΣΞ

∂Lq
p
Λ
Lr

s
Σ Ls

r
Ξ ,

F000
p
q =

3

32 (L0)5
NΛΣ

[

Lr
s
Λ Ls

r
Σ Lp

q
0 + 2Lr

s
Λ Ls

r
0 Lp

q
Σ +

5Lr
s
Λ Ls

r
0 Lt

u
Σ Lu

t
0

2 (L0)2
Lp

q
0

]

−
1

16 (L0)5
∂NΛΣ

∂Lq
p
Ξ
Lr

s
Λ Ls

r
Σ Lt

u
Ξ Lu

t
0 , (5.47)

where we made use of the relations (5.40) and (5.43). To verify their correctness one can,

for instance, verify the validity of (5.45).

To continue we will also need the following result for the covariant derivatives DµX
Λ

in terms of the three-dimensional fields,

DµX
Λ =

1

2
iDµῡ

Λ −
1

4
i

[

Dµx
Λ −

DµL
p
q
Λ Lq

p
0

L0

]

ῡ0

L0 + 1
2x

0

− i
Lp

q
Λ Lq

p
0

8 (L0)3

[

(ῡ0
↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)

]

, (5.48)

which has been derived by making use again of (5.39). One then proceeds to evaluate the

remaining terms of the action which all involve derivatives of the scalar fields. First let us

collect all the terms quadratic in these derivatives from (5.30), (5.31) and (5.33),

eNΛΣ

[

1

2
φ−3XΛX̄Σ (Dµφ)

2 − φ−1DµX
ΛDµX̄Σ

+
1

16
φ−5 X̄ΛX̄Σ

[

(ῡ0
↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)
]2

+ h.c.

+
1

8
iφ−2X̄Λ

[

(ῡ0
↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)
]

∂µ
(

φ−2Lp
q
Σ Lq

p
0
)

+ h.c.

−
1

16
φ∂µ

(

φ−2Lp
q
Λ Lq

p
0
)

∂µ
(

φ−2Lr
s
Σ Ls

r
0
)

]

. (5.49)
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To write this expression in terms of the 3D fields we first derive the following three

identities,

iXΛ
[

(υ0
↔

Dµx
0)−

υ0

L0 + 1
2x

0
(ῡ0

↔

Dµυ
0)
]

+ h.c.

= −L0 Lp
q
ΛDµL

q
p
0 −

Lr
s
ΛLs

r
0

2L0
Lp

q
0DµL

q
p
0 ,

DµX
(ΛDµX̄Σ)

= −
1

8
DµL

p
q
ΛDµLq

p
Σ −

1

16 (L0)2
Lp

q
0DµL

q
p
Λ Lr

s
0DµLs

r
Σ

−
Lr

s
0 Ls

r
(Λ

8 (L0)2
DµL

p
q
Σ)DµLq

p
0 −

Lr
s
0 Ls

r
(Λ

16 (L0)4
DµL

p
q
Σ) Lq

p
0Dµ Lt

u
0 Lu

t
0

+
1

64 (L0)6
Lp

q
Λ Lq

p
0 Lr

s
Σ Ls

r
0
∣

∣

∣
(ῡ0

↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)
∣

∣

∣

2
,

∣

∣

∣
(ῡ0

↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)
∣

∣

∣

2

= −2 (L0)2
(

DµL
p
q
0DµLq

p
0
)

−
(

Lp
q
0DµL

q
p
0
)2

. (5.50)

The right-hand side of these expressions is manifestly invariant under the emergent 3D

SU(2) R-symmetry, as is to be expected because the expressions on the left-hand side

are invariant under the the 4D U(1) R-symmetry. Collecting the various terms one can

verify that all the terms quadratic in the derivatives of the scalar fields combine into the

following form,

Lvector

∣

∣

3D
=

1

2
eFAB(L) DµL

p
q
ADµLq

p
B . (5.51)

What remains to evaluate are the terms linear in the field strengths. Collecting those

terms gives rise to

iεµνρNΛΣ

[

−
1

4
iφ−2

(

XΛ
↔

DµX̄
Σ
)

F (W )νρ
0

+
1

8
φ−3

(

X̄Λ

[

(ῡ0
↔

Dµx
0)−

ῡ0

L0 + 1
2x

0
(υ0

↔

Dµῡ
0)

]

+ h.c

)

×
(

F (W )νρ
Σ +

1

2
φ−2Lp

q
Σ Lq

p
0F (W )νρ

0
)

]

+
1

8
iεµνρRΛΣ

[

F (W )µν
Λ +

1

2
φ−2Lp

q
Λ Lq

p
0 F (W )µν

0

]

∂ρ
(

φ−2Lr
s
Σ Ls

r
0
)

. (5.52)

These terms can be rewritten by using identities similar to the ones given in (5.50), which

lead to the following expression,

iεµνρNΛΣ

[

1

16 (L0)3

(

Lp
q
0 Lq

r
ΛDµL

r
p
Σ −

3Ls
t
ΛLt

s
0

2 (L0)2
Lp

q
Σ Lq

r
0DµL

r
p
0

)

F (W )νρ
0

−
1

8 (L0)3
Lp

q
Λ Lq

r
0DµL

r
p
0 F (W )νρ

Σ

]

+
1

8
iεµνρRΛΣ ∂µ

(

Lp
q
Λ Lq

p
0

(L0)2

)[

F (W )νρ
Σ +

Ls
t
Σ Lt

s
0

2 (L0)2
F (W )νρ

0

]

. (5.53)
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This expression is manifestly invariant under local SU(2) transformations as well as under

gauge transformations of the fields Wµ
A. This is in contrast with the situation encountered

for generic tensor multiplets discussed in subsection 5.2.2, where we argued that this is not

the case in general (see, in particular the discussion related to the equations (5.21)–(5.24)).

Hence we conclude that the models obtained by dimensional reduction from 4D vector

multiplets belong to a restricted class. As we shall discuss in the next subsection 5.3, this

implies that certain tensor multiplet models are not in the image of the c-map. This does

not come as a surprise as such a phenomenon has been noted earlier for hypermultiplets [1].

It remains to verify explicitly that (5.53) has the same structure as the two last terms

in (5.27). Let us therefore first extract the terms proportional to the SU(2) connections

Aµ
p
q. We note that the covariant derivatives in (5.53) appear in the form tr

[

L1 L2DµL3

]

,

so that the terms proportional to the gauge connection Aµ take the form

1

2
tr
[

L1 L2 [A, L3]
]

=
1

2
tr
[

L1 L3

]

tr
[

L2Aµ

]

−
1

2
tr
[

L2 L3

]

tr
[

L1Aµ

]

, (5.54)

where we have used that L1, L2, L3 and Aµ are traceless, anti-hermitian two-by-two matri-

ces. Collecting the various terms from (5.53) linear in the connection is now straightforward

and leads to

L
∣

∣

3D
= −

1

2
i εµνρFAB(L)F (W )µν

A Lp
q
B Aρ

q
p . (5.55)

This term takes exactly the same form as the corresponding term in the Lagrangian (5.27).

Finally we have to show that the terms in (5.53) with an ordinary derivative are equal to

L
∣

∣

3D
= i εµνρFABC

p
q ∂µL

q
r
A ∂νL

r
p
B Wρ

C , (5.56)

upon adding a total derivative. In this way the terms in (5.53) that involve RΛΣ can be

written such that they become proportional to ∂µRΛΣ times a bare gauge field. Making

use of (5.41) one then derives the following identity,

∂[µRΛΣ ∂ν]

(

Lp
q
Λ Lq

p
0

(L0)2

)

=
1

(L0)2
∂RΛΣ

∂Lp
q
Ξ

[

∂[µL
p
q
Λ ∂ν]L

r
s
Ξ Ls

r
0 + ∂[µL

p
q
Λ ∂ν]L

r
s
0 Ls

r
Ξ

+
Lt

u
Λ Lu

t
0

2(L0)2

(

∂[µL
p
q
0 ∂ν]L

r
s
Ξ Ls

r
0 + ∂[µL

p
q
0 ∂ν]L

r
s
0 Ls

r
Ξ + 2 ∂[µL

p
q
Ξ ∂ν]L

r
s
0 Ls

r
0

)

+
Lt

u
Λ Lu

t
0

2(L0)2
Lv

w
Ξ Lw

v
0

(L0)2
∂[µL

p
q
0 ∂ν]L

r
s
0 Ls

r
0

]

. (5.57)

Since FABC
p
q is defined in terms of NΛΣ and its derivatives, we have to convert these terms

so that the result is either proportional to NΛΣ or to its derivative. This can be achieved

by making use of (5.41), from which one derives

∂RΛΣ

∂Lq
p
Ξ
=

1

L0

∂NΛΣ(X)

∂Lr
p
Ξ

Lr
q
0 = −

1

L0
Lp

r
0 ∂NΛΣ

∂Lq
r
Ξ
. (5.58)

With the above results, upon using (5.40), (5.42), and

Lp
q
[A Lr

s
B] = −

1

2
δps L

r
t
[A Lt

q
B] +

1

2
δrq L

p
t
[A Lt

s
B] , (5.59)
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to rearrange the various contractions of SU(2) indices, one can verify that all terms lead

indeed to (5.56).

Combining the various results derived in this subsection, the resulting 3D vector mul-

tiplet Lagrangian reads as follows,

Lvector

∣

∣

3D
=

1

2
eF(L)AB DµL

p
q
ADµLq

p
B −

1

2
eF(L)AB Lp

q
A Lq

p
B

(

1

2
R−D − C2

)

−
1

2
eF(L)AB

[

F (W )µν
A F (W )µνB + Y i

j
A Y j

i
B
]

−
1

2
i εµνρF(L)AB F (W )µν

A Lp
q
B Aρ

q
p

+ i εµνρF(L)ABC
p
q ∂µL

q
r
A ∂νL

r
p
B Wρ

C , (5.60)

which coincides with that of the tensor Lagrangian (5.27), except that the SU(2) indices

i, j, . . . have been interchanged by p, q, . . ., and the term proportional to the field D has

changed sign. Note that the above Lagrangian does not represent the most general La-

grangian of this type. First of all (5.60) can be written in a form that is manifestly invariant

under both the gauge transformations associated with the gauge fields Wµ
A and the local

SU(2) transformations, as follows from (5.53). Secondly, this Lagrangian is invariant under

the n+ 1 rigid abelian transformations noted in (5.6).6 Both these properties are charac-

teristic for dimensionally reduced 4D vector multiplet Lagrangians and are not generic for

these 3D couplings.

Just as for the tensor multiplets (cf. (5.15)) a function F(x, υ, ῡ) should exist such that

∂2F(x, υ, ῡ)

∂xA ∂xB
= −

∂2F(x, υ, ῡ)

∂υA ∂ῡB
= FAB ,

∂2F (x, υ, ῡ)

∂xA ∂υB
=

∂2F (x, υ, ῡ)

∂xB ∂υA
. (5.61)

The function F can be expressed in terms of the function F (X) that encodes the 4D vector

multiplet Lagrangian and it takes the following form,

F(x, υ, ῡ) = −8L0 Im

[

F
(

X(L)
)

(ῡ0)2

]

, (5.62)

where XΛ(L) is defined by (5.37). Clearly this function is homogeneous of degree +1 and

it is also manifestly invariant under the shift transformations (5.6). Note, however, that it

is not invariant under the full SU(2) R-symmetry group, but only under its U(1) subgroup.

One can explicitly show that this function indeed satisfies the differential equations (5.61).

Alternatively one can show that (5.62) satisfies the relation

χvector(L) = −F(υ, ῡ, x) + xA
∂F(x, υ, ῡ)

∂xA
, (5.63)

which is the exact analogue of (5.20). To prove this result we note the following useful

equations,

xA
∂

∂xA
F (X(L))

(ῡ0)2
= −

1

2 (L0)2

[

X̄ΛFΛ −
|υ0|2

(ῡ0)2
XΛFΛ

]

, (5.64)

which follows upon using (5.39), (5.37) and (5.36).

6From the previous results in this subsection, the reader can verify that this is indeed the case. In fact

the Lagrangian is expected to have more rigid symmetries but those are ignored here.
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Obviously the function (5.62) is singular when imposing the SU(2) gauge condition

υ0 = 0. In that case we have XΛ = 1
2 iῡ

Λ, and the role of the function (5.62) is taken over

by a different function,

F̂(x, υ, ῡ) =
NΛΣ

[

xΛxΣ − 2 υΛῡΣ
]

4x0
, (5.65)

which satisfies the same equations (5.61) for A,B = Λ,Σ, as well as

∂2F̂(x, υ, ῡ)

∂x0 ∂x0
= F00 . (5.66)

In [11] the result (5.65) was noted in the case of rigid supersymmetry (where x0 equals

a constant) for the c-map between vector and tensor multiplets. It was later extended

to local supersymmetry in [12, 13]. Note, however, that the general context in [11–13]

is somewhat different than in this paper as it is primarily directed towards the study of

hypermultiplets.

Here we should add that different functions F(x, υ, ῡ) (as well as F̂(x, υ, ῡ)) will cor-

respond to different Lagrangians that can, however, still describe the same theory, as

we can deduce from the existence of electric-magnetic duality of the 4D vector multiplet

Lagrangians. An analogous situation exists for the 4D tensor Lagrangians because of

‘tensor-tensor’ duality [11] (the existence of such tensor dualities is now also implied by

the c-map).

5.3 The c-map

We have now determined the 3D Lagrangian for systems of hypermultiplets, tensor mul-

tiplets and vector multiplets quadratic in space-time derivatives. As noted in subsec-

tion 5.2.1, there exist two different hypermultiplets, distinguished by the fact that their

scalar sections, Ai
α and Ãp

α, transform under different SU(2) factors of the R-symmetry

group. Their corresponding Lagrangians are given in (5.11) and (5.12). Let us then summa-

rize the terms in the combined Lagrangian that contain the Ricci scalar, the two auxiliary

fields of the superconformal multiplet, C and D, as well as the kinetic terms of the scalars

of the various supermultiplets,

e−1L =
1

4
(χhyper + χtensor + χ̃hyper + χvector)

(

1

2
R− C2

)

+
1

4
(χhyper + χtensor − χ̃hyper − χvector)D

−
1

2
Ωαβ ε

ij DµAi
αDµAj

β −
1

2
Ω̃αβ ε

ij DµÃi
αDµÃj

β

+
1

2
FIJ DµL

i
j
I DµLj

i
J +

1

2
FAB DµL

p
q
ADµLq

p
B . (5.67)
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Here we made use of the vector and tensor potentials as well as the hyperkähler potentials,

which are homogeneous in the scalar fields and invariant under R-symmetry,

χhyper =
1

2
Ωαβ ε

ij Ai
αAj

β ,

χ̃hyper =
1

2
Ω̃αβ ε

pq Ãp
α Ãq

β ,

χtensor = −2FIJ L
i
j
I Lj

i
J ,

χvector = −2FAB Lp
q
A Lq

p
B . (5.68)

The above equations represent the generic situation in three dimensions.7 It seems

that there is a symmetric situation between the two sectors corresponding to (χhyper +

χtensor) and (χ̃hyper + χvector), which involves also the reflection (3.3) noted for the 3D

superconformal multiplet. While we have obtained these results by dimensional reduction

from four dimensions, starting with vector and tensor multiplets and only one type of

hypermultiplets, one may now consider the inverse procedure and ask which of these 3D

theories can be uplifted to four dimensions. A special subclass then consists of those

theories that can be uplifted to 4D in two different ways, meaning that the 3D Lagrangian

and its dual one with respect to the reflection (3.3) can both be uplifted. In that case there

will exist two inequivalent 4d Lagrangians that yield the same 3D theory upon dimensional

reduction. Henceforth we will concentrate on this subclass.

To have two possible uplifts, the 3D Lagrangian must obviously satisfy a number of re-

strictions. As already explained, under dimensional reduction as carried out in this paper,

the vector multiplet Lagrangian is of a restricted type. This implies that the alternative up-

lift to four space-time dimensions is only possible when also the tensor multiplet Lagrangian

belongs to this restricted class. A similar argument applies to the hypermultiplets. Since

the hypermultiplet Lagrangian associated with the hyperkähler potential χ̃hyper cannot be

obtained directly by dimensional reduction from 4D hypermultiplets, it can only emerge

via vector-scalar duality from the vector sector. Hence to have two alternative uplifts to

4D the two hyperkähler Lagrangians should both be such that they can be obtained from

scalar-vector duality from a restricted 3D vector Lagrangian. When dualizing n+2 vector

multiplets one obtains a hyperkähler cone of quaternionic dimension n + 2 with 2n + 3

tri-holomorphic abelian isometries.8

If one of the inequivalent 4D Lagrangians has nv (off-shell) vector multiplets and nt

(off-shell) tensor multiplets (ignoring the hypermultiplets for convenience), then the other

uplift should have nt − 1 (off-shell) vector and nv + 1 (off-shell) tensor multiplets (so that

the total number of off-shell vector and tensor multiplets in 3D equals nv + nt +1). Obvi-

ously we have the condition that there must at least be one off-shell tensor supermultiplet

in either one of the two inequivalent 4D Lagrangians! The map between these two inequiv-

alent 4D theories is known as the c-map. From the perspective of the 10D IIA and IIB

7For simplicity we are ignoring the option of partially performing vector-scalar dualities in which case

one obtains an (on-shell) Lagrangian that consists of vector multiplets and hypermultiplets with mutual

interactions beyond the ones induced by the coupling to the fields of the superconformal theory.
8Note that for the on-shell theory the corresponding quaternion-Kähler manifold of quaternionic dimen-

sion n+ 1 has only n+ 2 commuting quaternionic abelian isometries [3].
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supergravities compactified on the circle S1 times a six-dimensional internal manifold that

preserves eight supersymmetries, the resulting reduction to 3D leads to a Lagrangian that

can be uplifted to 4D in two different ways. Those will then correspond to the compact-

ified IIA and the compactified IIB theories. In string theory these two theories emerge

in the compactification of type-II string theory on a circle in its two decompactification

limits, where either the momentum modes or the winding modes become massless. Hence

this property of lower-dimensional matter-coupled supergravities can thus be seen as a

consequence of T-duality for type-II strings [1].

6 The c-map for higher-derivative couplings

The off-shell reduction scheme introduced in this paper can be straightforwardly applied

to higher-derivative Lagrangians. Higher-derivative couplings in 4D can be generated by

coupling a number of vector multiplets to the Weyl multiplet (its covariant quantities con-

stitute a chiral multiplet with the anti-selfdual tensor Tab
ij as its lowest component, in the

same way as the covariant quantities of the vector multiplet define a chiral multiplet with

the holomorphic scalar X as its lowest component), by means of a chiral invariant [28].

To consider a similar coupling on the tensor multiplet side is, however, more complicated,

although this can be handled by the standard technique of making use of composite mul-

tiplets. For instance, one can write an off-shell vector multiplet in terms of off-shell tensor

multiplets [5], or an off-shell tensor multiplet in terms of vector multiplets. Since these com-

posite multiplets contain two derivatives, their substitution into a standard two-derivative

Lagrangian will lead to four space-time derivatives. Another way to generalize higher-

derivative couplings is by making use of the so-called ‘kinetic multiplet’, which leads in

principle to non-chiral invariants [22, 30, 31].

For simplicity, we will first consider the Lagrangians derived in the previous section

and replace some of the elementary vector and/or tensor multiplets by composite ones.

In this way we will naturally obtain higher-derivative actions that can be uplifted to two

different 4D theories, which are thus related by the c-map. In the next subsection we will

first introduce the key formulae for these composite multiplets. In the last subsection we

will briefly consider the coupling to a composite chiral multiplet consisting of the square

of the Weyl multiplet.

6.1 Higher derivative couplings through composite matter multiplets

In order to discuss higher-derivative actions for matter multiplets it is convenient to in-

troduce some elements of the multiplet calculus known in four dimensions, which can be

straightforwardly reduced to three dimensions, using the formulae in section 5.1.

In four dimensions, one may construct composite vector multiplets out of a set of tensor

multiplets [5]. The starting point is the lowest-weight components of the vector multiplets,

the complex scalars Xcomp, which take the form

Xcomp = f(L)I Ḡ
I + f(L)IJ

ij ϕ̄I
iϕ

J
j , (6.1)
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where the f(L)I are functions of the tensor multiplet scalars Lij
I , which are homogeneous

of degree −1. The f(L)IJ
ij then denote their derivatives with respect to Lij

J , and GI

and ϕI denote the auxiliary fields and the spinor fields of the 4D tensor multiplets. The

functions fI are subject to two additional constraints, namely

fIJ
ij = fJI

ij , εjk
∂fIJij
∂LklK

= 0 . (6.2)

These constraints are similar to the ones noted in subsection 5.2.2 for the function FIJ

that appears in the 4D tensor multiplet action. In components their solution takes the

form (5.15) upon suppressing the first index I. The functions f(L)I must be invariant

under the 4D SU(2) R-symmetry group, so that the composite scalar Xcomp transforms as

as a proper 4D chiral multiplet scalar.

The remaining components of the composite multiplet are then identified straightfor-

wardly upon considering consecutive supersymmetry variations. As an example we present

the expression for the composite spinor associated with the composite vector multiplet,

Ωi
comp = −2 fI

[

/Dϕi
I + 3Lij

Iχj +
1

8
εij TAB

jk γABεkl ϕ
l I

]

+ 2 fIJij Ḡ
I ϕjJ − 2 fIJ

kl
(

/DLik
I − εik /EI

)

ϕl
J + 2 fIJKij

kl ϕjK ϕ̄k
Iϕl

J , (6.3)

where fIJKij
kl = ∂2fI/∂L

ijJ ∂Lkl
K .

Also the reverse situation is possible, and one may construct a four-dimensional com-

posite tensor multiplets out of a set of vector multiplets. In this case, the lowest-weight

component is an SU(2) triplet of scalars Lij
comp, which is given by

Lij
comp = g(X)Λ Yij

Λ −
1

2
g(X)ΛΣ Ω̄(i

ΛΩj)
Σ

+ εikεjl

[

ḡΛ(X̄)Y klΛ −
1

2
ḡ(X̄)ΛΣ Ω̄(kΛΩl)Σ

]

, (6.4)

where the gΛ(X) are holomorphic functions of the vector multiplet scalars XΛ which are

homogeneous of zeroth degree. The gΛΣ denote the derivative of gΛ with respect to XΣ.

Again there is a constraint on the derivatives of the functions gΛ,

gΛΣ = gΣΛ , (6.5)

which implies that the gΛ can be expressed in terms of a derivative of a holomorphic

function, gΛ = ∂g/∂XΛ. Just as before the remaining components of this multiplet will

follow from applying consecutive supersymmetry variations of (6.4). As an example we

present the corresponding expression for the composite spinor,

ϕi
comp = (gΛ + ḡΛ) /DΩi

Λ − /DgΛΩi
Λ

+
1

2
ḡΛΣ Yij

ΛΩj Σ −
1

4
εij ḡΛΣ

(

FAB
Λ −

1

4
X TABkl ε

kl

)

γABΩjΣ

+
1

64
ḡΛΣΞ εij γABΩ

jΛ εkl Ω̄
kΣγABΩlΞ . (6.6)
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The underlying reason why this construction works is related to the fact that the equations

of motion associated with a (two-derivative) vector multiplet Lagrangian transform as a

tensor multiplet, and vice versa. This remains true in a superconformal background. The

conditions (6.2) and (6.5) can be understood in this perspective: when these conditions

hold one can construct invariant Lagrangians based on such functions.

With the above results one can in principle obtain the corresponding 3D composite

multiplets by applying the dictionary given in section 5.1 to all the bosonic components of

the composite multiplets.

Starting from the composite vector multiplet defined by (6.1), we write both sides of

the equations in terms of the corresponding components of the 3D multiplets. The relevant

functions f(L)I and gΛ are then written in terms of the proper 3D fields. The fI are written

in terms of the 3D of the Li
j
I , after extracting a uniform factor 1/(2L0),

f(L4D)I −→
1

2L0
f(L3D)I . (6.7)

The new function thus remains SU(2) invariant and homogeneous of degree −1 in the 3D

scalars. This is all dictated by the off-shell dictionary (see, in particular, (5.4) and (5.7)).

It is then straightforward to obtain the following results for the bosonic composite vector

multiplet components (suppressing their fermionic contributions),

Lp
q
comp = f(L)I Y

p
q
I ,

F (W )µν
comp = fIJ i

j D[µL
i
k
I Dν]L

k
j
J −

1

2
fI L

i
j
I R(V)µν

j
i + ∂[µ

[

i e−1εν]ρσ fI F (E)ρσI
]

,

Y i
j
comp = fI

[

D2Li
j
I +

1

2

(

1

2
R+D − C2

)

Li
j
I

]

+ fIJ
k
l DµL

l
k
I DµLi

j
J

+
1

2
fIJ

i
j

[

Y p
q
I Y q

p
J + F (E)abIF (E)ab

J −DµL
k
l
I DµLl

k
J
]

+
1

2
i εµνρ

[

fIJ
i
kDµL

k
j
I − fIJ

k
jDµL

i
k
I
]

F (E)νρ
J . (6.8)

The derivation for the composite tensor multiplet proceeds along similar lines, except

that the Kaluza-Klein vector multiplet will now also contribute, Hence the sum over the

vector multiplets in (6.4) and (6.6) will now include an extra vector multiplet. The function

g is written in terms of the fields Lp
q
A (thus including the Kaluza-Klein scalar). The degree

of homogeneity is changed because we have to absorb a factor 1/L0. This is all dictated

by the off-shell dictionary (see, in particular, (5.4) and (5.7)). It is then straightforward to

obtain the conversion to

[

g(X) + ḡ(X̄)
]

Λ
−→

1

L0
g(L3D)A , (6.9)

with A = Λ, 0 and where

g(L3D)A =







g(L3D)Λ ,

g(L3D)Σ
Lp

q
Σ Lq

p
0

2 (L0)2
.

(6.10)
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As a consequence of (6.10) the resulting expressions will again be invariant under the

transformations (5.6). We now present the bosonic components of the composite tensor

multiplet, converted to 3D and suppressing fermionic contributions,

Li
j
comp = g(L)A Y i

j
A ,

F (E)µν
comp = gABp

q D[µL
p
r
ADν]L

r
q
B −

1

2
gA Lp

q
AR(A)µν

q
p + ∂[µ

[

i e−1εν]ρσ gA F (W )ρσA
]

,

Y p
q
comp = gA

[

D2Lp
q
A +

1

2

(

1

2
R−D − C2

)

Lp
q
A

]

+ gAB
r
sDµL

s
r
ADµLp

q
B

+
1

2
gAB

p
q

[

Y i
j
A Y j

i
B + F (W )abAF (W )ab

B −DµL
r
s
ADµLs

r
B
]

+
1

2
i εµνρ

[

gAB
p
rDµL

r
q
A − gAB

r
qDµL

p
r
A
]

F (W )νρ
B . (6.11)

The components of the composite vector and tensor multiplets clearly share a common

structure. Apart from the fact that the indices are different (because they transform under

a different SU(2) factor of the R-symmetry group) and that an additional Kaluza-Klein

vector multiplet has emerged in the composite tensor multiplet, the only obvious difference

is that the field D appears with opposite signs in (6.8) and (6.11), which is consistent

with the reflection symmetry noted in (3.3). However, there is also another, more implicit,

difference associated with the field strengths F (W )µν
comp and F (E)µν

comp. One can show

that both of them satisfy a Bianchi identity, which implies that there should exist explicit

expressions for the corresponding composite gauge fields Wµ
comp and Eµ

comp. However, as

we have already noted when discussing the Lagrangians with two derivatives in subsec-

tion 5.2, the expression for Wµ
comp is in general not invariant under the relevant SU(2)

R-symmetry, whereas the expression for Eµ
comp will be manifestly invariant under the rele-

vant SU(2). This should not come as a surprise in view of the fact that the composites can

be associated with the field equations belonging to some appropriately chosen Lagrangian.

Since F (E)µν
comp is therefore a field equation belonging to a vector multiplet Lagrangian,

Eµ
comp will thus be manifestly SU(2) invariant. For Wµ

comp the situation is different and

it will not necessarily be SU(2) invariant. Whether or not this is the case will depend on

the functions f(L)I that one intends to use.

There is also another feature that is relevant, namely, as was already alluded to above,

the composite tensor multiplet components (6.8) will necessarily be invariant under the

transformations (5.6), whereas the vector multiplet components will in general not be

subject to such a symmetry. Hence consistency with the c-map will requires that the

functions f(L)I will satisfy such a symmetry as well. Provided that this is the case, one

may construct the actions for vectors and tensors by including both the elementary and a

number of composite multiplets in the way that was described in section 5.2, because from

this construction there is no difference between elementary and composite multiplets. One

starts from a 4D Lagrangian describing nv elementary and ñv composite vector multiplets

(the latter described in terms of nt elementary tensor multiplets), and a second Lagrangian

describing nt elementary tensor and ñt composite tensor multiplets (the latter expressed

in terms of the nv elementary vector multiplets). This then leads to a 3D action which,

under the conditions described above, can then also be uplifted to the sum of two 4D
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Lagrangians, one describing nt − 1 elementary and ñt composite vector multiplets (the

latter described in terms of nv + 1 elementary tensor multiplets), and a second one based

on nv + 1 elementary and ñv composite tensor multiplets (the latter expressed in terms of

the nt − 1 elementary vector multiplets).

We refrain from working out some of these theories in detail and leave this to later

work. It is clear that, by considering composite multiplets that themselves depend on both

elementary and composite multiplets, one can successively construct interactions that will

involve even higher-order derivatives. In our next and last subsection we will briefly discuss

other higher-derivative Lagrangians and describe some details about their reduction to

three dimensions.

6.2 More higher-derivative couplings

As is well-known there exists a larger class of 4D higher-derivative actions for vector super-

multiplets, possibly involving the Weyl multiplet [22, 28, 30]. The latter is a reduced chiral

tensor multiplet, whose lowest-weight component equals εij TAB
ij . In all cases it is the

square of the Weyl multiplet that enters, so that the resulting multiplet is a composite chi-

ral multiplet whose lowest-weight component equals the composite scalar Â = (εij TAB
ij)2.

For the subsequent discussion we also present the bosonic contributions to the highest-

weight component of this multiplet, which is denoted by Ĉ,

Ĉ = 64R(M)−CD
AB R(M)−CD

AB + 32R(V)−AB i
j R(V)−AB

j
i

− 32TAB ij DADCTCB ij , (6.12)

where R(M)−CD
AB is a generalization of the (anti-selfdual component) of the Weyl tensor.

Since this composite multiplet is a scalar chiral multiplet, it can be directly coupled to

vector multiplets as well as to (composite) tensor multiplets. A full discussion of these

couplings is outside the scope of the present paper, and here we will mainly confine our-

selves to a partial analysis of square of the the Weyl multiplet upon its reduction to three

dimensions.

Using the dictionary in subsection 5.1 we can express the components Â and Ĉ in

terms of 3D fields (suppressing fermionic contributions),

Â = −
4

(L0)4

[

(ῡ0
↔

Da x0)−
ῡ0

L0 + 1
2x

0
(υ0

↔

Da ῡ0)

]2

,

Ĉ = 32
[

RµνRµν −
3

8
R2

]

+ 64 (DµC)2 + 48D2

+ 16
[

R(V)µν i
j R(V)µν

j
i + 2R(A)µν p

q R(A)µν
q
p

]

+
32

(L0)2
[

DµF νρ 0DµFνρ
0 − 2DµF

µν 0DρFρν
0
]

+
32

(L0)2
[

Dµ Y
i
j
0DµY j

i
0 + ie−1 εµνρ L0R(V)µν

i
j DρY

j
i
0
]

+ · · · , (6.13)

where in Ĉ we restricted ourselves to only some characteristic terms.
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To elucidate this result let us consider the bosonic terms of the 4D superconformal

action, which can be written as

Ls.c.
∣

∣

4D
= E

[

Ĉ −
1

16
Â (TABij ε

ij)2
]

+ h.c. , (6.14)

where the second term represents the bosonic contribution of the chiral superspace measure.

Upon its reduction to three dimensions, we write the result as a linear combination of two

terms,

e−1Ls.c.
∣

∣

3D
= e−1L1 + e−1L2, (6.15)

with

e−1L1 =
64

L0

[

RµνRµν −
3

8
R2 +

1

2
R(V)µν i

j R(V)µν
j
i +R(A)µν p

q R(A)µν
q
p

+ 2 (DaC)2 +
3

2
(D − C2)2

]

, (6.16)

and

e−1L2 =
64

(L0)3

[

DµF νρ 0DµFνρ
0 − 2DµF

µν 0DρFρν
0

+Dµ Y
i
j
0DµY j

i
0 + ie−1 εµνρ L0R(V)µν

i
j DρY

j
i
0

+
1

4
(C2 −D) (3Y i

j
0 Y j

i
0 + (Fµν

0)2)

]

+
4

(L0)5

[

3 (Fµν
0)2 (Fρσ

0)2 + 3 (Y i
j
0 Y j

i
0)2 + 2Y i

j
0 Y j

i
0 (Fµν

0)2
]

+ · · · . (6.17)

We should emphasize that the above expressions concern only a subset of the terms gen-

erated by the reduction and are thus incomplete. As we have already seen in section 5.2.3,

where we evaluated the 3D Lagrangian for vector multiplets, a full evaluation of the 3D

results can be rather tedious and this is particularly the case for Lagrangians with higher-

derivative couplings. Nevertheless the above results already show a number of noteworthy

features that will be present in the final result. Those will be briefly discussed below.

First of all this Lagrangian depends on both the fields of the 3D Weyl multiplet and

of the Kaluza-Klein vector multiplet. Clearly it is homogeneous of degree −1 in the latter

fields, and the super conformal fields appear in a non-linear fashion. This can be understood

on more general grounds, just as it was clear from the start that the Lagrangian should

contain fourth-order space-time derivatives.

The Lagrangian L1 contains terms that are familiar from previous work on higher-

derivative Lagrangians for 3D (super)gravity, multiplied by a compensating (L0)−1 factor

that is required by conformal invariance. The linearized result for the corresponding su-

pergravity invariant was given in [16] and exhibits all the quadratic bosonic terms present

in (6.16). However, there are some notable differences in the coefficients. One is that

the squares of the two SU(2) curvatures appear with different coefficients, unlike in [16]

where the coefficients are the same. The other one concerns the coefficient of the kinetic

term of the field C, which is positive. This discrepancy in the coefficients is no reason for
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concern: additional curvature terms may arise by commutators of covariant derivatives,

and the scalar kinetic terms are effected by the presence of additional terms, for instance

proportional to DµL
0DµC, that we have not extracted but that will change the coefficient

of the (DµC)2. Obviously the terms shown in (6.17) have no bearing on the expression

in [16], because the presence of the components of the Kaluza-Klein vector multiplet is even

more crucial here. It should be of interest to evaluate the full 3D superconformal invariant,

either from the off-shell dimensional reduction or directly in three space-time dimensions.

The latter can be done by utilizing the off-shell multiplet calculus obtained in [19, 20].

The 4D Weyl multiplet can easily be coupled to vector multiplets. Schematically

one has a function F (X, Â), which can for instance be expanded in positive powers of Â

according to

F (X, Â) =
∑

g

Fg(X) Âg , (6.18)

where each holomorphic function, Fg(X) is of appropriate weight to ensure consistency with

respect to conformal invariance. Comparing with (6.13), where Â is expressed in terms of

derivatives of the compensating scalars, it is clear that each term in (6.18) contributes 2 g

first-order derivatives on the scalars. This can be compared to the situation in 4D, where

the off-shell Lagrangian contains only four-derivative interactions, while a similar series of

ever increasing derivatives appears when solving for the auxiliary tensor TAB
ij .

Finally we emphasize that we have only briefly considered the coupling of the Weyl

multiplet to vector multiplets in this section. There also exist couplings that involve tensor

multiplets. Those will of course be relevant for establishing consistency with the c-map.

Assuming that this can be achieved, it may further clarify the effective action description

for topological amplitudes involving tensor multiplets or hypermultipets [14].
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A Relations between 4D and 3D Riemann curvatures

Based on (2.5) one can evaluate the relation between 4D and 3D curvature components. In

the equations below, derivatives Da are covariant with respect to 3D local Lorentz trans-

formations and dilatations. The results are as follows (in this appendix the 4D curvature
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components are consistently denoted by R̂),

R̂µν
ab = Rµν

ab +
1

2
φ−2

[

F (B)µ
[a F (B)ν

b] + F (B)µνF (B)ab
]

−B[µ

[

2φ−3F (B)ν]
[aDb]φ+Dν][φ

−2F (B)ab]
]

,

R̂µν
a4 = −D[µ[φ

−1F (B)ν]
a]− φ−2DaφF (B)µν

+B[µ

[

2Dν][φ
−2Daφ] +

1

2
φ−3 F (B)ν]b F (B)ab

]

,

R̂µ4̂
ab =

1

2
Dµ[φ

−2F (B)ab] + φ−3F (B)µ
[aDb]φ ,

R̂µ4̂
a4 = −Dµ[φ

−2Daφ]−
1

4
φ−3 F (B)µbF (B)ab . (A.1)

With tangent-space indices, R̂CD
AB takes the form,

R̂cd
ab = Rcd

ab +
1

2
φ−2

[

F (B)c
[a F (B)d

b] + F (B)cdF (B)ab
]

,

R̂cd
a4 =

1

2
φ−1DaF (B)cd − φ−2

[

DaφF (B)cd − F (B)a[cDd]φ
]

,

R̂c4
ab =

1

2
φ−1DcF (B)ab − φ−2

[

F (B)abDcφ− F (B)c
[aDb]φ

]

,

R̂c4
a4 = −φDc(ω)[φ

−2Daφ]−
1

4
φ−2 F (B)cbF (B)ab . (A.2)

Note that these components satisfy the pair-exchange property of the Riemann tensor.

Contracted versions of the Riemann tensor take the form,

R̂cB
aB = Rcb

ab +
1

2
φ−2F (B)cbF (B)ab − φDc[φ

−2Daφ] ,

R̂A4
Ab =

1

2
φ−1DaF (B)ab −

3

2
φ−2 F (B)abDaφ ,

R̂A4
A4 = −φDa(ω)[φ

−2Daφ]−
1

4
φ−2 F (B)abF (B)ab ,

R̂AB
AB = Rab

ab − 2φDa[φ
−2Daφ] +

1

4
φ−2 F (B)abF (B)ab . (A.3)

Furthermore one may consider the components of R̂[AB
EF R̂CD]EF ,

R̂[ab
EF R̂cd]EF = 0 ,

R̂4̂[a
EF R̂cd]EF = −φD[a

[

1

2
φ−2Rcd]

efF (B)ef

+
1

8
φ−4

[

F (B)2F (B)cd] + 2F (B)efF (B)ceF (B)df
]

− 2φ−1F (B)c
eDd](Deφ

−1) + F (B)cd](Dφ−1)2
]

. (A.4)

where we made use of the Bianchi identity on F (B) in the 3D Riemann tensor.
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B The conversion of 4D chiral to SU(2) × SU(2) covariant 3D spinors

The original 4D theory contains doublets of Majorana spinors that transform under the

chiral R-symmetry group SU(2)×U(1). Hence they transform irreducibly according to the

pseudo-real (4, 2)c representation of Spin(3, 1)×SU(2)×U(1), where the subscript denotes

the chiral U(1) charge. When reducing to three dimensions, a 4D spinor decomposes into

two real 3D spinors and, as we shall demonstrate, the U(1) component of the R-symmetry

will then extend to a second SU(2) group, so that we obtain a pseudoreal irreducible

representation (2, 2, 2) of Spin(2, 1) × SU(2) × SU(2). To obtain the spinor fields in their

3D form, we must convert the 4D spinors such that the 3D symmetry assignments become

manifest. This conversion is the topic of this section where we will base ourselves on

previous results presented in [4, 5]

The analysis starts from the underlying Clifford algebra for the 4D gamma matrices,

which has to be defined such that they act reducibly on the original spinor. We remind the

reader that the reduction amounts to compactifying the fourth coordinate x̂4 on a circle

which is subsequently shrunk to zero size. The proper 3D gamma matrices are now defined

in terms of the 4D gamma matrices by

γ̂a = γaγ̃ , where γ̃ = −iγ4γ5 . (B.1)

The hermitian matrices γ̃, γ4 and γ5 are mutually anti-commuting, and square to the unit

matrix. Furthermore they commute with the γ̂a. Hence we have obtained two mutually

commuting three-dimensional Clifford algebras, generated by the γ̂a and by (γ̃, γ4, γ5),

respectively. Observe that we have the identity,

γ̂[a γ̂b γ̂c] = iεabc 1 , (B.2)

showing that the two separate 3D Lorentz spinors into which a generic 4D spinor decom-

poses transform according in the same Clifford algebra representation. Starting from a

single 4D spinor one thus obtains a doublet of 3D spinors transforming under an extended

R-symmetry group SU(2) with generators (γ̃, γ4, γ5), subject to γ̃ γ4 γ5 = i1. Obviously

the generator proportional to γ5 corresponds to the generator of chiral U(1) R-symmetry

that is already present in 4D.

As a result of the redefinition of the 3D gamma matrices, the definition of the Dirac

conjugate will change, and consequently also the 4D charge conjugation matrix must be

redefined. The new Dirac conjugate and the new charge conjugation matrix read,

Ĉ = C γ̃ , ˆ̄ψ = ψ̄ γ̃ . (B.3)

Note, however, that it is still possible to further modify the charge conjugation matrix.

Indeed, the SU(2) × SU(2) covariant 3D spinor basis that we are about to construct will

require such a modification. Based on the present redefinitions one easily verifies the

following equations (using the properties of the charge conjugation matrix C in 4D),

Ĉγ̂aĈ−1 = −γ̂aT , ĈT = −Ĉ ,

Ĉγ4Ĉ
−1 = γ4

T , Ĉγ̃Ĉ−1 = γ̃T , Ĉγ5Ĉ
−1 = −γ5

T . (B.4)
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Now we have to extend the previous analysis to the case of a doublet of 4D Majorana

fermions. It is convenient to still express the fermions in terms of 4D chiral components,

because those transform systematically under the action of the SU(2) R-symmetry group

that is manifest in 4D. The new SU(2) group that emerges in the reduction to 3D as an

extension of the 4D chiral U(1) group, will commute with the original 4D chiral SU(2).

To study the way in which the two SU(2) factors are realized, let us start from a positive-

chirality 4D spinor ψi with U(1) charge +1/2, which we combine with the negative-chirality

conjugate ψi, which is provided by the 4D Majorana condition. The latter spinor thus has

U(1) charge equal to −1/2, respectively. Since the spinors transform uniformly under

the 3D Lorentz transformations we will only be concerned with the possible R-symmetry

transformations. Observing that the symmetry enhancement of the R-symmetry group

will be based on the generators (γ̃, γ4, γ5) identified before, one expects that the extended

symmetry involves the following infinitesimal variation,

δ

(

ψi

ψi

)

=
1

2

(

Λi
j + iα δij −β γ4 ε

ij

−β̄ γ4 εij Λi
j − iα δi

j

)(

ψj

ψj

)

, (B.5)

where Λi
j is an anti-hermitian traceless matrix, i.e. it satisfies the relations,

Λi
i = 0 Λi

k ε
kj + Λj

k ε
ik = 0 , Λi

j ≡ (Λi
j)

∗ , (B.6)

and α, β and β̄ are the transformation parameters of the new SU(2). The normalization of

these parameters is of no concern at this point. The reader can directly verify that these

transformations form a group and that the new SU(2) group commutes with the original

one generated by the matrix Λi
j .

The representation (B.5) has the disadvantage that it involves spinor components of

opposite chirality. However, since we have reduced the space-time dimension, it is possible

to apply a further redefinition,

ψi+ = ψi , ψi− = −εij γ4 ψj , (B.7)

where the superscripts ± denote the sign of the U(1) charge. Because of the presence of

the matrix γ4, the spinors are defined in the same eigenspace of γ5 and we choose a positive

eigenvalue, i.e.,

(γ5 − 1)ψi± = 0 , (B.8)

so that in the new basis we have replaced the doublets ψi and ψi of opposite chirality

by four equal-chirality spinors ψi±. For the Dirac conjugate spinors, the corresponding

relations follow from (B.3),

ˆ̄ψi+ = −iψ̄i γ4 ,
ˆ̄ψi− = −iεij ψ̄

j , (B.9)

where on the left-hand side we have the 3D Dirac conjugate spinors and on the right-hand

side the 4D conjugate spinors. Note that we have ψ̄i±(γ5 − 1) = 0. In this basis the

transformation rule (B.5) takes the form (p, q = +,−),

ψip → U i
j V

p
q ψ

jq , (B.10)
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where U denotes the chiral SU(2) transformation that was originally present in 4D, and

V the new SU(2) transformation that has emerged in 3D. In terms of the parameters

in (B.5), we have

V ≈ 1+
1

2

(

iα β

−β̄ −iα

)

. (B.11)

The next topic is to derive the consequences of the Majorana property of the spinors.

For chiral 4D Majorana spinors the constraint on the chiral components is given by,

C−1ψ̄i
T = Ĉ−1 ˆ̄ψi

T = ψi ,

C−1ψ̄iT = Ĉ−1 ˆ̄ψiT = ψi , (B.12)

where the left-hand side contains the Dirac conjugate according to the 4D and 3D defini-

tion, respectively, where the indices are lowered or raised as a result of complex conjugation.

From these constraints, one straightforwardly derives,

Ĉ−1 ˆ̄ψi+
T = εijγ4 ψ

j− , Ĉ−1 ˆ̄ψi−
T = −εijγ4 ψ

j+ . (B.13)

Upon absorbing γ4 into the definition of the charge conjugation matrix Ĉ, one then proves

the pseudo-reality relation

C−1 ψ̄i,p
T = εij εpq ψ

j,q . (B.14)

Hence the appropriate charge conjugation matrix in the covariant SU(2) × SU(2) basis is

given by,

C = Ĉγ4 , (B.15)

satisfying CγaC−1 = −γaT with CT = −C. In (B.14) and (B.15) and henceforth we

suppress the caret on 3D quantities. The indices p, q = +,− refer to the spinor components

with positive and negative U(1) charge respectively. With these results we derive the

Majorana re-ordering for fermionic bilinears,

ψ̄i,pΓψ
j,q = ±εik ε

jl εpr ε
qs ψ̄l,sΓψ

k,r , (B.16)

where the plus and the minus sign refer to Γ = 1 and Γ = γµ, respectively.

Finally we redefine the 4D spinors such that the previous redefinitions can be applied

uniformly. This is done by choosing a chiral Majorana spinor and modify it such that

we obtain a field ψi of positive chirality and positive U(1) charge. The field ψi then

follows from applying the 4D Majorana condition. However, this only determines ψi and

ψi up to a phase factor which implies that the SU(2) transformations induced by (B.5)

on the underlying fields, are also determined up to phase factors. Insisting that the 3D

supersymmetry transformations are manifestly covariant with respect to the additional

SU(2) R-symmetry component will fix these relative phase factors.

As an example let us start with the supersymmetry parameter ǫi, which has positive

U(1) charge and negative chirality. This identifies corresponding fields (ψi, ψi) up to a

phase factor z,

ψi(ǫ) = zεijγ4 ǫj , ψi(ǫ) = z̄εijγ4 ǫ
j . (B.17)
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As long as we consider a single field, we are free to fix the phase factor, so we will eventually

choose z = 1. However, for the remaining spinors we should then leave the phase factor

arbitrary. Hence for the remaining independent spinors we choose,

ψi(η) = zηε
ij ηj ,

ψi(Ω) = zΩγ4Ω
i ,

ψi(ϕ) = zϕ ϕi ,

ψi(η) = z̄ηεij η
j ,

ψi(Ω) = z̄Ωγ4Ωi ,

ψi(ϕ) = z̄ϕ ϕi .

(B.18)

The assignments of the conformal gauge fields ψµ
i and φµ

i are the same as those of the

transformation parameters ǫi and ηi, respectively. These ansätze now lead to the corre-

sponding definitions of the quantities ǫip, ηip, Ωip and ϕip which are all subject to the

Majorana condition (B.14). They are summarized as follows,

ǫi+
∣

∣

3D
= zεijγ4 ǫj

∣

∣

4D
,

ηi+
∣

∣

3D
= zηε

ij ηj
∣

∣

4D
,

Ωi+
∣

∣

3D
= zΩ γ4Ω

i
∣

∣

4D
,

ϕi+
∣

∣

3D
= zϕ ϕi

∣

∣

4D
,

χi+
∣

∣

3D
= zχε

ijγ4 χj

∣

∣

4D
,

ǫi−
∣

∣

3D
= z̄ ǫi

∣

∣

4D
,

ηi−
∣

∣

3D
= z̄η γ4 η

i
∣

∣

4D
,

Ωi−
∣

∣

3D
= −z̄Ω εij Ωj

∣

∣

4D
,

ϕi−
∣

∣

3D
= −z̄ϕ εijγ4 ϕj

∣

∣

4D
,

χi−
∣

∣

3D
= z̄χ χi

∣

∣

4D
.

(B.19)

For the convenience of the reader we also add the expressions for the Dirac conjugate

spinors,
ǭi+

∣

∣

3D
= iz̄ εij ǭ

j
∣

∣

4D
,

η̄i+
∣

∣

3D
= −iz̄η εij η̄

jγ4
∣

∣

4D
,

Ω̄i+

∣

∣

3D
= iz̄Ω Ω̄i

∣

∣

4D
,

ϕ̄i+

∣

∣

3D
= −iz̄ϕ ϕ̄iγ4

∣

∣

4D
,

χ̄i+

∣

∣

3D
= iz̄χ εij χ̄

j
∣

∣

4D
,

ǭi−
∣

∣

3D
= −iz ǭiγ4

∣

∣

4D
,

η̄i−
∣

∣

3D
= izη η̄i

∣

∣

4D
,

Ω̄i−

∣

∣

3D
= izΩ εij Ω̄

jγ4
∣

∣

4D
,

ϕ̄i−

∣

∣

3D
= −izϕ εij ϕ̄

j
∣

∣

4D
,

χ̄i−

∣

∣

3D
= −izχ ǭiγ4

∣

∣

4D
.

(B.20)

In the main text we have defined the set of phase factors consistent with supersymmetry

and R-symmetry, as

z = 1 , zη = −i , zΩ = 1 , zφ = i zχ = 1 . (B.21)
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