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Abstract

We demonstrate experimentally that optical wavefront shaping increases light coupling into the
fundamental diffusion mode of a scattering medium. The total energy density inside a scattering
medium of zinc oxide nanoparticles was probed by exciting fluorescent spheres that were randomly
positioned in the medium and collecting the fluorescent power. We optimized the incident wavefront
to obtain a bright focus at the back surface of the sample and found that the concomitant fluorescent
power is enhanced compared to a non-optimized incident wavefront. The observed enhancement
increases with sample thickness. Based on diffusion theory, we derive a model wherein the distribution
of the energy density of wavefront-shaped light is dominated by the fundamental diffusion mode. Our
model agrees remarkably well with our experiments, notably since the model has no freely adjustable
parameters.

1. Introduction

Diffusion is a process that leads to a uniform spreading of matter or energy as a result of randomness. Numerous
physical phenomena are described by diffusion, ranging from colloidal particles to currencies to animal motion
[1-8]. Many wave phenomena are also well described by diffusion: upon averaging over the disorder,
interference is washed out [5, 9, 10]. Hence, waves become diffuse after a distance of the order of one transport
mean free path 7, i.e., the distance over which the memory of the incident light direction is lost [5]. Of particular
relevance to diffusing waves is the energy density that is defined as the amount of energy in a wave field that is
stored in a given volume [3]. Due to diffusion, the ensemble-averaged energy density of the wave W, hasa
characteristic shape shown in figure 1(a) [3, 7, 1 1-14]. The gradient of the energy density at the exit surface of the
scattering medium is related to the transport of energy, which yields the wave-equivalent of the well-known
Ohm’(s)law T ~ #/L, with L the thickness of the medium.

A fundamental question addressed here is whether it is feasible to couple energy into a diffusion
eigensolution, which has a greater energy density than that of the usual non-optimized energy density Wy, as
shown in figure 1(a). In case oflight, an enhanced energy density inside the scattering medium is important for
applications such in white LEDs [15—-18], solar cells [19-21], random lasers [22—24], and biomedical optics [25].

The ensemble-averaged energy density Wis described by the diffusion equation as

oW1 _ DV2W (r, 1), (1)
ot

where D is the diffusion constant. For a real and finite medium, such as the widely studied slab geometry, there is
translational invariance in the p = (x, y) plane [12]. The steady-state solution Wj (z) along the direction of light
propagation zis given by [26],

W@ = 3 Wald) = 3. G, sin(wmz s Z“), ®
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Figure 1. (a) The energy density of optimized light W, and non-optimized light Wj are shown as the red and blue curves respectively.

W, and W are plotted using equations (B.18) and (B.10) respectively. The energy density is reduced with the diffusion constant D, the
incident intensity I,, and the effective thickness L. (b) The first three eigensolutions W, of the diffusion equation in equation (B.8).
The parameters used in these plots are: zi,; = 0.86¢, z) = 1.967, ze; = 0.687.

where m is the eigensolution index, C,,, is the relevant coefficient (see (B.9) in appendix B.2), and

Lex = L + ze1 + 2z is the effective thickness of the sample, where z.; and z., are the extrapolation lengths at the
front and back surfaces of the sample, respectively. Figure 1(b) shows the first three eigensolutions. The
fundamental eigensolution m = 1 is the only physical solution with a positive energy density along the sample
depth z, as shown in figure 1(b). When a plane wave is incident on a scattering medium, energy is coupled into all
eigensolutions that add up to the usual energy density W shown in figure 1(a) [27]. Recently, it has been
demonstrated that waves in complex media can be exquisitely controlled by shaping the spatial phase of the
incident waves, notably by feedback-based wavefront shaping [28—34], time reversal [35, 36], phase conjugation
[37,38], and transmission matrix-based control [39—41]. In wavefront shaping, the spatial phase of the field
incident on the scattering medium is controlled to enhance the intensity several hundred times in a single speckle
spot (area A ~ X?/2) at the back surface of the sample [42]. With this method, the total transmission T
through a scattering medium can be made to differ from Ohm’(s) law [30, 33]. Therefore, it is relevant to
investigate whether the energy density inside a scattering medium can be controlled. In particular, we wonder if
wavefront shaping couples energy into the diffusion fundamental mode, which has a higher energy density. To
date, only numerical calculations [43—45] and a single-realization elastic wave experiment [46] have addressed
the distribution of the energy density inside two-dimensional (2D) scattering media. Control of the optical
energy density inside a three-dimensional (3D) scattering medium has so far not been explored.

In this paper, we experimentally demonstrate the coupling of light predominately into the fundamental
diffusion mode by wavefront shaping. Since it is difficult to probe waves inside a 3D material, we use embedded
fluorescent nanospheres as reporters. The incident shaped waves excite the fluorescent spheres, whose
fluorescent intensity is proportional to the local energy density. By averaging over many fluorescent spheres
distributed throughout the samples, we probe the total internal energy of the 3D scattering medium. We observe
that the total optical energy is enhanced when the wavefront of the incident light is optimized. The enhancement
increases with sample thickness. To interpret our results, we propose a parameter-free model wherein the energy
density of wavefront-shaped light is described by the fundamental eigensolution of the diffusion equation,
which agrees well with the experimental observations.

2. Experimental details

2.1. Samples and preparation

In our experiments, we studied scattering media that are slabs of zinc oxide (ZnO) nanoparticles (Sigma-Aldrich
Zinc Oxide 205532, average grain size of 200 nm). Using a professional airbrush (Harder & Steenbeck Airbrush
Evolution Silverline, 123003), we sprayed an aqueous suspension of 2.5 g of the ZnO nanoparticlesand a
suspension of the fluorescent particles, which are dye-doped polystyrene spheres (Thermo Scientific R50
Fluoro-Max Dyed Red, diameter d = 50 nm). The concentration of the fluorescent spheresis 1.5 pum~=2in 7.5
ml of deionized water. The two suspensions were thoroughly mixed and then spray painted on a cleaned
microscope glass slide of thickness 0.17 mm with lateral dimensions of 25 mm x 50 mm. In order to obtaina
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Figure 2. Setup to probe the total energy density inside a scattering medium. The scattering medium is a slab of disordered ZnO
particles in air. The medium is illuminated with a shaped incident wavefront such that incident light at \; (green intensity) is
optimized in a speckle spot at the back surface of the sample (see inset). The scattering medium is lightly doped with randomly
positioned fluorescent spheres to probe the energy density inside the sample. The total fluorescent power emitted by the fluorescent
spheres at A¢ (red intensity) is detected by the EMCCD (see inset).

well-defined thickness of our samples, we automated the spray-painting process by using a LEGO mindstorm
kit. The samples have thicknesses L ranging from 2 to 22 p1m, as a result of varying the spraying time. Inside the
samples, the fluorescent spheres are randomly dispersed (see figure 2) to probe the total energy density inside the
ZnO scattering medium. The fluorescent spheres are excited by incident light with wavelength A; = 561 nm and
emit fluorescentlight at a different wavelength A\ = 612 nm.

In order to ensure that the distribution of the energy density at ); inside the scattering medium is not
perturbed by the absorption from the probing fluorescent spheres [45, 47], we use fluorescent spheres with low
absorption probability of 2 x 10~* % [48]. The absorption probability is the ratio of the absorption cross section
to the physical cross section of the fluorescent spheres. Moreover, the concentration of the fluorescent spheres in
the samples is aslow as 0.35 pm~3, which results into an albedo a ~ 1— 10 averaged over all the fluorescent
spheres [49]. The total fluorescent power emitted from the sample fluctuates by 10% from different positions on
the sample, which shows that the fluorescent particles are fairly homogenously distributed.

2.2. Experimental set-up

The experimental set-up is shown in figure 3. The coherent light source is a diode-pumped solid state laser
(CoboltJive, 100 mW continuous wave outputat 561 nm). We control the laser power using a combination of a
half-wave plate (\/2) and a polarizing beam splitter (PBS). A beam expander with magnification of 3 expands
thebeamandlens L1 (f = 11 mm) focuses the beam onto the front surface of a single mode fiber (SMF)
(Thorlabs P3-460B-FC-1). The SMF spatially filters the laser beam in order to prevent pointing instability of the
beam. A fiber collimator C (Kirchoff 60FC-L-0-M75-26) collimates the spatially cleaned beam and it passes
through an aperture Al to illuminate a phase-only liquid-crystal spatial light modulator (SLM) (Holoeye
PLUTO-VIS-014-C). The diameter of the beam on the SLM is 8§ mm. We used the piece-wise sequential
algorithm described in [29] to find an optimized incident wavefront. The image of the SLM is demagnified and
imaged to the pupil of a microscope objective MO1 (Nikon: infinity corrected, 100 x, NA = 0.9) through a
telescope consisting of lenses L2 (f = 200 mm) and L3 (f = 100 mm). An aperture A2 filters out the higher
diffraction orders of the SLM’(s) pixels and transmits only the Oth order. The demagnified image of the SLM is
focused onto the surface of the sample by the microscope objective MO1 to a diffraction-limited spot of 620 nm,
when wavefront of light is flat. The back surface of the sample is imaged onto a charge-coupled device (CCD)
camera (Allied Vision Technologies Stingray F-145) and an electron multiplying CCD (EMCCD) camera
(Andor iXon Ultra 897) by an oil-immersion microscope objective MO2 (Nikon: Infinity corrected, 60 x,

NA = 1.49) and an achromatic lens L4 (f = 500 mm). A dichroic beam splitter DB (Semrock Di02-R561-

25 x 36)reflects the excitation green beam and transmits the emitted fluorescent intensity from the probes. The
dichroic beam splitter has a transmission of 93% from 578.4 to 1200 nm. A combination of a notch filter
(Semrock NF03-561E-25) and a single-band bandpass filter F2 (Semrock FF01-620/52-25) blocks the remnant
excitation green light. The green light is detected by the CCD camera. A polarizer P blocks the orthogonal
polarization that is not controlled by the SLM. The intensity of the laser beam is reduced by a neutral density
filter F1 with an optical density of 2 to prevent saturating the CCD camera.
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Figure 3. Experimental setup: a spatially filtered and expanded CW laser at 561 nm illuminates a spatial light modulator (SLM). The
beam size on the SLM is 8 mm. A demagnified image of the surface of the SLM is focused onto a scattering sample of ZnO
nanoparticles doped with fluorescent spheres. The back surface of the sample is imaged onto the EMCCD camera, which detects the
fluorescent intensity and a CCD camera, which detects the excitation green laser light. The dichroic beam splitter separates the
fluorescent intensity from the excitation beam. A/2 is a half-wave plate, PBS is a polarizing beam splitter, BD is abeam dump, BE is a
beam expander, L1, 12, L3, and L4 are lenses with a focal distances of 11 mm, 200 mm, 100 mm, and 500 mm respectively, SMF is a
single mode fiber, Cis a collimator, A1 and A2 are apertures, M1 and M2 are mirrors, MO1 and MO2 are microscope objectives, DM
isa dichroic beam splitter, F1 and F2 are filters, and P is a polarizer.

2.3. Measurement procedure

To obtain ensemble-averaged data that can be interpreted with theory, we performed wavefront shaping
experiments at 100 to 130 different positions on each sample. At each position, we determine the fluorescent
power enhancement 7, thatis defined as n; = P¢/Pf, where P¢ is the total fluorescent power with an optimized
phase pattern on the SLM, and Py is the total fluorescent power for a reference incident wavefront. Asa
reference we use a phase pattern stored from an optimization on a very different part of the sample. This
reference field experiences the same diffraction efficiency and surface reflection as our optimized field, in
contrast to a plane wave.

2.4. Fidelity of optimization

The incident optimized field in any wavefront shaping experiment is a superposition of the ideally optimized
incident field, and a noise field that is by definition orthogonal to the ideal field [30]. The fidelity | |* quantifies
the overlap between the experimentally obtained incident field and the ideal incident field that optimally couples
light to the target spot [30]. A perfectly optimized field has |y|> = 1, while all imperfections such as limited
spatial control, temporal decoherence or modulation noise, inevitably reduce | y|>. Here we neglect a correction
of the order of 1 /N, where Nis the number of transmitting channels N ~ 10, see [50]. The measured
fluorescent power also consists of a linear combination of the ideal incident field term and a noise term. Since the
noise field is unrelated to the sample properties, its response is on average equal to that of an unoptimized
incident field with the same power. Thus the fluorescent power enhancement 7); necessarily depends on fidelity

[y[*as

ne=mnf W+ 1 = ). (3)

Here 7P is the fluorescent power enhancement at perfect fidelity (||* = 1) due to a perfectly shaped incident
field. The second term on the right-hand side of (3) is the contribution from the noise fields. To measure the
fidelity of each generated field, we exploit the fact that |y?| is well approximated by the ratio of the power in the
target spot (figure 2, inset) to the average total transmitted power for an unoptimized incident field [30]. This
approximation holds up to the level of fluctuation of the total transmittance, which is about 2% [51]. In practice,
determination of fidelity is limited by experimental noise estimated to be about +7%. Factors such as
inhomogeneous sample thickness, experimental noise, and instability in environmental conditions limit |y|?,
and result in variations thereof [52, 53]. Although variations are not desired, they have the advantage of yielding
arange of |y]? to investigate. In each experiment at a different position on the sample, we determined both the
fidelity |y|? and the fluorescent power enhancement 7;.
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Figure 4. (a) Measured fluorescent power enhancement 1, versus the fidelity |y|* foran L = 22.8 zm= 0.95 thick ZnO sample. The
symbols are 100 experimental data points obtained at different positions on the sample. The vertical and horizontal error bars are 4%
and 7% respectively (appendix A contains error estimation). The solid line is a linear regression through the data and the dashed
curves delimit the 95% confidence interval. The green dotted line: 7 = 1 (b) residuals of the experimental data, that are randomly
distributed about the linear model.
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Figure 5. Fluorescent power enhancement 7f in ZnO scattering samples versus sample thickness. The red squares are the
measurement-derived fluorescent power enhancement at perfect intensity control. The blue solid line is the calculated fluorescent
power enhancement 7} from (4). The uncertainty in the fluorescent power enhancement 67} is plotted as the two green dashed
curves, which were calculated using equation (5). The black dashed—dotted curve is for an invariant distribution of energy density
along the sample depth. Parameters to obtain the theoretical curves are given in table 1.

3. Experimental result

Figure 4(a) shows the fluorescent power enhancement ), versus fidelity |y|? for a sample with thickness

L = 22.8 £ 0.95 um. We see an enhancement in the fluorescent power 7, by about 10% when ||* has
increased to about 0.035. (For the 23 pm thick sample, the fidelity is limited due to the large number of
transmitting channels, of the order of 10°, that is much greater than the number of degrees of control on the
SLM, of the order of 10°.) This fluorescent enhancement implies that the total energy density for optimized
incident wavefronts is higher than for unoptimized incident wavefronts. According to (3), 7; is directly
proportional to |y|* with aslope o« = n? — 1and anintercept of 1. Physically, the intercept means that for an
unoptimized wavefront (7> = 0), there is no enhancement (1, = 1). Using linear least-squares, we therefore
make alinear regression of the data with only the slope as adjustable parameter. For this sample, we obtain a
slope o = 3.6 £ 0.48, where the error margin gives the 95% confidence level. The residuals of the data are
randomly distributed about the model, see figure 4(b), with more than 60% of the data within one standard
deviation as expected for normally distributed errors [54]. From the slope, we find an ideal enhancement
of nf = a + 1= 4.6+ 0.48.
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Figure 6. The contribution to the total transmission of the first six eigensolutions are represented by the red bars. The total
transmission, that is the sum of the transmissions of all individual eigensolutions, is shown as the blue bar. Parameters: L = 8.337,
ze1 = 1.967, z., = 0.687.

In figure 5, we plot results as a function of sample thickness. The fluorescent power enhancement at perfect
fidelity nf increases with sample thickness L, which means that wavefront shaping causes more energy to be
stored in the bulk of the medium. The horizontal error bars denote the standard deviation of the measurement
of the sample thickness at different positions on the sample, while the vertical error bars denote uncertainty in
the determination of n)f. For perfect fidelity, the total fluorescent power inside a 22.8 yim thick sample is 4.6
times greater than for non-optimized light.

4, Theoretical model

To interpret our experimental results, we employ diffusion theory (see appendix B for a full description of the
model). For light with an optimized incident wavefront, the distribution of the energy density W, inside the
medium is a priori unknown. The energy density within the boundary domain of the sample must be a linear
combination of the diffusion eigensolutions, since the diffusion eigensolutions form a complete set. In the case
of optimized light, the energy density W, must also be a linear combination of diffusion eigensolutions. The
diffusion eigensolutions that describe optimized light are expected to have the highest positive contribution to
the total transmission, since wavefront shaping is known to increase the total transmission [30, 33]. Here, we
model the energy density of optimized light W, as the fundamental eigensolution (m = 1) of the diffusion
equation for three reasons. Firstly, the contribution to the total transmission' of the first six eigensolutions in
figure 6 shows that the fundamental eigensolution (i = 1) contributes most to the total transmission. The

m = 1 contribution is even greater than the total transmission itself, which is a summation of all eigensolutions.
Secondly, the fundamental eigensolution is the only physical solution with a positive energy density along the
sample depth z, as shown in figure 1(b). Thirdly, a symmetric function peaked near the sample center, similar to
the fundamental eigensolution, has been obtained from numerical calculation of wave-front shaped light [43],
theoretical and numerical calculations [44, 45], as well as a single-realization experiment [46] of high
transmitting channels. Hence we neglect small corrections due to coupling to other modes than the fundamental
eigensolution.

The prefactor of the energy density of wavefront-shaped light in our model is determined by the known total
transmission of 2/3 for perfectly wavefront-shaped light [30, 55]. The energy density of optimized light W, thus
obtained is much larger than the diffusive energy density Wy, as shown in figure 1(a). Since fluorescent light
emitted by the nanospheres in our samples propagates diffusively to the detector, we also take the diffusion of
fluorescent light into account in the analytical model of the fluorescence enhancement 7§ (L), leading to

nf Ly N> Ap)

2L2 sec (Lf(’\‘))[wzel (Af) cos (LEL‘ (A‘)) — L [sin (LEL1 (A‘)) — sin (ZL‘ )] — 7L{ cos (ZL‘ )]
_ ex ex ex ex ex , (4)

L{zinj+ zet A 1IL? 4 3 L(ze1 (Af) + ze2 (M) + 6Ze1 (M) zea (\i)] 3 L 5
371-3[ j - Zel 16L 2 1 2 + Zinj [Lf/ + Zinjle 7 — Zi [zinj + Ze1(Ap)]

The total transmission is the ratio of the total flux at the back surface of the sample (z = L) to the incident flux and is equal to
Too = —29%.1 3],
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Table 1. Values of the transport mean free path 7,
extrapolation lengths z.; and z., for wavelengths of the
incident and fluorescent intensities. The transport
mean free path was determined from total transmission
measurement of similar samples (see [57]). Following
[58], we derived the extrapolation lengths from the
average reflectivities at the interfaces for a scattering
medium with an effective refractive index #1e¢. The
effective refractive index #.¢ was determined from
measurement of the angle-resolved escape function on
similar samples [57].

Incident intensity Fluorescent intensity
@ \; = 561 nm @ )\ = 612 nm
¢ 0.587018 0.67017
Z1 2.19103] 1.80°9%
Zey 0.687 000 0.6910:0%
Nt 1454013 136014

where L/ = L + zey(\y), L{ = L + zey(Af), Lex = L 4 zet () + Zea (A, Ziy; is the injection depth at which
the incident light becomes diffuse, which accounts for the angular distribution of the incident shaped wavefront
[56]. With an incident numerical aperture of 0.9, we find zj,; = 0.86¢ (\;). The fluorescent power enhancement
1§ is determined by factors such as transport mean free path # and the extrapolation lengths z,, and z.,, which
are determined experimentally (see table 1). It therefore follows that the evaluation of )} also has an uncertainty
onf. We calculate énf using

onP onP
T Az O A) + 87”

Zel Ze2

8 p
S0P (L M Ar) = %M(Ai, ) + Aze (s A0, ®)

where 0 signifies a partial derivative, AZ (\;, Af) and Az, (A, Af) are the errors in the determination of the
transport mean free path and the extrapolation lengths respectively.

To compare our model to our experimental results, we plot in figure 5 the analytic model for nf versus
sample thickness L. Within the uncertainty of the samples’ parameters, our model agrees remarkably well with
our experimental results, especially in view of the fact that the model has no adjustable parameters. The excellent
agreement between our model and our experimental results confirms that energy has been mostly coupled into
the fundamental (m = 1) diffusion mode.

In our experiments we obtain the fluorescent power enhancement 77? rather than the energy density

enhancement 77,4 thatis defined as 7,4 = f dz W,/ f dz W3. We derive

(@) = %nf (L) + 00/L), ®)

where O (I/L) represents higher orders, see appendix B. The relation in (6) shows that the total fluorescent
power depends on the total energy density inside the medium. Hence, the observed increase of the fluorescence
isindeed a probe of the increased energy density.

5. Summary

We have measured the increase of the total energy density inside a scattering medium that is the result of a
shaped incident wavefront. The results agree quantitatively with a model that considers energy to be dominantly
coupled to the fundamental mode of the diffusion equation. Our results are of broad relevance since they apply
to other wave control methods in scattering media, such as time reversal, phase conjugation, and transmission
matrix-based control, as well as to other types of waves such as microwaves, acoustic waves, elastic waves, surface
waves, and electron waves. We expect our results to be relevant for applications that require enhanced total
optical energy density, such as efficient light harvesting in solar cells especially in near infrared where silicon has
low absorption; for enhanced energy conversion in white LEDs, to reduce the quantity of expensive phosphor;
for low threshold and higher output of random lasers; and in homogeneous excitation of probes in biological
tissues. Last but not least, it will be fruitful to investigate possible relationships between the fundamental
diffusion eigensolution and the universal diffusion time as obtained in [7, 59, 60].
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Appendix A. Estimation of experimental errors

A.1. Error in the estimation of the fluorescent power enhancement

The fluorescent power enhancement is defined as 7, = P¢/P{', where Py is the total fluorescent power with an
optimized phase pattern on the SLM, and Py is the total fluorescent power for a reference incident wavefront.
Therefore, the error in the fluorescent power enhancement o (7;) equals

o(ng) = o (P) + o*(P), (A1)

where o (Pf) and o (Pf") are the independent errors in determining the fluorescent intensity of optimized and
non-optimized light respectively. Contributions to o (P¢) are from the laser and the camera noise i, and
independently from the mesoscopic intensity fluctuations that illuminate the randomly positioned spheres o,,,,

o (Pf) = yoi. + oy, (A.2)

In order to determine oy, we measured the total fluorescent power emanating from the sample for 12 h. We
determine the laser and camera noise oy, from the standard deviation of the fluorescent power with respect to the
mean power and we obtain ojc = 0.03.

The mesoscopic intensity fluctuation oy, is given by the fluctuation of the overlap integral between the
illuminating speckle intensity and the spatial distribution of the fluorescent spheres in the scattering medium.
We estimated ¢;,, using a simple model. For a given number of spheres Nyypere We generated a random array with
Njphere non-zero values which represent our spheres embedded inside the scattering medium. To simulate the
speckle intensity inside the scattering medium, we generated a second random array consisting of numbers with
a Rayleigh distribution. We multiply the two random arrays and take the summation of the resulting array,
which gives the simulated total fluorescence power P{. We repeated the procedure to simulate 100 realizations
and calculated the standard deviation of the normalized total fluorescence power P/ (Pf), which corresponds to
oy, for a given number of spheres in a scattering medium. Here ( ) represents ensemble average over several
realizations of the simulation. There are Nyphere = 1.6 X 10 inside the 23 zim thick sample and we obtain
O = 0.005 from the simulation. We then find o (P?) = (0.032 + 0.005%): = 0.03. We assume that
o (P?) = o (P). Therefore, we obtain o (1) = (0.032 4 0.032)2 = 0.04, as mentioned in the main text.

A.1.1. Error in the estimation of the fidelity |y|>. In the main manuscript, we determine the fidelity |y|* = B’

where P, is the power in the optimized focus and (B,) is the ensemble-averaged power transmitted before
optimization. Therefore, the error in estimating the fidelity o (|9/?) is

o) = Jo B + a((B))?, (A.3)

where o (B,) and o ({B,)) are the independent errors in estimating P, and o ({P,) respectively. We determine
o (B,) from the laser and the camera noise, and then have o (B,) = 0.03. We write o ((P,))* as

o ((B)? = \ob + 0% + 02 + o2, (A4)

where o, is due to expected fluctuation in the total transmitted intensity, i.e. the C, intensity correlation [12], o;
is due to the roughness of the sample, and ¢ is the fraction of intensity cropped out by the optics. We estimated
ocp as

1

= ) A.S
2 NTio (A

ac2
where N is the number of transmitting channels and T, is the total transmission [56]. From the size of the
diffuse spot in the sample, we estimate N~ 5.1 x 10* and the total transmission is estimate as
Tiot = /L = 0.03. Therefore, oc; = 0.018. To estimate o, we measured the sample thickness at several
positions on the sample and we obtain a fluctuation of o; = 0.04. From the size of the diffuse spot at the back of
the sample, we estimate o, ~ 0.02. We find o ((B,)) = 0.06 and o (||*) = 0.07.

We use the estimated errors: o (|7|*) = 0.07 and o (1;) = 0.04 as the horizontal and vertical error bars

respectively in figures 3(a) and (b) in the main manuscript. From the plot of the residuals in figure 3(b), about
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60% of the data points are within one standard deviation from the model, which means is expected since the data
points are Gaussian distributed.

Appendix B. Theory

Here, we present the theory to model the spatial distribution of wavefront-shaped light inside a scattering
medium. We model both the fluorescence enhancement and the energy density enhancement.

B.1. Assumptions
We first state the three (3) assumptions that we made. Firstly, we assume that our scattering medium can be
described by a slab geometry with infinite lateral dimensions in the x and y directions and one boundaryatz = 0
and z = L, since the beam propagates through a very small area on the sample compared to the whole extent of
the sample. For a 10 um thick sample, the diameter of the diffuse spot at the back surface of the sample is about
20 pm, much smaller than the 40 mm extent of the whole sample. Therefore, we can safely assume that the
boundaries in both x and y directions have negligible effect on light diffusion inside the medium. The boundaries
along z, however, have an effect on light propagation. We therefore solve the one-dimensional diffusion
equation for only the z direction [61].

Secondly, we assume that absorption is negligible in the samples. This assumption is valid since the albedo
a =~ 1. However, weak absorption is present in our samples due to the presence of the low density of probe
spheres. Therefore, the assumption that there is no absorption in the medium is an extremely mild limitation to
our model. If necessary, the diffusion equation can be extended to account for absorption, see [62].

Thirdly, we assume that multiple scattering events occur inside the medium before light exits the sample,
such that our samples can be modelled using diffusion theory. Therefore

L>7?, (B.1)
where 7 is the transport mean free path. Also, we assume that
L > Zel> Ze2s (BZ)

where z., z¢; are the extrapolation lengths on the front and back side of the sample respectively. The
extrapolation lengths account for reflections on each side of the sample [63]. The extrapolation lengths are
obtained from the effective refractive index of the scattering medium and the refractive index of the surrounding
medium [63]. The inequality in (B.2) implies that the extrapolation lengths are small compared to the sample
thickness, which is the case for our samples with thickness L ranging from 3£ to 37¢, where £ = 0.6 um. We
note that in [64], it has been shown that diffusion theory is robust to describe samples even only 2# thick to an
accuracy of 2%.

B.2. Spatial distribution of the energy density of wavefront-shaped light

The spatial distribution of the energy density of wavefront-shaped light inside the medium is a-priori unknown.
As stated in the main manuscript, we postulate that wavefront shaping predominately couples energy into the
fundamental eigensolution of the diffusion equation. The one-dimensional diffusion equation is given by

W@t _ DBWZ(Z, t)

, (B.3)
ot 0z?
where W (z, t) is the ensemble-averaged energy density and D is the diffusion constant that is equal to
D = vy ¢ /3 with vg the energy velocity [65]. We use the boundary condition [12]
Wz ) =0 T B.4

@n=0at {o_ 5 (B.4)

and the source is taken to be the result of the exponential decay of the incident coherent beam
I() z
Wz, t=0)=—exp|—|) (B.5)
Zinj Zinj

where I is the incident intensity and z;,; is the injection depth at which the incident light becomes diffuse that
accounts for the angular distribution of the incident shaped wavefront [56, 66]. We solve (B.3) using the method
of separation of variables [26], to obtain the energy density

o —2m? Zini + 2
Wiz t) = Z Ay, exp [WL—TDt] sin (ﬂ'm%)sin (Wmm)—ﬂ), (B.6)
ex

m=1 ex ex
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where
A=
e L. . I :
21, [sz;nj cos (%) — e 7 (wmzinj cos (ﬂ'm%) + Loy sin (Wm%)) + Loy sin (wmzi)]
o o N N

2 2,22 >
Lex+7rmzinj

(B.7)
mis the index of the eigensolutions, and Ley = L + z; + ze is the effective sample thickness. Since our
excitation is a continuous wave source, we integrate out the time-dependent part of (B.6) to obtain

< A,L% . Zinj + 2 . z+z
Wi(z) = > ——%sin SIS PERY PR T
2 2D
m=1 Tm ex ex
st . z+z
= > Cpsin (ng . (B.8)
m=1 ex
We define the diffusion coefficient
AnLE . Zinj + 2
o= e g 2 e (B.9)
m2m?D Lex

We plot the first 3 eigensolutions in figure 1(b) in the main manuscript. The series in (B.8) can be analytically
evaluated [67] to obtain
IO lzinj + Ze

Wi(z) = B (L + ze2 — 2) — Zinj exp(—i]l. (B.10)

ex Zinj

In figure 1(a) in the main manuscript, we plot the unoptimized energy density W, using the same parameters as
in figure 1(b).

B.3. Contribution of eigensolutions to the total transmission

We have derived the spatial distribution of energy densities W(z) of the diffusion eigensolutions. From the
distribution, we want to obtain the contribution of each eigensolution to the total transmission and then find the
eigensolution with the greatest contribution to the total transmission. The total transmission is the ratio of the
total flux at the back side of the sample (z = L) to the incident flux [3] and it can be expressed as

D OW (z
Tt = —— (2) . (B.11)
I() 0z =1
Substituting (B.8) into (B.11) and differentiating, we find
> Zinj + 2
Tot=—) Anle cos (ﬂmL + Zel)sin (mnim) el) (B.12)
m=1 7'('1’?’110 ex LCX
Using the trigonometry identity cos(r — 0) = —cos , we obtain
> Zinj + 2
Tot= Y AmLex cos (wmﬁ) sin (wmu) (B.13)
m=1 7Tm10 ex ex

Using similar parameters used to plot figure 1 except for L = 5 um, we obtain the contributions to the total
transmission as presented in figure 5 in the main manuscript. The fundamental eigensolution m = 1 has the
greatest contribution to the total transmission, even more than the total transmission. We therefore hypothesize
that the energy density distribution of optimized light is identical to the fundamental eigensolution of the
diffusion equation, which is given by

ALZ . | zinjt 2z
Wyim1(2) = —= sin pZ T Zel | [ B T Ze ) (B.14)
7T2D ex

ex

It has been experimentally shown in [30] and theoretically in [55] that the total transmission of optimized
lightis equal to T, = 2/3. We therefore scale the energy density of optimized light W,,_, (z) such that the total
transmission is equal to T, = 2/3. We define a scaling factor o and a scaled energy density of optimized light
W, (z) such that

W, (2) = aW,,—1(2). (B.15)

10
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Using equations (B.11), and (B.15), we obtain
2 D@ |
3 I() 82 =L

Substituting (B.14) for W,,—, we then have

(B.16)

2
o = N
3 Tm:l

where T,,_ is the contribution of m = 1 to the total transmission, which can be obtained from equation (B.13).
Substituting avinto (B.15), we then find

(B.17)

sin ( itz
_ 2IOLE!X Lex

W, (z . B.18
@ =30 COS(W@) (B.18)
Lex
In figure 1(a) in the main manuscript, we plot the scaled energy density of optimized light W,.
Furthermore, we derive the enhancement of the total energy ), inside the sample. We define
!
Nea(L) = (B.19)

o
Wy’
where W and W are the energy densities integrated over the whole thickness of the sample for optimized light
and unoptimized light respectively. Integrating equations (B.10) and (B.18), we obtain

L/
2L2 sec (erz) cos (WZE‘) — cos (w—)
LCX LCX LCX
Lzjy(L+22¢2) _L )
37T2[ e Am|l e

In addition, the scaling factor o can also be written as a weighing coefficient of the eigensolutions in (B.6).
Were-write (B.6) as

Nea(L) = (B.20)

o0 2,2 Zini + z
W, (z, t) = Z Ay €Xp %Dt sin (Wmﬂ)sin (Wmu), (B.21)
m=1 Lex LCX ex
such that for unoptimized light, the coefficients are equal to
a,=1, ¥V m, (B.22)
and for optimized light, the coefficients are equal to
2 m=1
O = 3T,—1 - (B.23)
0 m > 1.

B.4. Enhancement of fluorescent power

We have derived the spatial distribution of the energy density of optimized W, and unoptimized light Wj. In our
experiments, we probe an integration over these distributions by using fluorescent spheres positioned inside the
sample. In this section, we model the enhancement of the fluorescent power measured at the back surface of the
sample. We consider the small fluorescent spheres as point emitters located at a depth z, inside the scattering
medium. The diffuse emission from the fluorescent spheres is also described by the diffusion equation but with a
Dirac delta function as the source term [50, 68]. At steady-state, the solution is

L—zo+ze
S22 (7 4 zey) 0<z< 2

Tex .
‘/\]f(z) _ € (ZO) L‘:ch"'zul (B.24)
D (L4 ze—2)  z2<z< L,

where W, (z) is the energy density of fluorescent light and I (z) is the excitation intensity, which can be obtained
from (B.18) and (B.10) for optimized light and unoptimized light respectively. From (B.24), we obtain the
fluorescent energy density exiting the back surface of the sample and it is given as

Tex (zo, Ap)
D (Af) Lex (Af)
Since the parameters in (B.25) are wavelength dependent, we evaluate the parameters are the appropriate
wavelengths.

The fluorescent energy flux F (z = L) exiting the sample is the integral of the fluorescence energy density
reaching the back of the sample from all probes located inside the medium and is equal to

Wiz =L, \i, Xp) = Ze2(Ap)[20 + ze1 (Mp) ] (B.25)

11



10P Publishing

NewJ. Phys. 18 (2016) 043032 O S Ojambati et al

Fe=1 0 = [ =0 0z + 20 0] dao (.26

20-0  D(Af)Lex (Af)
We define the enhancement in the fluorescent power 7,f as

E (L, Ay Ap)
Fa(L, X Ap)
where F, and F; are the fluorescence energy flux at the back surface of the sample for optimized and unoptimized

light respectively. We obtain F, by using the optimized energy density in (B.18) as the excitation intensity
Iy (zg, A;) and substitute it into (B.26) to obtain

E) (La Ai: Af)
— sz:L 2IoLex (N) Ze2 (Ap)
zo—o  3TD (Af) D (\)Lex (Nf) cos (71' Zez()\i))

ex \AQ

(L, Ny Ar) = (B.27)

(B.28)

[z0 + ze1(Ap)] sin (WM) zo.

Lex ()‘1)

Similarly, we obtain F; by using the unoptimized energy density in equation (B.10) as I, (zg, A;) in (B.27)to
obtain

Rz =1L, A, Ap)

z20-r I [Zinj + Ze1(A)1ze2 (Af) 20
_ L+ 20O\ — 20) — 2 exp| =22 a(A)]dze.  (B.29
'—fzozo D(Af)D()\i)Lex()\f)Lex()\i) ( Tz 2( ) ZO) o o Zinj [ZO v 1( f)] 0 ( )

Evaluting the integrals in (B.28) and (B.29) and substituting into equation (B.27), we obtain equation (4) in the
main manuscript.

In order to relate the enhancement in fluorescent power 7, (L) to the enhancement in energy density, we find
the Taylor expansion of 7 (L) and 7, (L) which holds only when L >> ¢. We derive

2
Nea (L> iy Af) = 3 ng (L, A Ar) + O(£/L), (B.30)

where O (¢ /L) includes higher orders of the series expansion in terms of /L. From (B.30), we learn that the
increase of the detected fluorescence is a measure of the increase of the energy density.
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