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• There is public concern about exposure
to RF-EMF from mobile phone base
stations.

• Accurate and efficient exposure assess-
ment is required for epidemiological
studies.

• At home model predictions of RF-EMF
are used as a proxy of personal
exposure.

• We compared home address model
predictions with 48 h personal
measurements.

• Model estimations at the home address
provide a meaningful ranking of per-
sonal RF-EMF.
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Introduction: Geospatial models have been demonstrated to reliably and efficiently estimate RF-EMF exposure
from mobile phone base stations (downlink) at stationary locations with the implicit assumption that this re-
flects personal exposure. In this study we evaluated whether RF-EMF model predictions at the home address
are a good proxy of personal 48 h exposure. We furthermore studied potential modification of this association
by degree of urbanisation.
Method:We first used an initial NISMap estimation (at an assumed height of 4.5 m) for 9563 randomly selected
addresses in order to oversample addresses with higher exposure levels and achieve exposure contrast. We in-
cluded 47 individuals across the range of potential RF-EMF exposure and usedNISMap to re-assess downlink ex-
posure at the home address (at bedroom height). We computed several indicators to determine the accuracy of
the NISMapmodel predictions.We compared residential RF-EMFmodel predictionswith personal 48 h, at home,
and night-time (0:00–8:00 AM) ExpoM3 measurements, and with EME-SPY 140 spot measurements in the
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bedroom.We obtained information about urbanisation degree and compared the accuracy of model predictions
in high and low urbanised areas.
Results:We found a moderate Spearman correlation between model predictions and personal 48 h (rSp = 0.47),
at home (rSp = 0.49), at night (rSp = 0.51) and spot measurements (rSp = 0.54). We found no clear differences
between high and low urbanised areas (48 h: high rSp= 0.38, low rSp=0.55, bedroom spotmeasurements: high
rSp = 0.55, low rSp = 0.50).
Discussion:We achieved ameaningful ranking of personal downlink exposure irrespective of degree of urbanisa-
tion, indicating that these models can provide a good proxy of personal exposure in areas with varying build-up.

© 2016 Elsevier B.V. All rights reserved.
Mobile phone base station
Urbanisation
1. Introduction

There has been awidespread increase in exposure to radiofrequency
electromagneticfields (RF-EMF) in recent decades due to the rise ofmo-
bile phone use and developments in communication technology
(Andrews and Claussen, 2012; Tomitsch and Dechant, 2015). Potential
risks from modern technology can lead to concern within the general
public, especially when exposure is perceived as unavoidable and un-
controllable (Slovic, 1987), such as the potential health risk of exposure
to RF-EMF from mobile phone base stations (Siegrist et al., 2005). As
a result, several studies addressed the possible association between
RF-EMF exposure and development of various health problems (e.g.
Blettner et al., 2009; Röösli et al., 2010). If such health effects
exist, they are likely to be small, and therefore accurate and efficient
RF-EMF exposure assessment for large populations is essential for epi-
demiological studies (Neubauer et al., 2007).

RF-EMF exposure frommobile phone base stations is difficult to assess
because of the large 3D spatial variation in exposure patterns and subject
movement patterns. Personal measurements are at present not feasible
for large epidemiological studies due to time and cost constraints, and
therefore models are needed to accurately and efficiently estimate expo-
sure. The geospatial model NISMap (Bürgi et al., 2008, 2010) was devel-
oped to efficiently estimate exposure from fixed site transmitters.
Validation studies (Beekhuizen et al., 2013, 2014b; Bürgi et al., 2008,
2010) found a reasonably good agreement (Spearman correlations
around rsp = 0.7) between measured and modelled values for both out-
door and indoor static locations. Epidemiological studies (e.g. Frei et al.,
2012) have used these fixed site estimates as exposure assessment with
the implicit assumption that they reflect personal exposure levels. How-
ever, the agreement between measurements and model predictions at
static locations does not account for subject movement patterns, and
therefore agreement with personal measurements may be lower.

Studies that compared geospatial model predictions with personal
measurements are scarce. A study by Frei et al. (2010) found a poor cor-
relation between model predictions and personal 7 day measurements
(rsp = 0.28) based on a comparison of model predictions by NISMap
of RF-EMF levels from fixed site transmitters (FM, TV, Tetrapol, mobile
phone base station downlink (hereafter referred to as downlink))
with personalmeasurements from all farfield RF-EMF exposure sources
(including FM, TV, Tetrapol, mobile phone downlink, but also mobile
phone uplink (hereafter referred to as uplink), DECT, and W-LAN).
Martens et al. (2015) compared downlink predictions by NISMap with
downlink personal measurements for a 24-h period and found a slightly
higher but still modest Spearman correlation (rsp = 0.36). These previ-
ous results would indicate that there is considerable misclassification in
personal RF-EMF exposure levels when approximated by fixed site esti-
mates. However, these previous studies may have suffered from several
methodological limitations. First, the measurement devices used in
these studies (EME-SPY 120: Frei et al. (2009), EME-SPY 121 Martens
et al. (2015)) were not sensitive enough to detect low field strengths
(below 6.63 E-03 mW/m2), they underestimate actual RF-EMF levels
and may suffer from crosstalk between different frequency bands
(Bolte et al., 2011; Lauer et al., 2012). Recently, improvedmeasurement
devices such as EME-SPY 140 and the ExpoM3 have become available.
Secondly, the use of more accurate height and antenna input data can
improve the accuracy of NISMap model predictions (Beekhuizen et al.,
2014a).

In this study we compare NISMap model predictions with personal
48 h, at home, at night, and static measurements in the bedroom,
using more accurate height and antenna input data and contemporary
measurement instruments. We will address two factors that could im-
pact exposure assessment in epidemiological studies: (i) variability in
areas with different degrees of urbanisation, as different spatial charac-
teristics (build-up topology) in urban versus rural areas may influence
the accuracy of themodel predictions; and (ii) the relative contribution
of downlink RF-EMF exposure to total far field RF-EMF exposure, and
whether this contribution is different for high and lowexposed subjects.

2. Method

2.1. Population and sampling strategy

The sampling strategy andflowof participants are displayed in Fig. 1.
To recruit participants distributed across a broad exposure range, we
used NISMap to estimate RF-EMF downlink levels for 9563 randomly se-
lected addresses in five towns near Utrecht, the Netherlands (Bunnik,
Odijk, Zeist, de Bilt and Bilthoven). Potential subjects (one per house-
hold) were approached through postal mail addressed to their house-
hold. These households were selected based on geographical spread,
variation in urbanisation degree (information about the urbanisation
level at postal code level was obtained from the Dutch CBS (Statistics
Netherlands)), and a broad variation in exposure range. Based on initial
exposure estimation (see model description and model input)
we invited potential subjects equally distributed over three categories:
b0.0265 mW/m2, 0.0265–0.106 mW/m2 and N0.106 mW/m2. The
thresholds 0.0265 mW/m2 (0.1 V/m) and 0.106 mW/m2 (0.2 Vm)
corresponded with respectively the top 10% and the top 1% of the distri-
bution of modelled (initial) RF-EMF downlink values. Assumed low ex-
posed subjects (b0.0265 mW/m2) were sampled from the same
neighbourhoods as higher exposed subjects to ensuremaximumcompa-
rability (e.g. similar type of residences). No more than two households
from each street, and no addresses directly next to each other, could par-
ticipate, so that sufficient geographical spreadwas achieved, and to avoid
correlated errors. Invitation letterswere sent in batches of approximately
50 letters each until the desired number of participants was reached.
From the 276 invitation letters that were sent, 40 individuals participat-
ed, aswell as eight spontaneous applicantswhowere friends or (distant)
neighbours from the selected households. All participants signed a writ-
ten informed consent. Participants were given a 20 euro voucher as an
incentive. After completing the first set of measurements, we asked if
the participant was willing to take part in a repeated measurement,
which 16 participants agreed to. The purpose of these repeatedmeasure-
ments was to assess whether one 48 h measurement period is an ade-
quate period to assess long-term personal exposure. All measurements
took place between November 2013 and May 2014.

2.2. Model description and model input

We modelled RF-EMF exposure to different downlink frequencies
(UMTS, GSM900, GSM1800) from mobile phone base stations in the



Fig. 1. Participant sampling strategy and flow of participants.
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bedroom of the study participants using a three-dimensional radio
wave propagation model (NISMap). We first modelled exposure for
9563 random selected households out of an approximate 30,000 house-
holds in the study area. This allowed the selection of participants over a
broad exposure range. For this initial estimation we had no information
on the bedroom height, which in previous uncertainty analyses has
been shown to be influential (Beekhuizen et al., 2014a), and had avail-
able only an older list of the presence of communication transmitters.
Therefore, we remodelled exposure for all participants with more de-
tailed and updated input data. The required input data and technical de-
tails of the model have been described in several previous studies (e.g.
(Beekhuizen et al., 2015; Bürgi et al., 2008, 2010). Briefly, detailed infor-
mation on communication transmitters (for initial estimation transmit-
ter data from 2011 and for the final estimation transmitter data from
2013), such as the coordinates, beam direction, and height of the trans-
mitter was obtained from the Dutch Radiocommunications Agency
(Agentschap Telecom). The estimated output power of the antennas is
based on long-term averages. Coordinates of home addresses were ob-
tained from theDutch Cadastre in 2012 (BAG, Basisregistraties Adressen
en Gebouwen). A 3D representation of all buildings in the Netherlands
was constructed by combining data on the building locations and out-
line from the national BAG building data set with height information
from the Netherlands elevation model (Actueel Hoogtebestand Neder-
land 2, AHN2).

Decrease of RF-EMF levels with distance was calculated using the
Double Power Law (ITU, 2009) as previously done by Bürgi et al.
(2010) and Beekhuizen et al. (2013, 2014b). Building damping values
was set equal to Martens et al. (2015) to correct for the attenuation of
radio waves by buildings. Damping of roofs was set to 4.5 dB, damping
of walls to 3 dB and the inside damping to 0.6 dB/m for all buildings.
The bedroom height was used as input for the model, as people gener-
ally spend the majority of their time in their bedroom while they are
at home. For the initial model estimation to select participants, the bed-
room height input was set at 4.5 m, unless the total building height was
lower than 5.0 m. In that case we used the total building height minus
0.5 m. To obtain the bedroom height for the final model estimation,
we asked subjects the total number of floors in the building and the
floor number of their bedroom (where ground level counts as zero).
We used the following formula to calculate approximate bedroom
height (Beekhuizen et al., 2014b):

bedroom height ¼ building height in metres
total number of floors

� floornumber bedroom

þ 1:5 metres:
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2.3. Bedroom measurements

Bedroom spot measurements were performed by the researchers at
the home addresses of all study participants using a Satimo EME-SPY
140 exposimeter (the detection limit for the downlink frequencies
was 6.63 ∗ 10−5 mW/m2 (0.005 V/m) sampling every 4 s (http://
www.eudisa.com/fileadmin/PDFs/industrieloesungen/EMESPY140_EN.
pdf). The Satimo EME-SPY 140measures the RF-electric fields in 14 sep-
arate frequency bands ranging from FM (88–108 MHz) to WiFi 5G
(5150–5850 MHz). This measurement device was chosen for the spot
measurements in order to compare the results with our previous stud-
ies (Beekhuizen et al., 2014b) aswell as for the possibility to immediate-
ly read out the data to check if the measurements were successful. The
measurement device was placed on a wooden tripod. We measured
for 2 min at seven spots in the room starting in the centre of the room
at height 1.10, 1.50 and 1.70 m, and in all corners of the room at height
1.50mwith a distance to the centre of approximately 1m (conducted in
the same manner as e.g. Bürgi et al., 2010; Beekhuizen et al., 2014b).

2.4. Personal measurements

To determine personal exposure over a period of 48 consecutive
hours, the participants carried a small hip bag containing a radiofre-
quencymetre (ExpoM3, sampling frequency set to every 30 s) for a pe-
riod of 48 h. The ExpoM3 measures the RF-electric fields in 16 separate
frequency bands (ranging from FM Radio (88–108 MHz) to WiFi 5G
(5150–5875MHz).We did not include the LTE uplink and downlink fre-
quencies for calculating total farfield RF-EMF exposure (see Table 1 for a
list of frequencies), as LTE was not yet introduced in our study area at
the time of the measurements. The ExpoM3 measurement device was
chosen for personal measurements for its small size and low weight,
as well as long battery life since we aimed for a 48 h measurement
period. The lower detection limits of the ExpoM3 radiofrequency
metre for the downlink frequencies were: UMTS downlink:
2.39 ∗ 10−5 mW/m2 or (0.003 V/m), GSM900 downlink:
6.63 ∗ 10−5 mW/m2 or (0.005 V/m) and GSM1800 downlink:
6.63 ∗ 10−5mW/m2 (or 0.005V/m). Participantswere asked to continue
their daily activities as usual. During sleep, participants were asked to
place the cotton bag containing the device on a bedside table at a min-
imum distance of 30 cm from the wall. We asked participants to keep
a diary in which they specified at what times they left and entered
their home. The diary was also used to register any time the participant
did not carry the bagwith themeasurement device (for example swim-
ming, sports or forgetting to wear the bag) as well as to register any in-
cidents such as dropping the bag by accident.

2.5. Urbanisation

To get a measure of the degree of urbanisation, we used the address
density for each postal code, based on publicly available data from
Table 1
Frequency bands from the ExpoM3 used to calculate total far field RF-EMF
exposure.

Band name Frequency range

FM radio 87.5–108 MHz
DVB-T 470–790 MHz
GSM900 uplink 880–915 MHz
GSM900 downlink 925–960 MHz
GSM1800 uplink 1710–1785 MHz
GSM1800 downlink 1805–1880 MHz
DECT 1880–1900 MHz
UMTS uplink 1920–1980 MHz
UMTS downlink 2110–2170 MHz
ISM 2.4 GHz 2400–2485 MHz
WiMax 3.5 GHz 3400–3600 MHz
ISM 5.8 GHz/U-NII 1–2e 5150–5875 MHz
the Central Bureau of Statistics from 2010 (five categories: b500,
501–1000, 1001–1500, 1501–2500 and –N2500 addresses per km2).
We dichotomized this variable due to few observations in some of
the categories to two categories: low urbanisation, 0–1500 addresses
per km2; and high urbanisation, N1500 addresses per km2.

2.6. Data analysis

In a few instances, short time slots of the 48 hmeasurement periods
were removed from the data because the participant reported in the
diary not having carried the measurement device for reasons other
than night-time (for example because the participant went running
outside and it was inconvenient to carry the measurement device). In
total, this amounted to 17.5 h summed over six participants, which
was less than 1% of the total (2076 h) sampled hours.

Measurements below the detection limit were set at the detection
limit (for the EME-SPY spot measurements in the bedroom: 0% of the
GSM900 DL, 30% of the GSM1800, and 15% of the UMTS DL. For the
ExpoM3, 48 h personal measurements: 2% of the GSM900 DL, 12% of
the GSM1800, and 20% of the UMTS).

We computed the total downlink exposure for each subject by sum-
ming the mean RF-EMF levels of the GSM 900 downlink, GSM 1800
downlink and UMTS downlink frequencies (in mW/m2) for the follow-
ing periods: the overall 48 h period, the time spent at home as reported
in the diary, and assumed night-timebetween 0:00 and 08:00 AM. Of 21
participants the actual night-time (mean duration: 16.4 h, start time:
23:32, and end time: 07:41) was known and we used this data in a sen-
sitivity analysis. Furthermore, we assessed the agreement between the
initial and final model estimation to evaluate the method of participant
selection. In addition, we evaluated the repeated 48 h sampling scheme
for personal measurements by comparing initial and repeated 48 h
measurements using the intraclass correlation and Spearman (rSp)
coefficients.

We computed several indicators to determine the accuracy of the
NISMap model predictions: mean modelled and measured values,
ratio (mean modelled value divided by the mean measured value),
mean difference between modelled and measured values (modelled–
measured), mean relative difference (mean difference divided by the
average of measured and modelled values), precision (standard devia-
tion of differences betweenmodelled andmeasured values), coefficient
of variation (ratio of the standard deviation to themean) and Spearman
rank correlation betweenmodelled andmeasured values.We compared
differences in the association betweenmodel predictions and measure-
ments between areas with high and low urbanisation.

We compared the contribution of each frequency to the total far
field RF-EMF 48 h exposure for all participants and for participants
with downlink exposure on or below the median, above the median.
Analyses were carried out using the statistical programme R (3.1.0)
and SAS 9.2.

3. Results

3.1. Descriptives

One participant had to be excluded from the analyses due to failure
of the ExpoM3. Failure of the ExpoM3 also occurred in two other in-
stances, but in those cases at least one set of measurements (first or re-
peated measurement set) was successful. Therefore we analysed data
for 47 unique participants and 14 repeated measurements resulting in
total 61 observations.

Our study population consisted of 26 male subjects and 21 female
subjects between the ages of 21 and 80. Less thanhalf of the participants
lived in urban areas (N= 21; 45%) while the other participants lived in
more rural areas (n= 26; 55%). The mean measured duration with the
ExpoM3 for all participants was 43.8 h, including night-time and time
spent outside the home and excluding day-time periods not carrying

http://www.eudisa.com/fileadmin/PDFs/industrieloesungen/EMESPY140_EN.pdf
http://www.eudisa.com/fileadmin/PDFs/industrieloesungen/EMESPY140_EN.pdf
http://www.eudisa.com/fileadmin/PDFs/industrieloesungen/EMESPY140_EN.pdf


Table 2
Distribution of modelled and measured values of RF-EMF downlink (mW/m2) for all 47
participants.

Min 25%
quantile

Median 75%
quantile

Max

Modelled 0.000 0.025 0.066 0.141 1.210
Measured 48 h 0.002 0.010 0.027 0.051 1.526
Measured at home 0.001 0.005 0.012 0.050 1.547
Measured at night 0.000 0.004 0.011 0.057 1.829
Spot measurements bedroom 0.000 0.003 0.015 0.098 6.844
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the device. On average, participants were at home for 34.2 h (78%). In a
sensitivity analysis (n= 21) we compared the measurement values for
actual reported bedtime and the assumed night-time, and these were
similar (reported bedtime: mean 0.151 mW/m2 (SD 0.402), assumed
night-time: mean 0.151 mW/m2 (SD 0.404). We therefore conducted
all analyses using the assumed bedtime allowing the use of the full set
of 47 participants.

3.2. Description of initial model estimation

Themean initial exposure for 9563 random addresses in the area es-
timated by NISMap was 0.010 mW/m2 (SD 0.024) for all addresses,
0.078 mW/m2 (SD 0.062) for the 40 participants in the study that
were selected based on the initial estimation. The mean final NISMap
model estimation for these 40 participants was 0.159 mW/m2 (SD
0.238), and the correlation between the initial and the final estimation
was rSp= 0.40. Including the spontaneous applicants resulted in an av-
erage exposure of 0.140 mW/m2 (SD 0.225).

3.3. Inter- and intra-individual variability in RF-EMF measurements

We assessed the variability for the first and repeat 48 h measure-
ments available for 14 participants. There was more inter-individual
(between persons) variation than intra-individual (between the first
and repeat sets of measurements) variation, as reflected in a high
intraclass correlation (0.81) and Spearman correlation (rSp = 0.76).
Subsequent analyses are therefore based on the first successful 48 h
measurement period of all participants.

3.4. Accuracy of the model predictions

Table 2 shows the distribution of modelled and measured 48 h
downlink RF-EMF values for all 47 participants. Table 3 shows the accu-
racy of the model predictions for the first measurement of all 47 partic-
ipants. The mean modelled value for the 48 h overall period was
0.140 mW/m2, the mean measured value was 0.091 mW/m2. The
mean measured value from the spot measurements in the bedroom
was 0.292 mW/m2. We found a Spearman correlation of rSp = 0.47 be-
tween modelled and measured values for the 48 h overall period, and
rSp = 0.54 between model predictions and spot measurements in the
bedroom. In Fig. 2 we show two Bland–Altman plots (Bland and
Table 3
Comparison of downlink RF-EMF (mW/m2) model predictions with personal 48 h, time spent

Personal 48 h
(ExpoM3)

A
(E

Mean measured 0.091 0
Mean modelled 0.140 0
Ratio modelled/measured 1.532 1
Mean difference (modelled–measured) 0.048 0
Mean relative difference 0.30 0
Precision 0.17 0
Coefficient of variation 2.60 2
rSp correlation between measured and modelled 0.47 0
Altman, 1986) for the absolute (Fig. 2A) and the relative differences
(Fig. 2B) between the NISMapmodel predictions and the 48 h personal
measurements. Wemore often observe overestimation than underesti-
mation of RF-EMF, and thedegree of overestimation increases for higher
absolute values, but not for relative values. There are no consistent dif-
ferences in relative prediction accuracy (Fig. 2, Table 4 (rSp)) for ad-
dresses in high versus low urbanised areas. However, measured values
are higher in low urbanised areas, while modelled values are similar
in high and low urbanised areas, resulting in different modelled/mea-
sured ratios.

3.5. Downlink contribution to total far field RF-EMF

On average, downlink exposure contributed for 64% to total far field
RF-EMF exposure for the 48 h period.When the contribution is assessed
separately for subjects with a downlink exposure below and above me-
dian, we find that downlink contributed respectively 18% and 76% to the
total far field RF-EMF exposure.

4. Discussion

4.1. Interpretation of findings

In this study we expanded on previous studies to assess the validity
of using NISMap model predictions at the home address as a proxy for
personal downlink RF-EMF exposure from mobile phone base stations
in epidemiological studies. Compared to previous studies (Bürgi et al.,
2010; Martens et al., 2015), we included more high exposed subjects
and used improved model input data, as well as contemporary
measurement devices. Our results showed that participants can be
meaningfully ranked by modelled exposure at the home address irre-
spective of the degree of urbanisation, and that RF-EMF from mobile
phone base stations can be a major source of total RF-EMF exposure
for a portion of the population with high downlink exposure.

A similar measurement study with data from 2009/2010 reported a
Spearman correlation of rSp=0.36 betweenmodel predictions and 24h
personal measurements (Martens et al., 2015). The current study indi-
cated better agreement (rSp = 0.47) between model predictions and
personal measurements, possible owing to improved measurement de-
vices (EME-SPY 140 vs. EME-SPY 120) and better model input data,
mainly improved height estimation, and improved transmitter data.
Beekhuizen et al. (2014b) collected spot measurements in the bedroom
for 30 households and found a Spearman correlation of rSp = 0.60 with
model predictions using NISMap. In our study, we found a similar value
(rSp = 0.54). Since the spot measurements in the bedroom
corresponded most closely with the modelled location by NISMap, we
expected better agreement between these spot measurements and the
model predictions than with personal 48 h measurements. The differ-
ence in correlation between ‘spot measurements–model prediction’
and ‘personal 48 h measurement–model prediction’ can be interpreted
as the loss in prediction accuracy due to personalmovement patterns. In
our study, the loss in accuracy (0.54–0.47) seemsminimal. The extent of
at home, and at night measurements, and with spot measurements in the bedroom.

t home
xpoM3)

At night 0:00–08:00
(ExpoM3)

Spot measurements bedroom
(EME-SPY 140)

.083 0.090 0.292

.140 0.140 0.140

.691 1.557 0.478

.057 0.050 −0.152

.60 0.61 0.41

.17 0.20 0.82

.90 3.01 3.66

.49 0.51 0.54



Fig. 2. Bland–Altman plot of the mean downlink RF-EMF, showing the absolute (A. left) and relative (B. right) differences between model predictions and measured values for the 48 h
period. An ‘x’ represents an address in an area with low urbanisation (≤1500 addresses per km2), and an ‘O’ an address in an area with high urbanisation N1500 addresses per km2).
The horizontal lines (solid = x, striped = O) represent the mean, the mean +2 standard deviations, and the mean−2 standard deviations.
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the loss in prediction accuracy is influenced by the amount of time par-
ticipants spend at home/in the bedroom, and by activities/locations. Our
study population spent somewhat more time at home (78%) than in
other environmental studies (65–70%, e.g. Brasche and Bischof, 2005;
Martens et al., 2015), which may have resulted in a slightly optimistic
estimate of the loss in prediction accuracy.

We were especially interested in knowing if the prediction accuracy
differed by urbanity degree. If this would be the case, this could bias ex-
posure estimations and as a consequence, might bias epidemiological
exposure-response analyses especially if the health effect of interest is
also associated with level of urbanisation. Earlier validation studies by
Beekhuizen et al. (2014b) focused on highly urbanised areas, with
more complicated spatial characteristics and potentially less accurate
model estimation than in low urbanised areas. Our results did not indi-
cate clear differences in correlation (Fig. 2, Table 4). However, the
modelled/measured ratios were lower in less urbanised areas, and ur-
banisation degree should remain a point of attention in exposure
assessment.

Previous studies reported that the contribution of RF-EMF exposure
from mobile phone base stations to total far field RF-EMF exposure dif-
fers across countries and activities but is generally low (Bolte and
Eikelboom, 2012; Joseph et al., 2010). Neubauer et al. (2007) did not
recommend epidemiological studies on RF-EMF exposure to mobile
phone base stations alone, due to uncertainty in exposure assessment
and low contribution to overall RF-EMF exposure in general. Our results
show that this contribution differs depending on the level of exposure
to RF-EMF from mobile phone base stations. For participants in our
study with exposure from mobile phone base stations above the
Table 4
Mean RF-EMF downlink exposure (mW/m2) and Spearman correlations with modelled exposu

High urbanity (n = 21)

Mean rsp Ratio model

Modelled 0.152
Measured
48 h period 0.068 0.38 2.22
At home 0.069 0.52 2.21
At night 0.060 0.46 2.52
Spot measurements in bedroom 0.168 0.55 0.91

a High urbanisation: N1500 addresses per km2, low urbanisation: ≤1500 addresses per km2
median, the contribution to total far field RF-EMF exposure was 76%,
compared to 18% for participants with lower exposure.

4.2. Strengths and limitations

Strengths of this study were the accurate input data for the NISMap
model predictions and the contemporary measurement devices used to
measure RF-EMF fields. In contrast to previous studies (Beekhuizen
et al., 2014b; Frei et al., 2010; Martens et al., 2015), we did not focus
on spot measurements or on personal measurements, but did both
type of measurements, enabling us to evaluate the impact of personal
movement patterns on prediction accuracy. Previous RF-EMF personal
measurement studies differed in the length of the measurement period
(Frei et al. (2009): 1 week, Martens et al. (2015): 24 h). Large temporal
variation in personal exposure patterns could mean that longer mea-
surement periods or repeated measurements would be necessary to
get an indication of the typical long-term exposure of an individual.
We found a high intraclass correlation (0.81) between repeated mea-
surements, indicating that onemeasurement period of 48 h is adequate
to assess long-term personal exposure.

A limitation of this study arose from using different measurement
devices for spot measurements in the bedroom (EME-SPY 140) and
personal measurements (ExpoM3), which may have influenced the
comparison between spot measurements and personal measurements.
The ratio ofmodelled tomeasured valueswas different for themeasure-
ments with the ExpoM3 and the EME-SPY 140 device. However, limited
side-by-side testing of the two devices (results not presented) showed
no consistent differences between values of the two measurement
re by urbanisationa.

Low urbanity (n = 26)

led/measured Mean rsp Ratio modelled/measured

0.130

0.110 0.55 1.18
0.094 0.46 1.38
0.113 0.59 1.14
0.393 0.50 0.33

.
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devices and all measurement devices were calibrated both before and
after the measurement period. Like model predictions, measurements
have their own limitations, and are not a perfect ‘golden standard’
(Bolte et al., 2011; Lauer et al., 2012). Another limitation of this study
was the lack of information regarding mobile and DECT phone use.
Gaining information about phone use would require more detailed ac-
tivity diaries, which can be bothersome for participants and lead to se-
lective dropout. Phone use is a source of near field RF-EMF exposure
(the uplink and DECT frequencies), for which there can be large differ-
ences in measurement values depending on small differences in dis-
tance. Measurement devices such as the ExpoM3 can therefore not
give a reliable indication of full-body near field exposure, and the
measurement values in the uplink bands of our measurement values
(data not presented here) are a mix of both near field exposure (own
phone use) and far field exposure (phone use by other people in the
area). Therefore and given our study aim, we focused on downlink
frequencies.

We oversampled high exposed subjects to obtain subjects across a
broad range of exposure, using an initial model estimation with incom-
plete input data (less accurate height input and transmitter data). A
disadvantage of this selection method is that the results of this study
are not representative for the general population. We selected all
participants from the same neighbourhoods as participants living at ad-
dresses with a high exposure estimate based on the initial estimation.
As a consequence, we have selected neighbourhoods with high expo-
sure contrasts, which may reflect spatial characteristics of these
neighbourhoods such as large variation in building heights. Since esti-
mation of exposure with a 3D geospatial model may be more difficult
in such areas than in areas with less spatial variation, we may have
slightly underestimated the ability of NISMap to classify subjects as
high or low exposed.

4.3. Conclusion

Findings of previous measurement studies suggested that the agree-
ment between model estimations of downlink RF-EMF from mobile
phone base stations at the home address and personal measurements
was substantially lower than the agreement with measurements at a
static location. In our study, we found that the loss in prediction accuracy
resulting frommovement patterns and specifically, the time spent at lo-
cations other than the home address, is limited. Although misclassifica-
tion is present, it is possible to meaningfully rank participants on
modelled downlink exposure and to identify relatively high exposed in-
dividuals, both for low and high degree of urbanisation. The contribution
of exposure frommobile phone base stations to total far field RF-EMF ex-
posure can be substantial for subjects with a high exposure. Large epide-
miological studies regarding health effects of RF-EMF frommobile phone
base stations are now feasible, as limited individual input data is required
owing to the availability of an adequate prediction model.
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