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Abstract
This article introduces the SPAWNN toolkit, an innovative toolkit for spatial analysis with self-organizing

neural networks, which is published as free and open-source software (http://www.spawnn.org). It extends

existing toolkits in three important ways. First, the SPAWNN toolkit distinguishes between self-organizing

neural networks and spatial context models with which the networks can be combined to incorporate spatial

dependence and provides implementations for both. This distinction maintains modularity and enables a mul-

titude of useful combinations for analyzing spatial data with self-organizing neural networks. Second,

SPAWNN interactively links different self-organizing networks and data visualizations in an intuitive manner

to facilitate explorative data analysis. Third, it implements cutting-edge clustering algorithms for identifying

clusters in the trained networks. Toolkits such as SPAWNN are particularly needed when researchers and

practitioners are confronted with large amounts of complex and high-dimensional data. The computational

performance of the implemented algorithms is empirically demonstrated using high-dimensional synthetic

data sets, while the practical functionality highlighting the distinctive features of the toolkit is illustrated with

a case study using socioeconomic data of the city of Philadelphia, Pennsylvania.

1 Introduction

The amount of available spatial data has increased rapidly in recent years due to advances in

spatially explicit technologies for acquiring, sharing, and storing spatial information (Miller

and Goodchild 2014). This data often contains hidden and a priori unexpected information,

which can hardly be explored using traditional statistical methods that require hypothesis test-

ing and are not developed to handle such large amounts of data (Miller and Han 2009). Spatial

data mining explicitly addresses these issues by adopting state-of-the-art methods from the

fields of artificial intelligence, machine learning and spatial database systems, among others, in

order to extract information and to ultimately transform it into new and potentially useful

knowledge (Yuan et al. 2004).

Clustering is a particularly useful method in spatial data mining, because it organizes observa-

tions into clusters such that the similarity within a cluster is maximized while the similarity

between different clusters is minimized (Jain 2010). In this way, it imposes a structural organiza-

tion on the data, which facilitates further analysis and alleviates data exploration. This analysis

and data exploration are often performed by a human analyst, whose ability to perceive and

understand patterns – through visual representations – exceeds the capabilities of computational
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algorithms (Keim 2002; Ware 2012). Therefore, it is convenient and efficient to combine cluster-

ing methods with appropriate visualizations and interactive means in a combined toolkit.

Spatial clustering is the task of clustering spatial data, which is fundamentally different

from non-spatial data (see Grubesic et al. 2014). An essential property of spatial data is that

observations are usually spatially dependent (Sui 2004), meaning that observations that are

spatially close to each other tend to have similar characteristics. Without this property, the var-

iation of phenomena would be independent of location, and thus, the notion of region would

be less meaningful (Goodchild 1986). However, the available data might not be sufficient to

accurately model the spatial varying phenomena and thus, if spatial data is clustered while spa-

tial dependence is neglected, the results may lead to an incomplete understanding of the spatial

patterns (Openshaw 1999).

While many different clustering algorithms for spatial and non-spatial data have been pro-

posed in the literature (e.g. Guo 2008, Jain 2010, Parimala et al. 2011), few neural network-

based clustering approaches that explicitly account for spatial dependence have been devel-

oped. Two notable exceptions are the GeoSOM (Baç~ao et al. 2005) and contextual neural gas

(CNG) (Hagenauer and Helbich 2013). Both are adaptations of basic self-organizing network

algorithms that utilize the spatial arrangement of the neurons to account for spatial depend-

ence. However, these approaches are purely computational; they still require a human analyst

to interpret the clustering results in the light of domain-specific knowledge and, if necessary, to

adjust the parameter settings, which involves repeating the analysis. To facilitate this task, it is

necessary to integrate different self-organizing neural network-based clustering methods, where

each comes with its unique advantages, in an interactive toolkit with other computational, vis-

ual, and geographic methods. Such a toolkit should be intuitive and easy to use so that its usage

is promoted across different spatial disciplines.

To address the lack of such toolkit, this article introduces SPAWNN, an innovative toolkit

for SPatial Analysis With self-organizing Neural Networks, which implements the self-

organizing map (SOM) (Kohonen 1982, 2001) and neural gas (NG) (Martinetz and Schulten

1991; Martinetz et al. 1993) algorithms. The toolkit extends existing toolkits in three important

ways: First, it is the first toolkit that allows these self-organizing networks to be combined with

either the CNG or the GeoSOM approach, or with alternative spatial context models, in order to

account for spatial dependence. Second, the toolkit provides different visualizations and links

between the neurons and a geographic map. This permits the analyst to interactively select neu-

rons or observations and to visually inspect the mapping between them in order to explore the

results of the trained networks in detail. Third, the toolkit provides a set of powerful clustering

algorithms for post-processing the network models. The article demonstrates the usefulness of

the presented toolkit with a case study exploring census data in Philadelphia, Pennsylvania.

The article is structured as follows. Section 2 reviews existing toolkits for spatial cluster

analysis. Section 3 discusses self-organizing neural networks, while Section 4 introduces differ-

ent models for incorporating spatial dependence into the networks. The SPAWNN toolkit is

presented in Section 5. In Section 6 the computational demand of the implemented spatial con-

text models is analyzed, while Section 7 illustrates the application of the SPAWNN toolkit to

practical analytical problems. Section 8 concludes the article and discusses future work.

2 Related Work

The process of exploring and analyzing spatial patterns usually involves the application of

diverse methods from the fields of spatial data mining and geographic information systems
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(GIS) (Mennis and Guo 2009). In order to facilitate this process, numerous software toolkits

have been developed that combine different methods from both fields in an integrated and user-

friendly environment.

One of the first of such toolkits is GeoMiner, introduced by Han et al. (1997), which

enhances the relational data mining system DBMiner (Han et al. 1996). GeoMiner’s main fea-

ture is its ability to mine three kinds of knowledge rules in spatial databases. For this purpose,

the authors proposed a geographic query language. Other features of GeoMiner include the

integration of data warehousing and GIS technologies, a user interface, and multiple forms of

outputs, including generalized maps, generalized relations, cross-tabulation, and charts.

Another prototypical approach that integrates data mining methods and geographic visualiza-

tion is KGConstruct (MacEachren et al. 1999). It provides three dynamically linked forms of

representation: geographic maps, 3D scatter plots and parallel coordinate plots, which can be

independently or simultaneously manipulated through applications of different interaction

forms in order to explore the spatial data. More recently, Anselin et al. (2006) developed the

popular GeoDA tool. It comprises a variety of different approaches for analyzing spatial data,

including histograms, box plots, scatter plots and choropleth maps. Dynamically linked win-

dows, which combine geographic maps and statistical plots, are used for exploratory analysis.

GeoDA also provides univariate cluster detection methods, such as local indicators of spatial

association (Anselin 1995). However, similar to KGConstruct, it does not offer multivariate

clustering algorithms. K€orting et al. (2013) proposed GeoDMA, a toolkit that combines remote

sensing image analysis capabilities with spatial data mining techniques. More specifically, the

toolkit includes methods for image segmentation, feature extraction, feature selection, classifi-

cation, landscape metrics and multitemporal methods for change detection and analysis. In

order to provide access to common GIS functions, the toolkit is tightly integrated into a freely

available GIS software.

The aforementioned combined toolkits have demonstrated that the linkage of different rep-

resentations of spatial data and data mining methods is useful for many complex spatial analy-

sis tasks. However, none of them supports SOMs, a data mining method that has shown to be

very useful for visualization, clustering, and data analysis tasks (e.g. Flexer 2001; Est�evez and

Figueroa 2006; Tasdemir and Mer�enyi 2009). The two-dimensional topology of SOMs particu-

larly promotes their integration with other GIS methods in an interactive environment for spa-

tial data analysis (Skupin and Agarwal 2008)

One of the first toolkits that effectively made use of SOMs is GeoVISTA Studio, introduced

by Takatsuka and Gahegan (2002). While its arguably most distinctive feature is its

component-oriented design, which embraces visual programming to facilitate the development

of data analysis and visualization programs, the toolkit also provides means for training SOMs

and for linking the SOMs’ results with different visualizations and statistical analysis methods.

Following a similar approach, Guo et al. (2005) developed SOMVIS, an integrated environ-

ment which consists of four major components: SOMs, parallel coordinate plots, geographic

maps, and a two-dimensional color design tool. The combination of the computational algo-

rithms and visual methods ought to mitigate each other’s weaknesses and thus to facilitate the

exploration and discovery of spatial patterns. Because SOMVIS focuses on spatial data, Guo

et al. (2006) have extended the toolkit to accommodate for the temporal dimension as well, in

order to explore spatiotemporal mappings. SOM Analyst (Lacayo-Emery 2011) comprises a

basic set of tools for using SOMs within the proprietary but widely used ArcGIS platform. It

includes tools for data preprocessing, SOM computation and SOM visualization that extend

common GIS functions. Furthermore, while the toolkit does not implement direct linkage

between SOMs and the data, it supports the mapping of data to an existing SOM. Andrienko
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et al. (2010) proposed a framework based on SOMs combined with a set of interactive visual

tools that support different analytic perspectives for the analysis of spatiotemporal data. The

SOM visualization is linked to a geographic map, a time series graph, and a periodic pattern

view. In this way, the analysis of SOM results in both the spatial and temporal dimensions is

supported. Finally, the GeoSOM suite, introduced by Henriques et al. (2012), mainly differs

from the abovementioned approaches in that it does link the GeoSOM, which is particularly

tailored to spatial data, instead of a basic SOM to different visualizations and analysis meth-

ods. Therefore, the effective coupling of the GeoSOM with a geographic map is even more

important.

The above literature review showed that currently only a few toolkits exist that combine

SOMs, spatial analysis and GIS within an interactive and user-friendly environment. However,

these toolkits have two important deficiencies: First, while basic SOMs are well supported,

other self-organizing neural networks are not implemented in the toolkits, even though it has

been shown that SOMs are less appropriate for certain analysis tasks such as vector quantiza-

tion (e.g. Strickert and Hammer 2005; Hagenauer and Helbich 2013). Furthermore, as the

application of different neural network algorithms can potentially yield different results, a

direct comparison between several network models is useful to enhance the understanding of

the data. Second, besides the GeoSOM suite, all toolkits use the basic SOM algorithm, which

does not account for spatial dependence at all. The GeoSOM suite, on the other hand, is exclu-

sively restricted to the GeoSOM algorithm; it does not support alternative approaches for con-

sidering spatial dependence, even though those can produce valuable results for certain analysis

tasks (see Hagenauer and Helbich 2013).

3 Self-Organizing Neural Networks

Self-organizing neural networks represent a class of artificial neural networks (ANNs) that are

trained in an unsupervised manner. This means that they optimize some task-independent per-

formance criterion, which is defined in terms of the neuronal activity, to detect similarities in

the input data (Fischer 1998). After the training, the network represents the learned data in a

more explicit or simple form (Becker 1991), which is useful for clustering and analysis tasks.

Among the large variety of self-organizing neural networks (e.g. Carpenter and Grossberg

1991), it has been demonstrated that the SOM is particularly useful for a wide range of analyti-

cal problems (e.g. Kaski et al. 1998; Oja et al. 2003; Kalteh et al. 2008; Chon 2011; Liu and

Weisberg 2011). This subsection briefly introduces the SOM and the NG algorithm, a closely

related algorithm that is particularly useful for clustering tasks.

3.1 Self-Organizing Map

The SOM (Kohonen 1982, 2001) consists of an arbitrary number of neurons that are connected

to adjacent neurons by a neighborhood relation, defining the topology of the map. In principle,

the dimension of a SOM is arbitrary, but in practice, two-dimensional SOMs are commonly

used for visualization purposes. Associated with each of these neurons is a prototype vector of

the same dimension as the input space. During the training, input vectors are presented to the

SOM, and the neuron with the smallest distance to the input vector, referred to as the best

matching unit (BMU), is identified. Then, the prototype vector of the BMU and the prototype

vectors within a certain neighborhood on the map are moved in the direction of the input vec-

tor. The magnitude of the displacement depends on the distance of the neurons to the BMU on

the map and on the actual learning rate. Both the size of the neighborhood and the learning
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rate decrease monotonically during the learning process. Thus, in the beginning of the learning

phase, the arrangement of neurons on the map can be altered significantly, while at the end of

the training phase, only small changes are made to fine-tune the map. The trained SOM repre-

sents a low-dimensional map of the input space, where each neuron represents some portion of

the input space and where the distance relationships of the input space are mostly preserved.

3.2 Neural Gas

Similar to the SOM, the NG algorithm (Martinetz and Schulten 1991) consists of an arbitrary

number of neurons. However, in contrast to the SOM, the NG’s neurons are not subjected to

any topological restrictions, which typically results in a quantitative performance superior to

that of the SOM (Martinetz et al. 1993; Cottrell et al. 2006). Associated with each of the NG’s

neurons is a prototype vector of the same dimension as the input space. During the training,

input vectors are presented to the NG and each neuron is moved in the input vector’s direction.

The magnitude of the displacement depends on the neurons’ ranking order with respect to the

distance to the input vector, the learning rate and the neighborhood range. Both the neighbor-

hood range and learning rate are typically set to decrease with training time. After a sufficient

number of training steps, the prototype vectors typically approximate the probability density

function of the input space with near-minimum quantization error.

In contrast to SOM, NG does not have a predefined topology, which represents the similar-

ity relationships between the neurons (Martinetz and Schulten 1991). However, a topology is

particularly useful, because it can reveal valuable information about the underlying data. In

order to learn a topology, competitive Hebbian learning (Martinetz and Schulten 1991; Marti-

netz 1993) can be applied to NG in a post-processing step as follows: For each input vector, the

two closest neurons are identified and a connection between these two neurons is added to the

total set of connections, whereas closeness is usually measured with the Euclidean distance.

When all input vectors have been processed, the resulting set of connections represents the

learned topology. The number of connections that have been added between two neurons

indicates the strength of their relationship (Hagenauer 2014).

4 Spatial Context Models

This article introduces the concept of a spatial context model. A spatial context model describes

the relationships between spatial observations and the neurons of a self-organizing neural net-

work during the training or when applying the trained network to data. Because the neurons are

constantly moved during the training, their spatial locations are not fixed and, hence, it is difficult

to describe their spatial relationships using a spatial weights matrix, a formalization of spatial

relationships which is frequently used in spatial statistics (e.g. Bavaud 1998; Getis 2009). Instead,

with the exception of Weighted Merge Context (WMC) (Hagenauer 2015), spatial context

models evaluate the spatial relationships between neurons and spatial observations by utilizing

different distance measures.

Spatial context models have previously been considered as a integral part of a

self-organizing network (e.g. Baç~ao et al. 2005; Hagenauer and Helbich 2013). This article dis-

tinguishes between self-organizing neural networks and spatial context models. Such a distinc-

tion has several advantages. First, it maintains the modularity of the toolkit. This is desired

because it facilitates reuse of existing code, the implementation of new features and its further

extension. Second, and more important, it allows the combination of different self-organizing
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networks with different spatial context models and thus increases the analytical capabilities of

the toolkit.

In the following, this section briefly describes the most common spatial context models

that can be derived from existing literature.

4.1 Augmented Input Vectors

The simplest context model for considering spatial dependence during the training of a neural

network consists in concatenating each input vector with the coordinate vector that represents

the location of the corresponding observation. Hence, since the coordinates are treated as regu-

lar attributes, this approach can be used with virtually every neural network algorithm. By scal-

ing the coordinates, the relative importance of the coordinates in comparison to the other

attributes can be adjusted.

4.2 Weighted Distance

Another approach that also considers the mutual dependence of the spatial coordinates is to

measure the distance between the prototype and the input vectors by calculating the weighted

sum of attribute similarity and spatial closeness, both commonly expressed by Euclidean dis-

tances but measured according to different scales (e.g. Murray and Shyy 2000). The weighting

of the two addends determines the relative importance of spatial closeness when evaluating the

similarity.

4.3 GeoSOM

The GeoSOM (Baç~ao et al. 2005) is a variant of the SOM algorithm that adapts the idea of

Kangas (1992) for quantizing, clustering and visualizing spatial data. The main difference with

the basic SOM is that the GeoSOM uses a two-step procedure to determine the BMU. In the

first step, the neuron that is spatially closest to the input vector is identified. In the second step,

the closest neuron to the input vector, but within a fixed radius of this neuron in terms of map

distance, is identified. (Since the NG’s neurons are not arranged in a fixed map and, conse-

quently, the map distance between neurons is not defined for NG, this approach cannot be

used with this algorithm). This neuron is then designated as the final BMU. The size of the

radius affects the strength of spatial dependence that is incorporated into the learning process.

The smaller the radius, the more the final ordering of the map is determined by spatial

closeness.

4.4 Contextual Neural Gas

Contextual Neural Gas (CNG) (Hagenauer and Helbich 2013) is a vector quantization and

clustering algorithm that combines the concepts of the GeoSOM with the NG algorithm. Anal-

ogous to the GeoSOM, CNG enforces spatial proximity between the observations and neurons

by exploiting the spatial arrangement of the neurons. However, since its neurons are not topo-

logically ordered in a grid, CNG applies a two-step procedure for determining a rank ordering.

In the first step, the neurons are ordered according to spatial closeness. In the second step, the

first k neurons of the resulting spatial ordering are reordered within their ranks with respect to

input vector similarity. The parameter k controls the degree of spatial dependence that is incor-

porated in the adaptation process: The smaller the parameter k, the more is the adaptation of

neurons determined by spatial closeness.
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4.5 Weighted Merge Context

Weighted Merge Context (WMC) (Hagenauer 2015) is a generalization of merge context

(Strickert and Hammer 2003), a method for clustering temporal data. WMC evaluates distance

by considering not only the similarity between prototype and input vectors, but also the proto-

types of spatially close input vectors, which are represented by context vectors. Both vectors

are updated in the course of the training. The prototype vector is moved in the direction of the

input vector, whereas the context vector is moved in the direction of the context descriptor,

which is a recursively expressed reference to the input vector’s neighborhood. The weighting of

the context vectors’ similarity in the process of learning then basically determines the impor-

tance of spatial context information over the current input vectors’ similarity.

5 The SPAWNN Toolkit

The general architecture of the SPAWNN toolkit, depicted in Figure 1, is organized in four

layers, which roughly correspond to the well-known steps in the process of knowledge discov-

ery in databases (Fayyad et al. 1996). While Figure 1 suggests a sequential execution order, it is

not mandatory for application purposes: Steps can be skipped or repeated, depending on the

decision of the analyst guiding the process (Miller and Han 2009).

� In the input layer, spatial data is first loaded into the application. The general data for-

mat is not specified and the data can stem from different sources, e.g. other GIS software

Figure 1 General architecture of the SPAWNN toolkit
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or spatial databases. Next, the input data is preprocessed. The preprocessing is a crucial

step, because it can significantly affect the results of the analysis.

� In the modeling layer, a (self-organizing) ANN is combined with a spatial context model

and trained using the preprocessed input data. There are no general constraints on the

kind of network or spatial context model that can be applied. In fact, depending on the

problem at hand, multiple combinations can be useful. After training, it is usually desira-

ble to post-process the resulting network data. A typical procedure is to form clusters of

neurons in order to summarize their properties.

� The visualization and interaction layer is one of the central components of the toolkit. It pro-

vides two different visualizations: a view of the resulting self-organizing neural network and a

map view of the spatial data applied to the network. Both views are tightly linked to each other.

The analyst can interactively select color or group neurons on the network view and immedi-

ately see the effects on the observations on the map view and vice versa. This gives the analyst a

deeper understanding of the relationship between the network and the spatial data, which in

turn facilitates the formulation of hypotheses and helps to gain new insights.

� The output layer is responsible for exporting the results in common data formats. Using

these formats, the data can then straightforwardly be imported to other GIS or statistical

software for further analysis. This is important because the presented SPAWNN toolkit

focuses on self-organizing neural network analysis; it is not intended to replace but to

complement existing analytical frameworks.

The actual SPAWNN toolkit is an independent standalone application that is written in Java

and distributed as open-source software under the GNU General Public License (GPL). This has

several advantages. First, because the toolkit is independent of other software rather than integrated

into a GIS or statistical software, the user does not have to deal with different software products

and licenses. Second, the implementation in a platform-independent language permits the toolkit to

be run on a multitude of different platforms. Third, because the toolkit is developed as free and

open-source software, the scientific community has access to the source code, allowing other

researchers to modify the toolkit for subsequent integration in their own toolkits or to participate in

its further development (Rey 2009). The toolkit is available free-of-charge and can be downloaded

from the following website: http://www.spawnn.org.

Currently, the toolkit supports comma-separated files and Esri shapefiles for importing

spatial data. After importing the data, the analyst can select attributes and normalize them

either by scaling them to the zero-to-one range or to have zero mean and unit standard devia-

tion. Furthermore, attributes that represent geographic coordinates can be flagged. The pres-

ence of coordinate vectors is necessary for all spatial context models, except WMC, which uses

a weight matrix to determine the distance between observations.

The SPAWNN toolkit implements the SOM algorithm as well as the NG algorithm. To

account for spatial dependence, these neural networks can be combined with different spatial

context models (see Section 4). Figure 2 shows the graphical user interface for the selection and

configuration of the self-organizing network and the spatial context model that should be

applied. Once the network is learned, a split view that displays a representation of the trained

network (ANN view) as well as of the data (Data view) is presented to the user (see Figure 3).

Utilizing these views, the analyst can explore and highlight either the neurons or observations

in order to investigate the mapping in detail.

If the analyst has trained a SOM, a grid view of the neurons or a graph view in which

the neurons are arranged according to their geographic coordinates can be displayed. The col-

oring of the neurons can be chosen to either represent the value of a certain attribute of the
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neurons’ prototype vectors (component plane) or represent a distance-related statistic of

each neurons to its immediate neighbors (distance matrix or distance-based representation; e.g.

Vesanto 1999). The distance-related statistic can either be the mean, median, mode or some

other central or typical values. Moreover, the neurons can also be clustered and colored accord-

ing to cluster membership. This is useful because the trained networks often consist of far more

neurons than there are actual clusters in the data. The toolkit provides several algorithms to

detect clusters of neurons, e.g. the basic k-means algorithm, watershed clustering (Vincent and

Soille 1991), a subset of the Regionalization with Dynamically Constrained Agglomerative

Clustering and Partitioning (REDCAP) algorithms (Guo 2008) and the Spatial ’K’luster Analy-

sis by Tree Edge Removal (SKATER) algorithm (Assunç~ao et al. 2006). The later three are par-

ticularly useful because they can identify spatially contiguous clusters of neurons.

If the trained network is NG, the toolkit displays a graph view of the neurons. The neurons

can thereby be arranged either according to their geographic coordinates or by using common

Figure 2 Self-organizing neural network and spatial context model selection window

Figure 3 Linked view of a self-organizing neural network (left) and a geographic map of the data
(right). The colored neurons of the network correspond to the colored observations on the geo-
graphic map
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graph layout algorithms, including the Fruchterman-Reingold (Fruchterman and Reingold

1991) or Kamada-Kawai algorithm (Kamada and Kawai 1989), which both try to automati-

cally arrange the neurons in an aesthetically pleasing and meaningful way. In addition, the neu-

rons in the graph view can be colored according to the same criteria as when displaying a

SOM, such as some distance-related statistic of the neurons or the values of the prototype vec-

tors for chosen attributes. The user can choose from multiple color schemes, which include

sequential, diverging, and qualitative schemes that have been particularly designed for thematic

mapping (Harrower and Brewer 2003). Moreover, the strength of the connections between

neurons can be displayed by varying their line width, depending on either the distance between

the connected neurons or the number of times the connected neurons have been closest to each

other in the mapping process. Thus, the analyst can explore the similarity relationships between

the neurons in detail. In addition to the aforementioned algorithms for clustering neurons, the

SPAWNN toolkit also provides powerful community detection algorithms that exploit the

NG’s network topology for this purpose. Among these algorithms are the Girvan-Newman

algorithm (Girvan and Newman 2002), which evaluates the number of shortest paths between

neurons and then progressively removes connections to detect communities, as well as the

multi-level modularity optimization (MLMO) algorithm (Blondel et al. 2008), a greedy hier-

archical optimization heuristic that is particularly well suited for large networks.

Depending on the results, the analyst can re-run the network training and visualization

using different parameters ad libitum. The results of previous runs are retained, so that they

can be related to the current ones to facilitate the analysis process.

Finally, the toolkit supports the export of the results in different data formats. The trained

networks can be saved as, among others, a GraphML (Brandes et al. 2002) file or in the data

format of the Java SOMToolkit (Mayer et al. 2011). The spatial data, enriched with the results

of the analysis, can be exported as a common Esri shapefile. Since these data formats are also

supported by a wide range of other software products, interoperability is promoted.

6 Performance Study

Computation time is a concern when clustering large and complex spatial data sets. Therefore,

this section investigates the computational demand of the different spatial context models with

respect to the number of regular non-spatial and location attributes. For this purpose, synthetic

data sets are created, whose observations consist of n normally distributed random regular

attributes and m normally distributed location attributes. Each spatial context model is com-

bined with a 6 3 6 SOM as well as a NG consisting of 36 neurons, except the GeoSOM

approach, which is only combined with the SOM, because it requires a fixed map topology.

Then, the resulting networks are trained for 100,000 steps using the created data sets on a

standard laptop PC that is equipped with an IntelVR Core TM i5-3320M CPU@2.4GHz and run-

ning on Debian Linux 8.0.

Figure 4 shows the mean computation times over 32 runs for 1 � n � 25 and m 5 2, while

Figure 5 shows these for n 5 5 and 1 � m � 25. In more detail, Figure 4a reveals that, except

for WMC, the computation time increases only very slightly with the number of regular attrib-

utes when training a SOM that is combined with a spatial context model. WMC is much more

computationally demanding than the other models, because it considers the regular attributes

of all neighbors for each observation in order to find the BMU. When training a NG that is

combined with a spatial context model, the computation time increases significantly for all
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models, except CNG. This is because they consider the regular attributes of all neurons in the

sorting procedure, whereas CNG considers only a small subset of neurons.

Concerning the number of location attributes, Figure 5a shows that when training a SOM

that is combined with a spatial context model, the CNG is the only model for which the com-

putation time significantly increases with the number of location attributes. This is because, to

find the BMU, the CNG approach uses a sorting procedure that frequently evaluates the loca-

tion attributes of the observations, while the BMU search of the other models does not include

such a sorting procedure and evaluates these attributes far less often. By contrast, the only spa-

tial context model for which the computation time does not significantly increase when com-

bined with a NG is WMC. The reason for this is that WMC does not utilize the location

attributes of the observations to evaluate spatial relationships, but uses a weight matrix instead.

Nevertheless, in real-world applications the performance with regard to the number of location

attributes is rarely a concern, because most observations are typically measured in two- or

three-dimensional space.

To conclude, the computation times of the spatial context models are kept at perfectly rea-

sonable levels, which gives evidence for the appropriateness of the SPAWNN toolkit for analyz-

ing and clustering high-dimensional spatial data sets.
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7 Case Study

To illustrate the practical applicability of the SPAWNN toolkit and to highlight the advantages

of different self-organizing neural networks for different tasks, this section presents a case study

which consists of three common analysis steps: an outlier analysis, a correlation analysis and a

cluster analysis. The case study uses socioeconomic data of the city of Philadelphia, Pennsylva-

nia. The city is situated in the northeastern US along the Delaware and Schuylkill rivers and

consists of an area of approximately 369 km2. Philadelphia is currently the fifth largest city in

the US, with an estimated population of 1.5 million people in 2012, and is the economic and

cultural center of the Delaware Valley. The city is of particular interest because it is one of the

most segregated cities in the US while having spatially varying socio-demographics; even the

most affluent African Americans live in neighborhoods that are close to majority African Amer-

ican (Logan 2011). Hence, it can be expected that these neighborhoods emerge as distinct clus-

ters in the analysis results.

The case study uses freely available tract-level data extracted from the 2010 US Census

about ethnicity, age, housing, and households in Philadelphia. While census tracts are mostly

homogeneous with respect to population characteristics, economic status, and living condi-

tions, there exist census tracts, in particular in South Philadelphia, which exhibit pronounced

ethnic heterogeneity below the census tract level. These tracts do not affect the applicability of

the toolkit, but they must be considered when interpreting the analysis results. The following

nine variables are used: (1) percentage of white population; (2) percentage of African Ameri-

cans; (3) percentage of Asians; (4) percentage of Hispanics; (5) percentage of renter-occupied

houses; (6) percentage of population younger than 25 years old; (7) percentage of population

between 25 and 64 years old; (8) percentage of population older than 64 years; and (9) the

average size of households. Tracts without population are removed from the data set before-

hand, and all attributes are standardized to zero mean and unit variance to make them compa-

rable. The study site consists of 380 census tracts in total. While the SPAWNN toolkit can

generally applied to data sets of arbitrary size, the small number of census tracts in this case

study facilitates the visualization and discussion of the results.

7.1 Outlier Analysis

First, a GeoSOM and CNG are applied for outlier detection. The identification of outliers is a

crucial task, because outliers distort the distribution of the data and thus can significantly affect

the results of subsequent analysis. The GeoSOM consists of 12 3 8 neurons and the CNG

accordingly of 96 neurons. Preliminary tests have shown that these numbers represent a fair

compromise between computational effort for training the networks and quantization perform-

ance. Both networks are trained for 100,000 iterations.

In the distance matrix representation of the resulting GeoSOM (Figure 6), outliers can be

identified by neurons that have high median distance to neighboring values and, given that the

size of the map is sufficiently large, are located at the border of the matrix (Mu~noz and

Muruz�abal 1998). In the distance-based representation of the resulting CNG (Figure 7), out-

liers can be identified by also having a high median distance to neighboring neurons while being

sparsely connected to other neurons.

Comparing the identified outliers (outlined in red) in both representations shows that while

they partly correspond, there also exist some notable differences. A reason for these differences

might be that selecting a median distance threshold is a rather subjective task. This matter is

typically less crucial for the CNG, because the learned topology provides additional and more
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(a)

(b)

Figure 6 Distance matrix (a) and cartographic map (b) of the GeoSOM. Identified outliers are out-
lined in red. The neuron that maps the census tract where the Northeast Philadelphia Airport is
located and the tract itself are outlined in green. For clarity, other tracts that this particular neuron
maps are not outlined

(a)
(b)

Figure 7 Distance-based representation of the CNG (a) and the geographic map (b). Identified
outliers are outlined in red
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useful guidance for the identification of outliers than the a priori fixed topology of the Geo-

SOM. Indeed, in-depth inspection of the identified outliers revealed that the results for the

CNG are more consistent than those for the GeoSOM. For instance, the census tract where the

Northeast Philadelphia Airport is located (outlined in green in Figure 6) has a extremely low

population density and its attributes are consequently very skewed (e.g. a 100% rate of white

population). This tract is barely recognizable as an outlier on the distance matrix of the

GeoSOM because the mapping neuron’s median distance to neighboring neurons is rather

small (the neuron is also colored in green in Figure 6). In contrast, the census tract is clearly

identifiable as an outlier on the CNG representation (see Figure 7). Hence, it can be concluded

from this section that the CNG is more appropriate for identifying outliers than the GeoSOM.

7.2 Correlation Analysis

As a second analysis step, correlation analysis is performed which identifies and evaluates the

associations between different attributes of the data. For this purpose, the identified outliers are

removed from the data set first. Then, a GeoSOM and a CNG of the same sizes as in the pre-

ceding section are trained.

A common approach for identifying correlations in the data is to compare component

planes (e.g. Vesanto and Ahola 1999; Barreto-Sanz and P�erez-Uribe 2007). Correlations

become apparent by similar (positive correlation) or complementary (negative correlation) pat-

terns in identical areas of the network.

This approach for identifying correlations has several advantages over standard correlation

analyses. First, the SOM as well as the NG provide a nonlinear map of the data which allows

the identification of nonlinear correlations. Second, by comparing multiple component planes

multivariate correlations become apparent. Third, local correlations can be identified by par-

tially matching patterns.

Figure 8 exemplarily depicts the GeoSOM component planes for the rates of African

Americans and white population. The component planes reveal rather complementary patterns,

indicating a strong negative correlation and therefore high segregation between the African

American and white populations of the city. Furthermore, it can be seen that two distant areas

of the network both have very high rates of white population, indicating that other discriminat-

ing factors determined the separation of these areas.

Figure 9 shows the neurons of the CNG, which are also colored according to the percent-

age of African Americans (a) and the percentage of white population (b). Even though the com-

plementary patterns are also present, these patterns are more difficult to perceive due to the

seemingly unordered arrangement of the neurons. In fact, it is hardly feasible to arrange the

CNG’s neurons on a two-dimensional plane while preserving the neurons’ topological relation-

ships. This problem typically becomes even more severe as the dimension of the input space

increases. To conclude, the GeoSOM is more appropriate for correlation analysis than the

CNG.

7.3 Cluster Analysis

As a last step showing the use of the SPAWNN toolkit, the trained GeoSOM and CNG from

the preceding section are used to detect spatially contiguous clusters within the study area. For

this purpose, the SPAWNN toolkit provides several powerful clustering algorithms as well as

means for manually outlining and visualizing clusters. Here, clustering algorithms are used

because they depend less on the subjective decisions of an analyst and are more convenient for

complex networks.
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In order to cluster the CNG and GeoSOM, contiguity-constrained hierarchical clustering

using Ward’s criterion is applied (Murtagh 1995). Figure 10 depicts the results for the cluster-

ing of the CNG, while the results for the GeoSOM are shown in Figure 11.

Both algorithms detected similar clusters, even though there are also some notable differen-

ces. For example, both algorithms outlined a separate cluster (cluster 3) that captures the neigh-

borhoods of the city’s universities, e.g. Drexel, Temple, and Saint Joseph’s University.

However, cluster 3 of the GeoSOM does not include La Salle University in the North.

(a) (b)

Figure 8 GeoSOM component planes for the rates of African Americans (a) and white population (b)

(a) (b)

Figure 9 Neurons of the CNG, colored according to the rates of African Americans (a) and white
population (b)
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Cluster 1, which is predominantly characterized by high rates of African American popula-

tion, is also very similar for the clustering of the CNG and GeoSOM. In fact, comparing the

outline of this particular cluster in the network representation of the GeoSOM (Figure 11, left

panel) with the component plane of African American Population in Figure 8a, reveals that the

Figure 10 Clustering results for CNG

Figure 11 Clustering results for the GeoSOM
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clusterings essentially follow the distribution of African American population. This exemplifies

that high segregation tendencies of African Americans are still present in the city.

By contrast, the few existing predominantly Asian neighborhoods do not appear in the

clustering of the GeoSOM, even though they are clearly outlined by the CNG (cluster 4). Anal-

ogously, while the CNG outlines neighborhoods with very high rates of senior citizens (cluster

8), these neighborhoods are not demarcated by the GeoSOM. Also neighborhoods with high

rates of Hispanic population, in particular around Fairhill, which serves as the center of the

Hispanic community in Philadelphia, are more clearly identified by the CNG than by the Geo-

SOM (cluster 5).

In addition, the figures show that cluster 7 of the GeoSOM covers two distinct parts of the

city in the northeast and northwest, while for the CNG these parts are covered by two spatially

disjoint clusters (clusters 2 and 7). From a geographical perspective, a distinction between the

northeast and northwest parts of Philadelphia can indeed be expected, because in the past the

northeast has undergone very different economic and sociological developments from the

remainder of the city (Adams 1993).

In conclusion, while the GeoSOM is particularly useful for relating clusters to component

planes in order to inspect data relationships, the clustering of the CNG is geographically more

accurate.

8 Conclusions

This article presented the SPAWNN toolkit, a new and powerful exploratory toolkit for

spatial analysis and clustering, which is not embedded in a standard GIS. The toolkit is

innovative in several ways. It distinguishes between different self-organizing neural net-

works and spatial context models and provides implementations of different kinds of both.

In this way, the analyst can combine different self-organizing networks with different spa-

tial context models and modularity is maintained. In addition, the toolkit provides power-

ful clustering methods for post-processing the networks. Moreover, it provides linkage

between the different network and data visualizations, which allows strong interaction

between the analyst, the data and the trained networks, and thus helps to improve under-

standing of the data. Apart from these contributions, the toolkit has been developed with

the objective of enabling non-expert users without programming skills to use cutting-edge

clustering methods. In these respects, the SPAWNN toolkit complements existing toolkits

and makes a significant contribution.

How an analyst can take advantage of the distinguishing features of the toolkit’s different

self-organizing networks, spatial context models, and visualizations was demonstrated through

a case study analyzing socioeconomic census data of the city of Philadelphia. In particular, it

has been shown how the complementary advantages of CNG and GeoSOM can be used to get

a better understanding of the data. The results underscore the fact that Philadelphia is faced

with segregation across the cityscape. The spatial analysis capabilities of the toolkit are not

restricted to geography, but are also relevant to a variety of other domains, including crime

(Hagenauer et al. 2011; Helbich et al. 2013b), health (Augustijn and Zurita-Milla 2013), real

estate (Helbich et al. 2013a), and ecology (Stojkovic et al. 2013), among others. Moreover, it

has been shown that the computation times of the SPAWNN toolkit are kept at perfectly rea-

sonable levels, even for high-dimensional spatial data sets.

Future research will focus on how the toolkit can be extended to further increase its useful-

ness for spatial analysis. Currently, the toolkit provides linkage between a single network
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model and a single geographic map (one-to-one linkage). One way to extend the toolkit is to

provide linkage between multiple network models and multiple geographic maps (n-to-n link-

age). In this way, the analyst could train several networks (i.e. non-spatial vs. contextual net-

works, or investigate the impact of different parameter settings on the output) for different

parts of a study area and then interactively inspect via n-to-n linkage how the networks relate

to the different parts.
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