
Towards a Systematic Review of
Automated Feedback Generation
for Programming Exercises –
Extended Version

Hieke Keuning

Johan Jeuring

Bastiaan Heeren

Technical Report UU-CS-2016-001

March 2016

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Towards a Systematic Review of
Automated Feedback Generation for

Programming Exercises – Extended Version∗

Hieke Keuning
Open University of the

Netherlands and Windesheim
University of Applied Sciences
hw.keuning@windesheim.nl

Johan Jeuring
Utrecht University and Open
University of the Netherlands

j.t.jeuring@uu.nl

Bastiaan Heeren
Open University of the

Netherlands
bastiaan.heeren@ou.nl

ABSTRACT
Formative feedback, aimed at helping students to improve
their work, is an important factor in learning. Many tools
that offer programming exercises provide automated feed-
back on student solutions. We are performing a systematic
literature review to find out what kind of feedback is pro-
vided, which techniques are used to generate the feedback,
how adaptable the feedback is, and how these tools are eval-
uated. We have designed a labelling to classify the tools, and
use Narciss’ feedback content categories to classify feedback
messages. We report on the results of the first iteration of
our search in which we coded 69 tools. We have found that
tools do not often give feedback on fixing problems and tak-
ing a next step, and that teachers cannot easily adapt tools
to their own needs.

Keywords
systematic literature review, automated feedback, program-
ming tools, learning programming

1. INTRODUCTION
Tools that support students in learning programming have

been developed since the 1960s [44]. Such tools provide a
simplified development environment, use visualisation or an-
imation to give better insight in running a program, guide
students towards a correct program by means of hints and
feedback messages, or automatically grade the solutions of
students [79].

Two important reasons to develop tools that support learn-
ing programming are:

– learning programming is hard [102], and students need
help to make progress [26];

– programming courses are taken by many thousands of stu-
dents all over the world [16], and helping students individ-
ually with their problems requires a huge time investment
of teachers [110].

Feedback is an important factor in learning [124, 64].
Boud and Molloy define feedback as ‘the process whereby
learners obtain information about their work in order to ap-
preciate the similarities and differences between the appro-
priate standards for any given work, and the qualities of the
work itself, in order to generate improved work’ [22]. Thus

∗This is the extended version of our paper [80].

defined, feedback is formative: it consists of ‘information
communicated to the learner with the intention to modify
his or her thinking or behavior for the purpose of improving
learning’ [124]. Summative feedback in the form of grades
or percentages for assessments also provides some informa-
tion about the work of a learner. However, the information
a grade gives about similarities and differences between the
appropriate standards for any given work, and the qualities
of the learner’s work, is usually only superficial. In this pa-
per we focus on the formative kind of feedback as defined
by Boud and Molloy. Formative feedback comes in many
variants, and the kind of formative feedback together with
student characteristics greatly influences the effect of feed-
back [103].

Given the role of feedback in learning, we want to find
out what kind of feedback is provided by tools that support
a student in learning programming. What is the nature of
the feedback, how is it generated, can a teacher adapt the
feedback, and what can we say about its quality and effect?
An important learning objective for learning programming
is the ability to develop a program that solves a particular
problem. We narrow our scope by only considering tools
that offer exercises (also referred to as tasks, assignments
or problems, which we consider synonyms) that let students
practice with developing programs. To answer these ques-
tions, we are performing a systematic literature review of
automated feedback generation for programming exercises.

A systematic literature review (SLR) is ‘a means of identi-
fying, evaluating and interpreting all available research rel-
evant to a particular research question, or topic area, or
phenomenon of interest’ [81]. An SLR results in a thorough
and fair examination of a particular topic. A research plan
is designed in advance, and the execution of this plan is doc-
umented in detail, allowing insight into the rigorousness of
the research.

This paper reports on the results found in the first it-
eration of our search for relevant papers. We searched for
related overviews on tools for learning programming and ex-
ecuted the first step of ‘backward snowballing’ by selecting
relevant references from the papers we found. In the future,
we intend to repeatedly search the papers we have found so
far for relevant references, until we do not find new papers.
Furthermore, because our questions are related to computer
science and education, we plan to search a computer science
database (ACM Digital Library), an educational database
(ERIC), and a general scientific database (Scopus). Our

1

search until now has resulted in a set of 102 papers, de-
scribing 69 different tools. Although not yet complete, this
collection is representative and large enough to report some
findings.

We have classified these tools by means of Narciss’ [107]
categories of feedback, such as ‘knowledge about mistakes’
and ‘knowledge about how to proceed’. We have instanti-
ated these feedback categories for programming exercises,
and introduce several subcategories of feedback particular
to programming. For example, in the category ‘knowledge
about mistakes’ we have introduced the subcategories: ‘com-
piler errors’, ‘solution errors’, and ‘performance issues’. Nar-
ciss’ categories largely overlap with the categories used to
describe the actions of human tutors when they help stu-
dents learning programming [104, 138].

We not only classify the kind of feedback given by the
various tools that support learning programming, but also
determine how these tools generate this feedback. What
are the underlying techniques used to generate feedback?
An answer to this question allows us to relate techniques
to feedback types and identify possibilities and limitations.
Here we will build upon an earlier review in which static
analysis approaches for supporting programming exercises
are categorised and compared [128].

Besides looking at feedback categories (the output of a
tool) and the techniques used to generate feedback (what
happens inside a tool), we also look at the input of a tool.
The input of a tool supporting learning programming may
take the form of model programs, test cases, templates, feed-
back messages, etc., and determines to a large extent the
adaptability of the tool. Adaptability of the content of a
learning tool is important [20, 37, 96].

Finally, we collect information about the effectiveness of
the feedback generated by the various tools. The effective-
ness of a tool depends on many factors (for example, Nar-
ciss [107] identifies ‘presentation’ and ‘individual and situa-
tional conditions‘) and tools have been evaluated by a large
variety of methods. Gross and Powers [61] distinguish ‘anec-
dotal‘, ‘analytical’ and ‘empirical’ as the main categories.
Because of this large variety, it is difficult to compare tools.

This review makes the following contributions:

– We analyse what kind of feedback is used in tools that sup-
port a student in learning programming. Although quite
a few reviews analyse such tools, none of them specifically
looks at the feedback provided by these tools.

– We relate the feedback content to its technology, and the
adaptability of the tool and the feedback.

The most remarkable results that have emerged from this
research so far are:

– Very few tools that support exercises that can be solved
by multiple (variants of) strategies give feedback with
‘knowledge on how to proceed’. According to Boud and
Molloy’s definition, these tools lack the means to really
help a student.

– In general, the feedback that tools generate is not that
diverse, and mainly focused on identifying mistakes.

– Teachers cannot easily adapt tools to their own needs,
except for test-based AA systems.

This paper is organised as follows. Section 2 discusses re-
lated reviews of tools for learning programming. Section 3

gives our research questions and research method. Section 4
describes the labelling and shows the results. Section 5 dis-
cusses the results and Section 6 concludes the paper and
describes future work.

2. RELATED WORK
We have found almost twenty reviews of tools for learn-

ing programming, mostly on learning environments for pro-
gramming (Section 2.1) or automated assessment (AA) tools
(Section 2.2). Generating feedback is important for both
kinds of tools. Most AA tools only grade student solutions,
but some tools also provide elaborated feedback, and can be
used to support learning [2].

We identify the main research questions of the related
review papers, the scope of the selected tools and the method
of data collection. Section 2.3 discusses how our paper differs
from the reviews discussed in this section, and draws some
conclusions.

2.1 Reviews of learning tools
Ulloa [137] describes several tools and other methods for

teaching programming, to better understand the difficulties
of novice programmers. He identifies two types of automated
tools: interactive tools that automate teaching, and nonin-
teractive tools, or student-oriented compilers. The review
describes the behaviour of these tools, but does not elabo-
rate on the techniques used.

Deek and McHugh [43] classify tools for learning program-
ming as programming environments, debugging aids, intelli-
gent tutoring systems, or intelligent programming environ-
ments. They illustrate each of these categories with multiple
examples, and analyse their benefits and limitations. Deek
et al. [42] continue this work by investigating web-based, in-
teractive instructional systems for programming. Their goal
is to help educators to select systems that fit their needs.
They distinguish three categories of instructional systems:
drill and practice systems, tutorial systems and simulation
systems. Each category is illustrated with several examples,
and is analysed with respect to nine instructional events
identified by Gagné et al. [53], one of which is ‘provide feed-
back about performance’.

Pillay [114] focuses on Intelligent Tutoring Systems (ITSs)
for programming. She discusses the development and archi-
tecture of ITSs for programming, and briefly describes a
number of ITSs.

Guzdial [62] analyses programming environments for nov-
ices. He distinguishes three categories of environments: Logo
and its descendants, rule-based programming, and extended
programming environments for traditional programming lan-
guages. Each of these categories is illustrated with several
examples, and various trends are identified.

Kelleher and Pausch [79] present a taxonomy of program-
ming languages and environments for novices. The taxon-
omy consists of two large groups: teaching systems and em-
powering systems. Each of these groups of systems is divided
into subgroups multiple times. Every group in the taxonomy
is illustrated with several examples, and the attributes (such
as supported programming style, supported constructs and
code representation) of the systems that are cited most are
identified.

Gómez-Albarrán [58] presents a classification of tools for
learning programming. She distinguishes four categories
of tools: tools with a reduced development environment,

2

example-based environments, tools based on visualization
and animation, and simulation environments. For each cate-
gory she selects a number of widely used tools, and describes
their main features. Finally, she identifies some challenges
for future work.

Pears et al. [113] give a survey of research on teaching
introductory programming. The results described in this
paper are based on papers selected by an ITiCSE working
group, together with paper suggestions by ten academics
outside the working group. One of the subareas they con-
sider is tools. Their purpose is not to survey tools research,
but instead to give an outline of the field of teaching intro-
ductory programming, and to point out sub-areas that may
be particularly relevant to teachers of introductory program-
ming courses. They distinguish and describe four categories
of tools: visualization tools, automated assessment tools,
programming environments for novices, and other tools, in-
cluding intelligent tutoring systems for programming.

Le et al. [91] review AI-supported tutoring approaches for
programming. These approaches are based on examples,
simulations, collaboration, dialogues, program analysis, or
feedback (which is used in the other tutoring approaches as
well). The authors identify examples of tools for each of the
categories, and describe the AI-techniques used.

Nesbit et al. [109] present work in progress on a sys-
tematic review of Intelligent Tutoring Systems in computer
science and software engineering education. The authors de-
fine an ITS as any system ‘that performs teaching or tutor-
ing functions (..) and adapts or personalizes those functions
by modelling students’ cognitive, motivational or emotional
states’, thus emphasizing student modelling. The aim of the
review is to examine the research field and identify its fea-
tures (subject areas, instructional functions and strategies,
types of student modelling, et cetera). The work in progress
paper describes the research method and search process in
detail and reports on the first results of four basic variables
(publication date, publication type, educational level and
subject domain). The automatic generation of hints is one
of the popular themes that the paper identifies.

Although not a review of learning tools, we also include
the work of Le and Pinkwart on classifying programming
exercises supported in learning environments [90]. The type
of exercises that a learning tool supports determines to a
large extent how difficult it is to generate feedback. Le
and Pinkwart base their classification on the degree of ill-
definedness of a programming problem. Class 1 exercises
have a single correct solution, and are often quiz-like ques-
tions with a single solution, or slots in a program that need
to be filled in to complete some task. Class 2 exercises can
be solved by different implementation variants. Usually a
program skeleton or other information that suggests the so-
lution strategy is provided, but variations in the implemen-
tation are allowed. Finally, class 3 exercises can be solved by
applying alternative solution strategies, which we interpret
as allowing different algorithms as well as different steps to
arrive at a solution. The authors describe several tools they
examined for the development of this classification.

2.2 Reviews of assessment tools
Ala-Mutka [2] describes the different aspects of programs

that are assessed in automated assessment tools, ranging
from aspects that are statically analysed, such as style, de-
sign, and metrics, to aspects that are mainly dynamically

analysed, such as input-output behavior and efficiency. These
aspects are illustrated with actual assessment tools. The
goal of this survey is to promote automated assessment and
to provide readers with starting points for further research.
Ihantola et al. [69] follow up on the review from Ala-Mutka [2].
They review research on automated assessment in the period
2006–2010 using a systematic literature review. They only
include papers on tools that provide summative, numerical
feedback. The research questions aim to identify the features
of assessment tools from the period, and ideas for future re-
search. The authors distinguish two main categories: au-
tomatic assessment systems for programming competitions
and automatic assessment systems for (introductory) pro-
gramming education. On their turn, Caiza and Ramiro [25]
follow up on the review of Ihantola et al., describing a col-
lection of mature as well as recent assessment systems, par-
ticularly looking at the evolution of these systems since the
review of Ihantola et al. [69].

Douce et al. [44] focus on test-based assessment, aiming
to inform and guide future developments. They also discuss
pedagogic issues. Tools are arranged as first (early), sec-
ond (tool-oriented) or third (web-oriented) generation. The
authors briefly describe their search strategy.

Rahman and Nordin [115] give an overview of static anal-
ysis methods and identify their advantages and disadvan-
tages.

Liang et al. [94] describe recent developments in the field
of automated assessment for programming, and refer to sev-
eral tools as an example.

Romli et al. [119] provide a review of automated assess-
ment systems, focusing on approaches for test data gener-
ation. They describe the characteristics and features (as-
sessment method, quality factors) of a substantial number
of systems, and identify trends.

Striewe and Goedicke [128] specifically focus on the didac-
tic benefits of static analysis techniques used in assessment
tools. The paper has quite a narrow scope: it only consid-
ers tools that run on a server, targeted at object-oriented
Java programming, and exclude metrics-based tools. The
paper does include tools that help a student finishing an in-
complete solution, and discusses the configurability of the
assessment tools.

2.3 Conclusion
Most review papers describe the features and character-

istics of a number of tools, identify challenges, and direct
future research. Except for the review by Ihantola et al. [69]
and the review in progress by Nesbit et al. [109], authors se-
lect papers and tools based on unknown criteria, some men-
tion qualitative factors such as impact (counting citations)
or the thoroughness of the evaluation of the tool. Most stud-
ies do not strive for completeness. The scope of the tools
that are described varies greatly. Tools are usually cate-
gorised, but there is no agreement on the naming of the
different categories. Very few papers discuss technical as-
pects.

Our review distinguishes itself from the above reviews by
focusing on the aspect of generating feedback in learning
tools for programming. Furthermore, we employ a more sys-
tematic approach than almost all of the above papers: tools
are selected in a systematic way, following strict criteria, and
are coded using a predetermined labelling.

3

3. METHOD
Performing an SLR requires an in depth description of the

research method. Section 3.1 discusses our research ques-
tions. Section 3.2 describes the criteria that we have set to
define the scope of our research. Section 3.3 describes the
process for searching relevant papers.

3.1 Research questions
The following four research questions guide our review on

automated feedback generation for programming exercises:

RQ1. What is the nature of the feedback that is gener-
ated? We classify the content of feedback messages using
Narciss’ [107] categories of feedback.

RQ2. Which techniques are used to generate the feedback?

RQ3. How can the tool be adapted by teachers, to create
exercises and to influence the feedback?

RQ4. What is known about the quality and effectiveness of
the feedback or tool?

3.2 Criteria
There is a growing body of research on tools for learn-

ing programming for various audiences with different goals.
These goals can be to learn programming for its own sake, or
to use programming for another goal [79], such as creating a
game. Our review focuses on students learning to program
for its own sake. We have defined a set of inclusion and
exclusion criteria (Table 1) that direct our research and tar-
get the characteristics of the papers and the tools described
therein.

The rationale of our functionality criteria is that the abil-
ity to develop a program that solves a particular problem
is an important learning objective for learning program-
ming [77]. Because we are interested in improving learning,
we focus on formative feedback. We use the domain criteria
to focus our review on programming languages used in the
industry and/or taught at universities. Many universities
teach an existing, textual programming language from the
start, or directly after a visual language such as Scratch or
Alice [41]. We do not include visualisation tools for pro-
gramming because they have been surveyed extensively by
Sorva et al. [125] in the recent past.

We select papers and tools that satisfy all inclusion cri-
teria and none of the exclusion criteria. We have included
some theses, because either they have been cited often, or
their contribution is documented in another published pa-
per. Since no review addressing our research questions has
been conducted before, and we aim for a complete overview
of the field, we do not exclude papers based on publication
date.

3.3 Search process
The starting point of our search for papers was the col-

lection of 17 review papers given in Section 2. Two authors
of this SLR independently selected relevant references from
these reviews. Then two authors independently looked at
the full text of the papers in the union of these selections,
to exclude papers not meeting the criteria. After discussing
the differences, we assembled a final list of papers. We had
to exclude a small number of papers that we could not find
after an extensive search and, in some cases, contacting the
authors. Some excluded papers point to a potentially in-

teresting tool. We checked if these papers mention a better
reference that we could add to our selection.

Often multiple papers have been written on (versions of)
a single tool. We searched for all publications on a tool by
looking at references from and to papers already found, and
searching for other relevant publications by the authors. We
selected the most recent and complete papers about a tool.
We prefer journal papers over conference papers, and con-
ference papers over theses or technical reports. All papers
from which we collected information appear in our reference
list.

Starting with an initial selection of 197 papers, we ended
up with a total of 102 papers describing 69 different tools.

4. RESULTS
To systematically encode the information in the papers,

we use a labelling based on the answers to the research ques-
tions we expected to get, refined by encoding a small set
of randomly selected papers. One of the authors encoded
the complete set of papers. Whenever there were questions
about the coding of a paper, another author checked. In
total, 28% of the codings were handled by two authors. A
third author joined the general discussions about the cod-
ing. When necessary, we made adjustments to the labelling.
With this process we have coded the information to the best
of our ability, although we cannot ensure that our coding
does not contain any mistake.

The results we have found so far in our SLR are shown in
Table 2 and Table 3.1 This section discusses the preliminary
results, and describes the labelling. The next subsections
focus on the four research questions, but first we discuss
the general properties of the tools we investigated. We refer
to the tools in the table by their name in a Small caps
font, or the first author and year of the most recent paper
(Author00) on the tool we have used.

Programming language
Tools offer either exercises for a specific programming lan-
guage, a set of programming languages within a particular
paradigm, or multiple languages within multiple paradigms.
From the 69 tools we found, a majority of 70% supports
programming in imperative languages, including object-
oriented languages. Tools developed in the 21st century of-
ten support languages such as Java, C and C++, whereas
older tools provide exercises in ALGOL (Naur64 [108]),
FORTRAN (LAURA [1]) and Ada (ASSYST [71]). Of
all tools, 7% support a functional programming language
such as Lisp (The LISP tutor [7]), Scheme (Scheme-
robo [120]) or Haskell (Ask-Elle [74]). All tools for logic
programming (6%) offer exercises in Prolog. Three recent
tools (4%) focus on web scripting languages such as PHP and
JavaScript. The remaining tools support multiple languages
of different types and paradigms, and are often test-based
AA systems.

Programming exercises often require the student to write
a few lines of code or a single function, meaning that tools
only support a subset of the features of a programming lan-
guage. For instance, a tool that requires programming in
Java, an object-oriented language, may not support feed-
back generation on class declarations.

1The table with the results can also be accessed online at
www.open.ou.nl/xhk/review.

4

www.open.ou.nl/xhk/review

Table 1: Criteria for the inclusion/exclusion of papers

Include Exclude

General Scientific publications (journal papers
and conference papers) in English.
Master theses, PhD theses and tech-
nical reports only if a journal or con-
ference paper is available on the same
topic. The publication describes a tool
of which at least a prototype has been
constructed.

Posters and papers shorter than four
pages.

Functionality Tools in which students work on pro-
gramming exercises of class 2 or higher
from the classification of Lee and
Pinkwart [90] (see Section 2.1). The
tool provides automated, textual feed-
back on (partial) solutions, targeted at
the student.

Tools that only produce a grade.

Domain Tools that support a high-level, gen-
eral purpose, textual programming lan-
guage, including pseudo-code.

Visual programming tools (program-
ming with blocks, flowcharts). Tools
that only teach a particular aspect
of programming, such as recursion or
multi-threading.

Exercise type
We record the highest exercise class a tool supports. We
have found that 20% of the tools support exercises of class
2, and 80% exercises of class 3.

4.1 RQ1 Feedback type
Narciss [107] describes a ‘content-related classification of

feedback components’ for computer-based learning environ-
ments, in which the categories target different aspects of the
instructional context, such as task rules, errors and proce-
dural knowledge. We use these categories and extend them
with representative subcategories identified in the selected
papers. Narciss also considers the function (cognitive, meta-
cognitive and motivational) and presentation (timing, num-
ber of tries, adaptability, modality) of feedback, which are
related to the effectiveness of tutoring. We do not include
these aspects in our review because it is often unclear how
a tool or technique is used in practice (e.g. formative as well
as summative).

Narciss first gives simple feedback components: ‘Knowl-
edge of performance for a set of tasks’, ‘Knowledge of re-
sult/response’ and ‘Knowledge of the correct results’. These
types of feedback are not intended to ‘generate improved
work’, a requirement in the feedback definition by Boud and
Molloy. Because we focus on formative feedback on a single
exercise, we do not identify these types in our coding.

Knowledge of performance for a set of tasks (KP)
KP is summative feedback on the achieved performance level
after doing multiple tasks. Examples from Narciss are ‘15
of 20 correct’ and ‘85% correct’.

Knowledge of result/response (KR)
This type of feedback communicates whether a solution is
correct or incorrect. Correctness may have a different mean-
ing in different tools. We have found the following meanings

of ‘correctness of a solution’:

– it passes all tests,

– it is equal to a model program,

– it satisfies one or more constraints,

– a combination of the above.

Some tools are able to assess partial solutions that are cor-
rect but not yet final.

Knowledge of the correct results (KCR)
KCR is a description or indication of a correct solution.

The next five types are elaborated feedback components.
Each type addresses an element of the instructional context.
We provide several examples to illustrate how the different
types are instantiated in learning tools for programming. We
have also identified a few examples of feedback messages that
do not fit into our classification, such as motivating feedback.

Knowledge about task constraints (KTC)
KTC deals with feedback on task rules, task constraints, and
task requirements. We define two labels for this type.

– Hints on task requirements (TR). A task requirement for
a programming exercise can be to use a particular lan-
guage construct or to not use a particular library method.
A concrete example can be found in the INCOM sys-
tem [89]. When a student makes a mistake with imple-
menting the method header, feedback is given by ‘high-
lighting keywords in the task statement and advising the
student to fully make use of the available information’ [87].
Another example can be found in the BASIC Instruc-
tional Program (BIP) [10]. Some exercises in BIP
require the use of a specific language construct. If this
construct is missing from the student solution, the stu-

5

T
a
b
le

2
:

C
la

ss
2

to
o
ls

R
Q

1
F

ee
d

b
a

ck
ty

p
e

R
Q

2
T

ec
h

n
iq

u
e

R
Q

3
A

d
a

p
ta

b
il
it

y
R

Q
4

E
va

lu
a

ti
o

n

K
T

C
K

C
K

M
K

H
K

M
C

MT

CBM

AT

BSA

PT

IBD

EX

Other

ST

MS

TD

ED

SM

Other

ANC

ANL

EM-LO

EM-SU

EM-TA

N
a

m
e,

re
fe

re
n

ce
L

a
n

g
u

a
g

e
E

x.
cl

a
ss

T
R

T
P

R
E

X
P

E
X

A
T

F
C

E
S

E
S

I
P

I
E

C
T

P
S

A
C

T
P

ro
g

ra
m

m
in

g
T

u
to

r
(A

P
T

)
[3

5
,

3
3

,
3

4
]

M
u

lt
i

C
2

#

B
ri

d
g

e
[2

1
]

Im
p

/
O

O
C

2

(C
h

a
n

g
0

0
)

[2
7

]
Im

p
/

O
O

C
2

D
IS

C
O

V
E

R
[1

1
6

]
Im

p
/

O
O

C
2

G#

E
L

P
[1

3
4

,
1

3
5

]
Im

p
/

O
O

C
2

H#

H
a

b
iP

ro
[1

4
1

,
1

4
2

]
Im

p
/

O
O

C
2

IN
T

E
L

L
IT

U
T

O
R

(I
I)

[1
3

6
]

Im
p

/
O

O
C

2

G#

In
S

T
E

P
[1

1
2

]
Im

p
/

O
O

C
2

G#

JI
T

S
[1

3
1

,
1

3
0

]
Im

p
/

O
O

C
2

#
#

L
A

U
R

A
[1

]
Im

p
/

O
O

C
2

P
A

S
S

[1
3

3
]

Im
p

/
O

O
C

2

G#

P
ro

P
L

[8
5

]
Im

p
/

O
O

C
2

R
o

b
o

P
ro

f
[3

9
,

3
8

]
Im

p
/

O
O

C
2

T
h

e
L

IS
P

tu
to

r
[3

6
,

7
]

F
u

n
C

2

R
Q

1
R

Q
2

R
Q

3
R

Q
4

K
T

C
K

n
ow

le
d

g
e

a
b

o
u

t
ta

sk
co

n
st

ra
in

ts
M

T
M

o
d

el
tr

a
ci

n
g

S
T

S
o

lu
ti

o
n

te
m

p
la

te
s

A
N

C
A

n
ec

d
o

ta
l

a
ss

es
sm

en
t

T
R

H
in

ts
o

n
ta

sk
re

q
u

ir
em

en
ts

C
B

M
C

o
n

st
ra

in
t-

b
a

se
d

m
o

d
el

li
n

g
M

S
M

o
d

el
so

lu
ti

o
n

s
A

N
L

A
n

a
ly

ti
ca

l
a

ss
es

sm
en

t

T
P

R
H

in
ts

o
n

ta
sk

-p
ro

ce
ss

in
g

ru
le

s
A

T
A

u
to

m
a

te
d

te
st

in
g

T
D

T
es

t
d

a
ta

E
M

-L
O

E
m

p
ir

ic
a

l
-

L
ea

rn
in

g
o

u
tc

o
m

e
ev

a
lu

a
ti

o
n

s

K
C

K
n

ow
le

d
g

e
a

b
o

u
t

co
n

ce
p

ts
S

A
B

a
si

c
st

a
ti

c
co

d
e

a
n

a
ly

si
s

E
D

E
rr

or
d

a
ta

E
M

-S
U

E
m

p
ir

ic
a

l
-

S
u

rv
ey

s

E
X

P
E

xp
la

n
a

ti
o

n
s

o
n

su
b

je
ct

m
a

tt
er

P
T

P
ro

g
ra

m
tr

a
n

sf
or

m
a

ti
o

n
s

S
M

S
tu

d
en

t
m

o
d

el
E

M
-T

A
E

m
p

ir
ic

a
l

-
T

ec
h

n
ic

a
l

a
n

a
ly

si
s

E
X

A
E

xa
m

p
le

s
il
lu

st
ra

ti
n

g
co

n
ce

p
ts

IB
D

In
te

n
si

o
n

-b
a

se
d

d
ia

g
n

o
si

s

K
M

K
n

ow
le

d
g

e
a

b
o

u
t

m
is

ta
ke

s
E

X
E

xt
er

n
a

l
to

o
ls

(#
b

a
si

c
or

d
et

a
il
ed

)

T
F

T
es

t
fa

il
u

re
s

C
E

C
o

m
p

il
er

er
ro

rs

S
E

S
o

lu
ti

o
n

er
ro

rs

S
I

S
ty

le
is

su
es

P
I

P
er

fo
rm

a
n

ce
is

su
es

K
H

K
n

ow
le

d
g

e
a

b
o

u
t

h
ow

to
p

ro
ce

ed

(G#
h

in
t,
H#

so
lu

ti
o

n
or

b
o

th
)

E
C

B
u

g
-r

el
a

te
d

h
in

ts
fo

r
er

ro
r

co
rr

ec
ti

o
n

T
P

S
T

a
sk

-p
ro

ce
ss

in
g

st
ep

s

K
M

C
K

n
ow

le
d

g
e

a
b

o
u

t
m

et
a

-c
o

g
n

it
io

n

6

T
a
b
le

3
:

C
la

ss
3

to
o
ls

R
Q

1
F

ee
d

b
a

ck
ty

p
e

R
Q

2
T

ec
h

n
iq

u
e

R
Q

3
A

d
a

p
ta

b
il
it

y
R

Q
4

E
va

lu
a

ti
o

n

K
T

C
K

C
K

M
K

H
K

M
C

MT

CBM

AT

BSA

PT

IBD

EX

Other

ST

MS

TD

ED

SM

Other

ANC

ANL

EM-LO

EM-SU

EM-TA

N
a

m
e,

re
fe

re
n

ce
L

a
n

g
u

a
g

e
E

x.
cl

a
ss

T
R

T
P

R
E

X
P

E
X

A
T

F
C

E
S

E
S

I
P

I
E

C
T

P
S

A
D

A
P

T
[5

4
]

L
o

g
C

3

A
P

O
G

E
E

[5
2

]
W

eb
C

3

A
P

R
O

P
O

S
2

[9
5

]
L

o
g

C
3

A
S

A
P

[4
5

,
4

6
]

Im
p

/
O

O
C

3

A
S

S
Y

S
T

[7
3

,
7

1
]

Im
p

/
O

O
C

3
#

A
n

a
ly

se
C

[1
4

8
]

Im
p

/
O

O
C

3

H#

A
sk

-E
ll
e

[7
4

,
5

6
,

5
5

]
F

u
n

C
3

A
u

to
G

ra
d

er
[6

5
]

Im
p

/
O

O
C

3

A
u

to
L

E
P

[1
4

4
]

Im
p

/
O

O
C

3

A
u

to
m

a
ti

c
M

ar
ke

r
fo

r
S

a
ka

i
[1

2
9

]
Im

p
/

O
O

C
3

B
IP

[1
0

,
1

1
,

1
2

]
Im

p
/

O
O

C
3

G#

B
O

S
S

[7
8

]
M

u
lt

i
C

3
#

(B
et

ti
n

i0
4

)
[1

7
]

Im
p

/
O

O
C

3

C
ei

lid
h

[1
5

,
1

3
,

1
4

]
M

u
lt

i
C

3

#

#
#

(C
h

en
0

4
)

[2
9

]
Im

p
/

O
O

C
3

(C
o

ff
m

a
n

1
0

)
[3

2
]

W
eb

C
3

C
o

u
rs

eM
ar

ke
r/

C
o

u
rs

eM
a

st
er

[6
6

,
6

7
,

5
1

]
M

u
lt

i
C

3

E
L

M
-P

E
/

E
L

M
-A

R
T

(I
I)

[1
4

7
,

1
4

5
,

2
3

,
1

4
6

]
F

u
n

C
3

E
d

u
C

o
m

p
o

n
en

ts
[5

]
M

u
lt

i
C

3

(F
is

ch
er

0
6

)
[5

0
]

Im
p

/
O

O
C

3

#

#

G
A

M
E

(2
,

2
+

)
[1

0
0

,
1

8
,

1
9

,
9

9
]

M
u

lt
i

C
3

#

#
#

H
O

G
G

[1
0

6
]

Im
p

/
O

O
C

3

(H
ar

ri
s0

4
)

[6
3

]
Im

p
/

O
O

C
3

(H
o

n
g

0
4

)
[6

8
]

L
o

g
C

3

G#
G#

IN
C

O
M

[8
9

,
8

8
,

8
6

]
L

o
g

C
3

G#

IT
E

M
/

IP
[2

4
]

Im
p

/
O

O
C

3

#

(I
sa

a
cs

o
n

8
9

)
[7

0
]

Im
p

/
O

O
C

3
#

#

JA
C

K
[1

2
7

,
5

7
,

8
3

,
8

2
]

Im
p

/
O

O
C

3

(J
a

ck
so

n
0

0
)

[7
2

]
Im

p
/

O
O

C
3

K
a

ss
a

n
d

ra
[1

4
3

]
Im

p
/

O
O

C
3

L
u

d
w

ig
[1

2
3

]
Im

p
/

O
O

C
3

M
ar

m
o

S
et

[1
2

6
]

M
u

lt
i

C
3

M
o

o
sh

a
k

[9
3

,
9

2
]

Im
p

/
O

O
C

3
#

(N
a

u
r6

4
)

[1
0

8
]

Im
p

/
O

O
C

3

#

O
n

li
n

e
Ju

d
g

e
[2

8
]

Im
p

/
O

O
C

3
#

#
#

P
A

S
S

[3
0

,
3

1
]

Im
p

/
O

O
C

3

P
A

T
T

IE
[4

0
]

Im
p

/
O

O
C

3

P
R

O
U

S
T

[7
5

]
Im

p
/

O
O

C
3

G#

P
ra

k
to

m
a

t
[1

5
0

]
Im

p
/

O
O

C
3

Q
u

iv
er

[4
9

]
Im

p
/

O
O

C
3

R
o

b
o

L
IF

T
[3

]
Im

p
/

O
O

C
3

S
A

C
[9

]
Im

p
/

O
O

C
3

#

S
IP

L
eS

-I
I

[1
4

9
]

Im
p

/
O

O
C

3

H#

(S
a

n
t0

9
)

[1
2

1
]

Im
p

/
O

O
C

3

S
ch

em
e-

ro
b

o
[1

2
0

]
F

u
n

C
3

#

#

(S
zt

ip
a

n
o

vi
ts

0
8

)
[1

3
2

]
W

eb
C

3
#

T
R

Y
[1

1
7

]
M

u
lt

i
C

3

V
ir

tu
a

l
P

ro
g

ra
m

m
in

g
L

a
b

[1
1

8
]

M
u

lt
i

C
3

W
eb

-C
A

T
[4

8
,

4
7

]
M

u
lt

i
C

3

W
eb

T
o

T
ea

ch
[8

]
Im

p
/

O
O

C
3

W
eb

W
or

k
-J

A
G

[6
0

,
5

9
]

Im
p

/
O

O
C

3

a
u

to
g

ra
d

er
[1

1
1

]
Im

p
/

O
O

C
3

d
a

tl
a

b
[9

8
,

9
7

]
Im

p
/

O
O

C
3

su
b

m
it

[1
4

0
]

Im
p

/
O

O
C

3

xL
x

[1
2

2
]

Im
p

/
O

O
C

3

7

dent will see the following message:

Wait. Something is missing.

For this task, your program should also include the fol-
lowing basic statement(s): FOR

Automated assessment tools have to check for task re-
quirements as well. For example, if the exercise requires
implementing a method that is also available in the stan-
dard library of the language, the assessment tool will have
to check if this library method was not used. The auto-
mated assessment tool by Fischer06 [50] provides the fol-
lowing feedback when a student uses a prohibited method:

signature and hierarchy: failed
Invocation test checks whether prohibited classes or meth-
ods are used; call of method reverse from the prohibited
class java.lang.StringBuffer

– Hints on task-processing rules (TPR). These hints provide
general information on how to approach the exercise and
do not consider the current work of a student. The auto-
mated tutor in ADAPT gives some general information
on how to solve a particular exercise [54]:

There are 2 major components to this template:

– base case

– recursive step

For the base case, the basic idea is to stop processing
when the list becomes empty and return 0 for the sum.

For the recursive step, the basic idea is to remove the
first element from the input list and recursively invoke
the main predicate with the tail of the list and then add
the value of the head to the sum of the tail of the list.

Which component do you want to attempt first: 1. base
case 2. recursive step 3. need further assistance?

Narciss gives a larger set of examples for this type of feed-
back, such as ‘hints on type of task’. We do not identify this
type because the range of exercises is limited by our scope.
Also, we do not identify ‘hints on subtasks’ as a separate cat-
egory, because the exercises we consider are relatively small.
Instead, we label these hints with KTC-TPR.

Knowledge about concepts (KC)
We define two labels for KC.

– Explanations on subject matter (EXP), generated while
a student is working on an exercise. The Ask-Elle pro-
gramming tutor [74] refers to relevant internet sources
when a student encounters certain language constructs.

– Examples illustrating concepts (EXA). The LISP tutor
[7, 36] uses examples in its tutoring dialogue. After a stu-
dent has made a mistake, the tutor might respond with:

That is a reasonable way to think of doing factorials, but
it is not a plan for a recursive function. Since you seem
to be having trouble with the recursive cases, let us work
through some examples and figure out the conditions
and actions for each of these cases.

The ELM-PE/ART tutors [146] support ‘example-based
programming’, and provide a student with an example
program that the student solved in the past, specifically
selected to help the student solve a new problem.

Knowledge about mistakes (KM)
KM feedback messages have a type and a level of detail. A
level of detail can be basic (#), which can be a numerical
value (total number of mistakes, grade, percentage), a loca-
tion (line number, code fragment), or a short type identifier
such as ‘compiler error’; or detailed (), which is a descrip-
tion of the mistake, possibly combined with some basic el-
ements. We use five different labels to identify the type of
the mistake.

– Test failures (TF). A failed test indicates that a program
does not produce the expected output. Mooshak [92] is
an automatic judge for programming contests that pro-
vides basic feedback on test results. The system attaches
one of seven classification labels to a solution, such as
‘wrong answer’, ‘presentation error’ (correct output but
formatting not as expected) or ‘accepted’. Another pro-
gramming contest judge, Online Judge [28], returns a
short string such as ‘[..x]’ as feedback, indicating that
tests cases 1 and 2 are successful (indicated by a dot)
and test case 3 is not successful (indicated by an ‘x’).
Coffman10 [32], an AA tool for web programming, pro-
vides detailed feedback on test results. The screenshot in
Figure 1 shows the informative name of the test cases, a
colour indicating their success and the reason why a par-
ticular test case failed. We found this type of feedback,
which resembles the output of professional testing tools,
in many AA tools.

Figure 1: Detailed feedback on test cases

– Compiler errors (CE) are syntactic errors (incorrect spell-
ing, missing brackets) or semantic errors (type mismatch-
es, unknown variables) that can be detected by a compiler
and are not specific for an exercise.
Feedback on compiler errors might be the output of a
compiler that is passed on to the student, enabling the
student to do exercises without using a compiler him or
herself. The main reasons for working without a compiler
are not having access to the necessary tools and avoiding
the difficulty of the compilation process, as experienced
by a novice programmer. Test-based AA systems often
provide compiler output as feedback, because successful
compilation is a prerequisite for executing tests.
Some tools have replaced a standard compilation or inter-
pretation tool by a more student-friendly alternative. An
example is the interpreter used in BIP [10], which gener-
ates extensive error messages in understandable language.
Figure 2 shows an example of this feedback, which is sup-
plemented by the feedback in Figure 3 if the student asks
for more help.

– Solution errors (SE) can be found in programs that do
not show the behaviour that a particular exercise requires,
and can be runtime errors (the program crashes because
of an invalid operation) or logic errors (the program does
not do what is required), or the program uses an alterna-

8

Figure 2: Feedback on syntax error in BIP

Figure 3: More feedback on syntax error in BIP

tive algorithm that is not accepted. AutoLEP [144] de-
scribes the results of matching the student program with
several model programs, comparing aspects such as size,
structure, and statements.
AnalyseC [148] provides detailed feedback on solution er-
rors by identifying incorrect statements and showing the
correct statement from a model solution, shown in Fig-
ure 4.

Figure 4: Solution feedback in AnalyseC

ELP [135] (Figure 5) matches a model solution with the
student solution at a slightly higher level.

Figure 5: Solution feedback in ELP

– Style issues (SI), such as untidy formatting, inconsistent
naming or lack of comments, are not serious mistakes that
affect the behaviour of a program. However, many teach-
ers consider learning a good programming style important
for novice programmers.
Figure 6 shows the feedback generated by the tool of
Jackson00 [72].

– Performance issues (PI). A student program takes too long
to run or uses more resources than required. Naur64 [108],
one of the earliest systems, checks one particular exercise

Figure 6: Fragment of style feedback

that lets students write an algorithm for finding the root
of a given function. The system gives performance feed-
back for each test case, such as:

No convergence after 100 calls.

Knowledge about how to proceed (KH)
We identify three labels in KH.

– Bug-related hints for error correction (EC). Sometimes it
is difficult to see the difference between KM feedback and
EC. We identify feedback as EC if the feedback clearly fo-
cuses on what the student should do to correct a mistake.
JITS [131] gives feedback on fixing typing errors, such as:

Would you like to replace smu with sum?

Proust generates an elaborated error report containing
hints on how to correct errors. The following fragment [75]
provides such hints:

The maximum and the average are undefined if there
is no valid input. But lines 34 and 33 output them
anyway. You should always check whether your code
will work when there is no input! This is a common
cause of bugs.

You need a test to check that at least one valid data
point has been input before line 30 is executed. The
average will bomb when there is no input.

The examples from ELP (Figure 5) and AnalyseC (Fig-
ure 4) in the KM-SE category also contain the correct code
of the solution, therefore we label these tools with KH-EC
as well.

– Task-processing steps (TPS). A TPS hint contains infor-
mation about the next step a student has to take to come
closer to a solution. The Prolog tutor Hong04 [68] pro-
vides a guided programming phase. If a student asks for
help in this phase, the tutor will respond with a hint on
how to proceed and generates a template for the student
to fill in:

You can use a programming technique that processes a
list until it is empty by splitting it into the head and the
tail, making a recursive call with the tail.

reverse([], 〈arguments〉).
reverse([H | T], 〈arguments〉) :−
〈pre−predicate〉,
reverse(T,〈arguments〉),
〈post−predicate〉.

Another example can be found in the Ask-Elle tutor
for functional programming. The tool provides a student
with multiple strategies to tackle a programming prob-
lem [55]:

9

You can proceed in several ways:
- Implement range using the unfoldr function.
- Use the enumeration function from the prelude.
- Use the prelude functions take and iterate.

Each of these types of feedback has a level of detail: a hint
(G#) that may be a in the form of a suggestion, a question, or
an example; a solution (H#) that directly shows what needs
to be done to correct an error or to execute the next step;
or both hints and solutions ().

We expected to find hints on how to improve a solution,
such as improving the structure, style or performance of a
correct solution. We have not found these kind of hints so
far. Style- or performance-related feedback is mostly pre-
sented in the form of an analysis, which we encode with a
KM label.

Knowledge about meta-cognition (KMC)
We have only found one example of KMC so far. HabiPro
[141] provides a ‘simulated student’ that responds to a solu-
tion by checking if a student really knows why an answer is
correct.

Results
We have found KTC (knowledge about task constraints)
feedback in 16% of the tools, KC (knowledge about con-
cepts) feedback in 12%, and KMC (knowledge about meta-
cognition) feedback in 1% of all tools. KM (knowledge about
mistakes) is by far the largest type, we have found this type
in all but one tool. The subtype of KM we have found the
most is TF (test failures) in 77% of the tools, after that
SE (solution errors, 42%), CE (compiler errors, 36%), SI
(style issues, 17%) and PI (performance issues, 9%). We
have found KH feedback (knowledge about how to proceed)
in 32% of tools, of which 26% give EC feedback (error cor-
rection) and 14% give TPS feedback (task-processing steps).

In 59% of the tools only one of the five main types of
feedback is given.

4.2 RQ2 Technique
We distinguish general ITS techniques that are not spe-

cific for the programming domain, techniques specific for
programming. Each category has several subcategories. We
do not consider techniques that are used for calculating final
grades.

General ITS techniques
– Tools that use model tracing (MT) generate feedback on

the process that the student is following. Student steps
are compared to production rules and buggy rules [105].
Classic tools use a production system, however, some tools
use a slightly different approach. The LISP tutor [36] is
a classic example of a model tracing system. An example
of a production rule (rephrased in English) used in this
tutor is shown in Figure 7.

– Constraint-based modelling (CBM). This technique only
considers the (partial) solution itself, and does not take
into account how a student arrived at this (partial) solu-
tion. A constraint-based tool checks a student program
against predefined solution constraints, such as the pres-
ence of a for-loop or the calling of a method with cer-
tain parameters, and generates error messages for vio-
lated constraints [105]. INCOM is the only tool we have

Figure 7: A production rule

found so far that uses this technique. The authors of IN-
COM argue that CBM has its limitations in the domain of
programming because of the large solution space for pro-
gramming problems [88]. They have designed a ‘weighted
constraint-based model’, consisting of a semantic table, a
set of constraints, constraint weights (to indicate the im-
portance of a particular constraint), and transformation
rules. The authors show that this model can recognise
student intentions in a much larger number of solutions
compared to the standard CBM approach.

Domain-specific techniques for programming
– Dynamic code analysis using automated testing (AT). The

most basic form of automated testing is running a pro-
gram and comparing the output to the expected out-
put. More advanced techniques are unit testing and prop-
erty-based testing, often implemented using existing test
frameworks, such as JUnit. Test cases may be predefined
or have to be supplied by the student him- or herself. We
have also noticed the use of reflection in multiple tools, a
technique specific for the popular Java language. Reflec-
tion can be used to dynamically inspect and execute code.
AutoGrader [65] is a lightweight framework that uses
Java reflection to execute tests for grading and creating
feedback reports.

– Basic static code analysis (BSA) analyses a program (source
code or byte code) without running it, and can be used to
detect misunderstood concepts, the absence or presence of
certain code structures, and to give hints on fixing these
mistakes [128]. Some tools use static analysis for calcu-
lating metrics, such as the cyclomatic complexity or the
number of comments. The GAME-2 tool performs static
analysis by examining comments in a solution [100]. The
analysis identifies code that is commented out as ‘artifi-
cial’ comments, and identifies ‘meaningful’ comments by
looking at the ratio of nouns and conjunctions compared
to the total word count. InSTEP looks for common errors
in code, such as using ‘=’ instead of ‘==’ in a loop condi-
tion, or common mistakes in loop counters, and provides
appropriate feedback accordingly [112].

– Program transformations (PT) transform a program into
another program in the same language or a different lan-
guage. Transformations are often used together with static
code analysis to match a student program with a model
program. We have found several program transformation
techniques in tools for learning programming:

– Normalisation: transformation into a sublanguage to

10

decrease syntactical complexity. The technique used in
SIPLeS-II [149] is a notable contribution to this field.
The authors have identified 13 ‘semantics-preserving
variations’ (SPVs) found in code. Some of these SPVs
are handled using transformations that change the com-
putational behaviours (operational semantics) of a pro-
gram while preserving the computational results (com-
putational semantics). As an example, SPV 6 ‘different
control structures’ is handled by transformations that
standardize control structures, and SPV 9 ‘different re-
dundant statements’ by dead code removal. As a result,
a larger number of student programs can be recognised.

– Migration: transformation into another language at the
same level of abstraction. The INTELLITUTOR [136]
uses the abstract language AL for internal representa-
tion. Pascal and C programs are translated into AL
to eliminate language-specific details. After that, the
system performs some normalisations on the AL-code.

Synthesis, transformation to a lower level such as byte
code, is another program transformation technique. We
have not found this technique in tools other than compil-
ers, and the external tool FindBugs2. FindBugs translates
Java code into bytecode, and performs static analysis on
this bytecode to identify potential bugs.

– Intention-based diagnosis (IBD) uses a knowledge base of
programming goals, plans or (buggy) rules to match with
a student program to find out which strategy the stu-
dent uses to solve an exercise. IBD has some similari-
ties to CBM and static analysis, and some solutions may
be borderline cases. Compared to CBM, IBD provides
a more complete representation of a solution, that cap-
tures the chosen algorithm. The term intention-based di-
agnosis was introduced by Johnson and Soloway [76] for
their tutor PROUST. PROUST has a knowledge base
of programming plans, that are implementations of pro-
gramming goals. One programming problem may have
different goal decompositions. Figure 8 shows the sim-
plified plan for the ‘Sentinel-Controlled Input Sequence
goal’. PROUST tries to recognise these plans, including
erroneous plans, in the submitted code and reports bugs.

Figure 8: Simplified plan in PROUST

– External tools (EX) other than testing tools, such as stan-
dard compilers or static code analysers. These tools are
not the work of the authors themselves and papers do not
usually elaborate on the inner workings of the external
tools used. If a tool uses automated testing, for which
compilation is a prerequisite, we do not use this label.

2http://findbugs.sourceforge.net

We have found a number of static analysis tools, for ex-
ample CheckStyle3 for checking code conventions, Find-
Bugs4 for finding bugs, and PMD5 for detecting bad cod-
ing practices. These tools do not specifically focus on
novice programmers and may produce output that is dif-
ficult to understand for beginners. The tools are often
configured to provide a limited set of output messages so
as not to overwhelm and confuse the learner.

Other techniques
Tools use various A.I. techniques, such as natural language
processing or machine learning. The ProPL tutor [85] en-
gages in a dialogue with the student to practice planning
and program design. Human tutoring is a proven technique
for effective learning. The tutor mimics the conversation
that a human tutor would have with a student using nat-
ural language processing. ProPL uses a dialogue manage-
ment system that requires a substantial amount of input to
construct a tutor for a programming problem.

datlab [98] employs machine learning techniques to clas-
sify student errors and generate corresponding feedback. The
author uses a neural network to ‘learn relationships corre-
sponding to trained error categories, and apply these rela-
tionships to unseen data’.

We expect that some of the techniques in this category
will develop into their own category. For example, we have
noticed the use of data analysis in quite a number of recent
publications: large data sets with student solutions to exer-
cises are used to generate feedback. Our coding is not final
and will evolve while new techniques emerge.

Results
Automated testing is the technique used the most for gen-
erating feedback, namely in 78% of the tools. In many tools
it is the only technique (in 42%), sometimes it is combined
with static analysis. Other tools use testing as a ‘last re-
sort’ if the tool cannot recognise what the student is doing
otherwise. We have found that 9% of the tools use model
tracing, and only one (1%) uses constraint-based modelling.
Of all tools, 26% use static analysis and 23% use program
transformations. Intention-based diagnosis is used in 10%
and 10% of the tools use an external tool. We have found
various additional techniques in 6% of the tools.

4.3 RQ3 Adaptability
Which input to a tool can be adapted by teachers without

recompiling the tool? Using such input a teacher constructs
a new exercise or influences the generated feedback, with-
out too much effort or specialised knowledge. Input can
take various forms, such as (annotated) code, text, XML,
databases, or a custom format. We do not consider input
such as marking schemas.

– Solution templates (ST) (e.g. skeleton programs and proj-
ects) presented to students for didactic or practical pur-
poses as opposed to technical reasons such as running the
program.
Solution templates are often used for class 2 exercises. An
example is the ELP system [135] shown in Figure 9, in

3http://checkstyle.sourceforge.net
4See footnote 2
5https://pmd.github.io/

11

http://findbugs.sourceforge.net
http://checkstyle.sourceforge.net
https://pmd.github.io/

which students fill in gaps in a Java template with code
fragments.

Figure 9: Fill-in-the-gap exercise in ELP

Solution templates found in test-based assessment tools
are project skeletons, or an interface definition for a data
structure that prescribes the names of functions, param-
eters and return values.

– Model solutions (MS). Correct solutions to a program-
ming exercise are used in many tools. In dynamic anal-
ysis they are used for running test cases to generate the
expected output. In static analysis the structure of a cor-
rect solution is compared to the structure of a student
solution.

– Test data (TD), by specifying program output or defin-
ing test cases. In older tools testing is done in scripts
that are largely the system itself, for example in Naur64.
Figure 10 shows a small fragment of its test code [108].

Figure 10: Test code in Naur64

In EduComponents JUnit tests can be specified through
a web-based interface for creating programming exercises,
shown in Figure 11 [5].

– Error data (ED), such as bug libraries, buggy solutions,
buggy rules and correction rules. Error data usually spec-
ify common mistakes for an exercise, and may include
corresponding solutions. In the AA system Chen04 [29]
students write test code themselves for some exercises.
The instructor provides incorrect solutions to check if the
students code can expose them as being erroneous.

– Other. In CourseMarker [66] teachers can configure
how much feedback should be given. Some tools let a
teacher define custom feedback messages. In Ask-Elle

Figure 11: Test editing for EduComponents

model solutions can be annotated with feedback mes-
sages [55]:

range x y =
{−# FEEDBACK Note... #−}
take (y−x+1) $ iterate (+1) x

These messages appear if the student asks for help at a
specific stage during problem solving.

Another aspect we consider is the adaptability of the feed-
back generation based on a student model (SM). A student
model contains information on the capabilities and level of
the student, and may be used to personalise the feedback.

Results
We have found that test data is used the most: it is found
in 71% of the tools. After that, 49% of the tools use model
solutions. Of all tools, 23% offer solution templates, and in
3% error data can be specified. We have found the use of a
student model for generating feedback on solutions in 4% of
the tools. In 19% of the tools we have found other input.

4.4 RQ4 Quality
As a starting point for collecting data on the quality of

tools, we have identified and categorised how tools are eval-
uated. Tools have been evaluated using a large variety of
methods. We use the three main types for the assessment
of tools distinguished by Gross and Powers [61].

– Anecdotal (ANC) assessment is based on the experiences
and observations of researchers or teachers with using the
tool. We will not attach this label if another type has been
applied as well, because we consider anecdotal assessment
to be inferior to the other types.

– Analytical (ANL) assessment compares the characteris-
tics of a tool to a set of criteria related to usability or

12

a learning theory. For example, The LISP tutor [36]
and JITS [131] are based on the ACT-R cognitive archi-
tecture [6]. In ACT-R procedural knowledge is defined
as a set of production rules that model human behaviour
in solving particular problems. Chang00 [27] is based
on the completion strategy for learning programming by
Van Merriënboer [139]. This strategy is based on exer-
cises in which (incomplete) model programs written by
an expert should be completed, extended or modified by
a novice programmer. The user interface of BOSS [78]
is evaluated against a set of guidelines and design princi-
ples. Some other tools refer to various learning theories,
of which some are specific for the programming domain.

– Empirical assessment analyses qualitative data or quan-
titative data. We distinguish three types of empirical as-
sessment:

– Looking at the learning outcome (EM-LO), such as mis-
takes, grades and pass rates, after students have used
the tool, and observing tool use. The nature of these
experiments varies greatly. For example, ProPL was
evaluated in an experiment with 25 students [85]. The
students were either in the control group, that used a
simple, alternative learning strategy, or in the group
that used ProPL. Students both tool a pre-test and
a post-test to assess the changes in the scores. Some
tools have used a less extensive method, for instance
by omitting a control group, and comparing the pass
rates from the year the tool was used against previous
years. The size of the test group also varies greatly.

– Student and teacher surveys (EM-SU) and interviews
on experiences with the tool. We have found that the
number of responses in some cases is very low, or is not
even mentioned. Some papers mention a survey but do
not show an analysis of the results, in which case we
do not assign this label.

– Technical analysis (EM-TA) to verify whether a tool
can correctly recognise (in)correct solutions and gener-
ate appropriate hints. Tool output for a set of student
submissions is compared to an analysis by a human tu-
tor. SIPLeS-II [149] was assessed using a set of 525
student programs, measuring the number of correctly
recognised solutions, the time needed for the analy-
sis, and a comparison to the analysis of a human tu-
tor. In some cases, this type of analysis is done for a
large number of programs, only counting the number of
recognised programs. In other cases, researchers thor-
oughly analyse the content of generated hints, often for
a smaller set of programs because of the large amount
of work involved.

Results
We have found that 19% of the tools we have examined only
provide anecdotal evidence of the success of a tool, and for
7% of the tools we have not found any assessment at all. Of
all tools, 12% have been assessed by an analytical method
and 72% by some form of empirical assessment, of which
student and teacher surveys are the largest group with 42%
of the tools.

Not including anecdotal assessment, 23% of the tools have
been evaluated by at least two methods.

5. DISCUSSION
In this review we intend to find an answer to our research

question concerning feedback generation for programming
exercises: ‘what is the nature of the feedback, how is it
generated, can a teacher adapt the feedback, and what can
we say about its quality and effect?’ In this section we take
a closer look at the answers we have found to the four sub-
questions, and discuss the relation between these answers.

We have found that feedback about mistakes is the largest
category found in tools, with information on test failures as
the largest subcategory. Generating feedback based on tests
is a useful way to point out errors in student solutions and
emphasizes the importance of testing to students. It is there-
fore a valuable technique, and relatively easy to implement
using existing test frameworks. Most tools that use auto-
mated testing support class 3 exercises, because black-box
testing does not require using a specific algorithm or design
process. The only aspect that matters is whether or not the
output meets the requirements of the exercise. We found
feedback on solution errors, feedback on the code itself, in a
smaller number of tools, and with varying depth and detail.

Very few tools that support exercises that can be solved by
multiple (variants of) strategies give feedback with knowl-
edge on how to proceed. According to Boud and Molloy’s
definition, these tools lack the means to really help a stu-
dent. In general, the feedback that tools generate is not that
diverse, and mainly focused on identifying mistakes. Excep-
tions are tools that only offer class 2 exercises, that more
often provide feedback with ‘knowledge on how to proceed’.
A disadvantage is that these tools do not support alternative
solution strategies, and may restrict a student in his or her
problem solving process.

Many of the tools we have investigated are automated as-
sessment tools, which are often used for marking large num-
bers of student solutions. If marking is the only purpose,
one could conclude that more elaborate feedback is not nec-
essary. However, if we want our students to learn from their
mistakes, a single mark or a basic list of errors only is not
sufficient. Moreover, we have noticed that many authors of
AA tools claim that the intention of the feedback their tool
generates is student learning.

We have found that tools use various dynamic and static
analysis techniques. More sophisticated techniques, such as
model tracing and intention-based diagnosis, appear to com-
plicate adding new exercises and adjusting the tool. How-
ever, the question whether or not a tool can be adapted
easily is not easy to answer, and depends on the amount
and complexity of the input. We have found that very few
papers explicitly describe this, or even address the role of the
teacher. In the latter case we assume that there is no such
role and the tool can only be adjusted by the developers.
When a publication does describe how an exercise can be
added, it is sometimes not clear how difficult this is. Some
publications mention the amount of time necessary to add
an exercise, such as one person-week for Bridge and four
to eight hours for Hogg. We conclude that teachers cannot
easily adapt tools to their own needs, except for test-based
AA systems.

To answer the last research question, we have investigated
how tools are evaluated. Most tools provide at least some
form of evaluation, although for 23% of the tools we could
only find anecdotal evidence, or none at all. The evaluation
of a tool may not be directly related to the quality of the

13

feedback, so the results only give a general idea of how much
attention was spent on evaluation. The many different eval-
uation methods make it difficult to assess the effectiveness
of the feedback. Moreover, the quality (e.g. the presence of
control groups, pre- and post-tests, group size) of empiri-
cal assessment varies greatly. Finally, the description of the
method and results often lacks clarity and detail.

Gross and Powers provide a rubric for evaluating the qual-
ity of empirical tool assessments, and have applied this rubric
to the evaluation of a small set of tools. Collecting data for
this rubric would provide us with more information, but the
effort is beyond the scope of this review. Just as Gross
and Powers conclude, the lack of information on assessment
greatly complicates this task.

6. CONCLUSIONS AND FUTURE WORK
We have analysed and categorised the feedback genera-

tion in 69 tools for learning programming, selected from 17
earlier reviews. Although our search is not yet complete,
we report some findings on the relation of feedback content,
technique and adaptability. We observe that very few tools
that support C3 exercises give feedback with ‘knowledge on
how to proceed (KH)’. According to Boud and Molloy’s def-
inition, these tools lack the means to really help a student.
In general, the feedback that tools generate is not that di-
verse, and mainly focused on identifying mistakes. We have
also found that teachers cannot easily adapt tools to their
own needs, except for test-based AA systems.

To complete this SLR, we continue our ‘backward snow-
balling’ approach by searching the papers we have found so
far for relevant references. Furthermore, because our ques-
tions are related to computer science and education, we will
search a computer science database (ACM), an educational
database (ERIC), and a general scientific database (Sco-
pus). Lastly, we will further analyse the results by relating
them to programming concepts that students find difficult
from Lahtinen et al. [84], common novice programming er-
rors [101, 4], and human tutoring strategies.

Acknowledgements
This research is supported by the Netherlands Organisation
for Scientific Research (NWO).

7. REFERENCES
[1] A. Adam and J.-P. Laurent. LAURA, a system to

debug student programs. Artificial Intelligence,
15(1-2):75–122, 1980.

[2] K. M. Ala-Mutka. A survey of automated assessment
approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

[3] A. Allevato and S. H. Edwards. RoboLIFT: engaging
CS2 students with testable, automatically evaluated
Android applications. In SIGCSE Technical
Symposium on Computer Science Education, pages
547–552, 2012.

[4] A. Altadmri and N. C. C. Brown. 37 Million
Compilations: Investigating Novice Programming
Mistakes in Large-Scale Student Data. In SIGCSE
Technical Symposium on Computer Science
Education, pages 522–527, 2015.

[5] M. Amelung, K. Krieger, and D. Rosner.
E-Assessment as a Service. IEEE Transactions on

Learning Technologies, 4(2):162–174, 2011.

[6] J. R. Anderson. The architecture of cognition.
Lawrence Erlbaum Associates, Inc, 1983.

[7] J. R. Anderson and E. Skwarecki. The automated
tutoring of introductory computer programming.
Communications of the ACM, 29(9):842–849, 1986.

[8] D. Arnow and O. Barshay. WebToTeach: an
interactive focused programming exercise system. In
Frontiers In Education Conference, pages 39–44,
1999.

[9] B. Auffarth, M. Lopez-Sanchez, J. Campos i Miralles,
and A. Puig. System for Automated Assistance in
Correction of Programming Exercises (SAC). In
Congress University Teaching and Innovation, pages
104–113, 2008.

[10] A. Barr and M. Beard. An instructional interpreter
for basic. ACM SIGCSE Bulletin, 8(1):325–334, 1976.

[11] A. Barr, M. Beard, and R. C. Atkinson. A rationale
and description of a CAI program to teach the
BASIC programming language. Instructional Science,
4(1):1–31, 1975.

[12] A. Barr, M. Beard, and R. C. Atkinson. The
computer as a tutorial laboratory: the Stanford BIP
project. International Journal of Man-Machine
Studies, 8(5):567–596, 1976.

[13] S. Benford, E. Burke, and E. Foxley. Learning to
construct quality software with the Ceilidh system.
Software Quality Journal, 2(3):177–197, 1993.

[14] S. Benford, E. Burke, E. Foxley, N. Gutteridge, and
A. M. Zin. Early experiences of computer-aided
assessment and administration when teaching
computer programming. Research in Learning
Technology, 1(2):55–70, 1993.

[15] S. D. Benford, E. K. Burke, E. Foxley, and C. A.
Higgins. The Ceilidh system for the automatic
grading of students on programming courses. In
Annual on Southeast regional conference, pages
176–182, 1995.

[16] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. ACM SIGCSE Bulletin,
39(2):32–36, 2007.

[17] L. Bettini, L. Cecchi, P. Crescenzi, G. Innocenti, and
M. Loreti. An environment for self-assessing Java
programming skills in undergraduate first
programming courses. In Conference on Advanced
Learning Technologies, pages 161–165, 2004.

[18] M. Blumenstein, S. Green, S. Fogelman, A. Nguyen,
and V. Muthukkumarasamy. Performance analysis of
GAME: A generic automated marking environment.
Computers & Education, 50:1203–1216, 2008.

[19] M. Blumenstein, S. Green, A. Nguyen, and
V. Muthukkumarasamy. GAME: A generic
automated marking environment for programming
assessment. In Conference on Information
Technology: Coding and Computing, pages 212–216,
2004.

[20] C. Bokhove and P. Drijvers. Digital Tools for Algebra
Education: Criteria and Evaluation. Journal of
Computers for Mathematical Learning, 15(1):45–62,
2010.

[21] J. G. Bonar and R. Cunningham. Bridge: Intelligent

14

Tutoring with Intermediate Representations.
Technical report, Carnegie Mellon University,
University of Pittsburgh, 1988.

[22] D. Boud and E. Molloy, editors. Feedback in higher
and professional education: understanding it and
doing it well. Routledge, 2012.

[23] P. Brusilovsky and G. Weber. Collaborative Example
Selection in an Intelligent Example-Based
Programming Environment. In Conference on
Learning Sciences, pages 357–362, 1996.

[24] P. L. Brusilovsky. Intelligent Tutor, Environment and
Manual for Introductory Programming. Innovations
in Education & Training International, 29(1):26–34,
1992.

[25] J. Caiza and J. Del Alamo. Programming
assignments automatic grading: review of tools and
implementations. In International Technology,
Education and Development Conference, pages
5691–5700, 2013.

[26] M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: A learning theoretic
approach. In Workshop on Computing Education
Research, pages 111–122, 2007.

[27] K. E. Chang, B. C. Chiao, S. W. Chen, and R. S.
Hsiao. A programming learning system for beginners
- A completion strategy approach. IEEE
Transactions on Education, 43(2):211–220, 2000.

[28] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon. On
automated grading of programming assignments in
an academic institution. Computers & Education,
41(2):121–131, 2003.

[29] P. M. Chen. An automated feedback system for
computer organization projects. IEEE Transactions
on Education, 47(2):232–240, 2004.

[30] M. Choy, S. Lam, C. K. Poon, F. L. Wang, Y. T. Yu,
and L. Yuen. Design and Implementation of an
Automated System for Assessment of Computer
Programming Assignments. In Advances in
Web-Based Learning, pages 584–596, 2008.

[31] M. Choy, U. Nazir, C. K. Poon, and Y. T. Yu.
Experiences in using an automated system for
improving students’ learning of computer
programming. In Advances in Web-Based Learning,
pages 267–272. 2005.

[32] J. Coffman and A. C. Weaver. Electronic commerce
virtual laboratory. In SIGCSE Technical Symposium
on Computer Science Education, pages 92–96, 2010.

[33] A. T. Corbett and J. R. Anderson. Student modeling
in an intelligent programming tutor. In Cognitive
Models and Intelligent Environments for Learning
Programming, pages 135–144. 1993.

[34] A. T. Corbett and J. R. Anderson. Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User Modelling and User-Adapted
Interaction, 4(4):253–278, 1994.

[35] A. T. Corbett and J. R. Anderson. Locus of
Feedback Control in Computer-Based Tutoring:
Impact on Learning Rate, Achievement and
Attitudes. In SIGCHI conference on Human factors
in computing systems, pages 245–252, 2001.

[36] A. T. Corbett, J. R. Anderson, and E. G. Patterson.
Student Modeling and Tutoring Flexibility in the

Lisp Intelligent Tutoring System. In Intelligent
tutoring systems: At the crossroads of artificial
intelligence and education, pages 83–106. 1990.

[37] A. T. Corbett, J. R. Anderson, and E. J. Patterson.
Problem compilation and tutoring flexibility in the
Lisp tutor. In Conference on Intelligent Tutoring
Systems, pages 423–429, 1988.

[38] C. Daly. RoboProf and an Introductory Computer
Course. ACM SIGCSE Bulletin, 31(3):155–158, 1999.

[39] C. Daly and J. Horgan. An Automated Learning
System for Java Programming. IEEE Transactions
on Education, 47(1):10–17, 2004.

[40] R. L. Danielson. Pattie: An automated tutor for
top-down programming. PhD thesis, University of
Illinois at Urbana-Champaign, 1975.

[41] S. Davies, J. Polack-Wahl, and K. Anewalt. A
snapshot of current practices in teaching the
introductory programming sequence. In SIGCSE
Technical Symposium on Computer Science
Education, pages 625–630, 2011.

[42] F. P. Deek, K.-W. Ho, and H. Ramadhan. A critical
analysis and evaluation of web-based environments
for program development. The Internet and Higher
Education, 3(4):223–269, 2000.

[43] F. P. Deek and J. A. McHugh. A survey and critical
analysis of tools for learning programming. Computer
Science Education, 8(2):130–178, 1998.

[44] C. Douce, D. Livingstone, and J. Orwell. Automatic
test-based assessment of programming: A review.
Journal on Educational Resources in Computing,
5(3), 2005.

[45] C. Douce, D. Livingstone, J. Orwell, S. Grindle, and
J. Cobb. A technical perspective on ASAP -
Automated system for assessment of programming.
In CAA Conference, Loughborough, pages 1–14, 2005.

[46] C. Douce, D. Livingstone, J. Orwell, S. Grindle,
J. Wood, and J. Curnock. Automatic assessment of
programming assignments. In ALT-C: exploring the
frontiers of e-learning - borders, outposts and
migration, 2005.

[47] S. H. Edwards. Improving student performance by
evaluating how well students test their own
programs. Journal on Educational Resources in
Computing, 3(3):1–24, 2003.

[48] S. H. Edwards and M. A. Pérez-Quiñones.
Experiences using test-driven development with an
automated grader. Journal of Computing Sciences in
Colleges, 22(3):44–50, 2007.

[49] C. Ellsworth, J. Fenwick, and B. Kurtz. The Quiver
system. In SIGCSE Technical Symposium on
Computer Science Education, pages 205–209, 2004.

[50] G. Fischer and J. W. von Gudenberg. Improving the
quality of programming education by online
assessment. In Symposium on Principles and practice
of programming in Java, pages 208–211, 2006.

[51] E. Foxley and C. A. Higgins. The CourseMaster CBA
System: Improvements over Ceilidh. In CAA
Conference, Loughborough, 2001.

[52] X. Fu, K. Qian, K. Palmer, B. Peltsverger,
B. Campbell, B. Lim, and P. Vogt. Making failure
the mother of success. In Frontiers in Education

15

Conference, pages 1–6, 2010.

[53] R. M. Gagné, L. J. Briggs, and W. W. Wager.
Principles of instructional design. Holt, Rinehart,
and Winston, 1992.

[54] T. S. Gegg-Harrison. Exploiting Program Schemata
in a Prolog Tutoring System. PhD thesis, Duke
University Durham, 1993.

[55] A. Gerdes, J. Jeuring, and B. Heeren. An interactive
functional programming tutor. In Innovation and
Technology in Computer Science Education, pages
250–255, 2012.

[56] A. Gerdes, J. T. Jeuring, and B. J. Heeren. Using
strategies for assessment of programming exercises.
In SIGCSE Technical Symposium on Computer
Science Education, pages 441–445, 2010.

[57] M. Goedicke, M. Striewe, and M. Balz. Computer
aided assessments and programming exercises with
JACK. Technical Report 28, 2008.

[58] M. Gómez-Albarrán. The Teaching and Learning of
Programming: A Survey of Supporting Software
Tools. The Computer Journal, 48(2):130–144, 2005.

[59] O. Gotel, C. Scharff, and A. Wildenberg. Teaching
software quality assurance by encouraging student
contributions to an open source web-based system for
the assessment of programming assignments. ACM
SIGCSE Bulletin, 40(3):214–218, 2008.

[60] O. Gotel, C. Scharff, A. Wildenberg, M. Bousso,
C. Bunthoeurn, P. Des, V. Kulkarni, S. P. N.
Ayudhya, C. Sarr, and T. Sunetnanta. Global
perceptions on the use of WeBWorK as an online
tutor for computer science. In Frontiers in Education
Conference, pages 5–10, 2008.

[61] P. Gross and K. Powers. Evaluating assessments of
novice programming environments. In ICER
International Workshop on Computing Education
Research, pages 99–110, 2005.

[62] M. Guzdial. Programming environments for novices.
In S. Fincher and M. Petre, editors, Computer
Science Education Research, pages 127–154. 2004.

[63] J. A. Harris, E. S. Adams, and N. L. Harris. Making
program grading easier: but not totally automatic.
Journal of Computing Sciences in Colleges,
20(1):248–261, 2004.

[64] J. Hattie and H. Timperley. The power of feedback.
Review of Educational Research, 77(1):81–112, 2007.

[65] M. T. Helmick. Interface-based programming
assignments and automatic grading of Java
programs. ACM SIGCSE Bulletin, 39(3):63–67, 2007.

[66] C. A. Higgins, G. Gray, P. Symeonidis, and
A. Tsintsifas. Automated assessment and experiences
of teaching programming. Journal on Educational
Resources in Computing, 5(3), 2005.

[67] C. A. Higgins, P. Symeonidis, and A. Tsintsifas. The
marking system for CourseMaster. ACM SIGCSE
Bulletin, 34(3):46–50, 2002.

[68] J. Hong. Guided programming and automated error
analysis in an intelligent Prolog tutor. International
Journal of Human-Computer Studies, 61(4):505–534,
2004.

[69] P. Ihantola, T. Ahoniemi, V. Karavirta, and
O. Seppälä. Review of recent systems for automatic

assessment of programming assignments. In Koli
Calling International Conference on Computing
Education Research, pages 86–93, 2010.

[70] P. Isaacson and T. Scott. Automating the execution
of student programs. ACM SIGCSE Bulletin,
21(2):15–22, 1989.

[71] D. Jackson. A software system for grading student
computer programs. Computers & Education,
27(3-4):171–180, 1996.

[72] D. Jackson. A semi-automated approach to online
assessment. ACM SIGCSE Bulletin, 32(3):164–167,
2000.

[73] D. Jackson and M. Usher. Grading student programs
using ASSYST. ACM SIGCSE Bulletin,
29(1):335–339, 1997.

[74] J. Jeuring, L. T. van Binsbergen, A. Gerdes, and
B. Heeren. Model solutions and properties for
diagnosing student programs in Ask-Elle. In
Computer Science Education Research Conference,
pages 31–40, 2014.

[75] W. L. Johnson. Understanding and debugging novice
programs. Artificial Intelligence, 42(1):51–97, 1990.

[76] W. L. Johnson and E. Soloway. Intention-based
diagnosis of novice programming errors. In AAAI
conference, pages 162–168, 1984.

[77] Joint Task Force on Computing Curricula, ACM and
IEEE Computer Society. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. ACM, 2013.

[78] M. Joy, N. Griffiths, and R. Boyatt. The BOSS
online submission and assessment system. Journal on
Educational Resources in Computing, 5(3), 2005.

[79] C. Kelleher and R. Pausch. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Computing Surveys, 37(2):83–137, 2005.

[80] H. Keuning, J. Jeuring, and B. Heeren. Towards a
Systematic Review of Automated Feedback
Generation for Programming Exercises. In
Innovation and Technology in Computer Science
Education, 2016.

[81] B. Kitchenham and S. Charters. Guidelines for
performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01, 2007.

[82] C. Köllmann and M. Goedicke. Automation of Java
Code Analysis for Programming Exercises. In
Workshop on Graph Based Tools, Electronic
Communications of the EASST, pages 1–12, 2006.

[83] C. Köllmann and M. Goedicke. A Specification
Language for Static Analysis of Student Exercises. In
Conference on Automated Software Engineering,
pages 355–358, 2008.

[84] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers. In
Innovation and Technology in Computer Science
Education, pages 14–18, 2005.

[85] H. C. Lane and K. VanLehn. Teaching the tacit
knowledge of programming to novices with natural
language tutoring. Computer Science Education,
15(3):183–201, 2005.

[86] N.-T. Le and W. Menzel. Problem Solving Process

16

oriented Diagnosis in Logic Programming. In
Conference on Computers in Education, pages 63–70,
2006.

[87] N.-T. Le, W. Menzel, and N. Pinkwart. Evaluation of
a Constraint-Based Homework Assistance System for
Logic Programming. In Conference on Computers in
Education, pages 51–58, 2009.

[88] N.-T. Le and N. Pinkwart. Adding weights to
constraints in intelligent tutoring systems: Does it
improve the error diagnosis? In Towards Ubiquitous
Learning, pages 233–247. 2011.

[89] N.-T. Le and N. Pinkwart. INCOM: A Web-based
Homework Coaching System For Logic Programming.
In Conference on Cognition and Exploratory
Learning in Digital Age, pages 43–50, 2011.

[90] N.-T. Le and N. Pinkwart. Towards a classification
for programming exercises. In Workshop on
AI-supported Education for Computer Science, pages
51–60, 2014.

[91] N.-T. Le, S. Strickroth, S. Gross, and N. Pinkwart. A
review of ai-supported tutoring approaches for
learning programming. In Advanced Computational
Methods for Knowledge Engineering, pages 267–279.
2013.

[92] J. P. Leal and F. Silva. Mooshak: A Web-based
multi-site programming contest system. Software -
Practice and Experience, 33(6):567–581, 2003.

[93] J. P. Leal and F. Silva. Using Mooshak as a
Competitive Learning Tool. In Competitive Learning
Institute Symposium, pages 1–7, 2008.

[94] Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent
development of automated programming assessment.
In Conference on Computational Intelligence and
Software Engineering, pages 1–5, 2009.

[95] C.-K. Looi. Automatic debugging of Prolog programs
in a Prolog Intelligent Tutoring System. Instructional
Science, 20(2-3):215–263, 1991.

[96] S. Lowes. Online teaching and classroom change:
The impact of virtual high school on its teachers and
their schools. Technical report, Columbia University,
Institute for Learning Technologies, 2007.

[97] C. MacNish. Java Facilities for Automating Analysis,
Feedback and Assessment of Laboratory Work.
Computer Science Education, 10(2):147–163, 2000.

[98] C. MacNish. Machine Learning and Visualisation
Techniques for Inferring Logical Errors in Student
Code Submissions. In Conference on Advanced
Learning Technologies, pages 317–321, 2002.

[99] R. Matloobi, M. Blumenstein, and S. Green. An
Enhanced Generic Automated Marking Environment:
GAME-2. IEEE Multidisciplinary Engineering
Education Magazine, 2:55–60, 2007.

[100] R. Matloobi, M. Blumenstein, and S. Green.
Extensions to Generic Automated Marking
Environment: Game-2+. In Interactive Computer
Aided Learning Conference, pages 1069–1076, 2009.

[101] D. Mccall and M. Kölling. Meaningful Categorisation
of Novice Programmer Errors. In Frontiers In
Education Conference, pages 2589–2596, 2014.

[102] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,

I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year cs students. In
Working Group Reports from ITiCSE, pages
125–180, 2001.

[103] D. C. Merrill, B. J. Reiser, M. Ranney, and J. G.
Trafton. Effective tutoring techniques: A comparison
of human tutors and intelligent tutoring systems.
Journal of the Learning Sciences, 2(3):277–305, 1992.

[104] C. M. Mitchell, E. Y. Ha, K. E. Boyer, and J. C.
Lester. Learner characteristics and dialogue:
Recognising effective and student-adaptive tutorial
strategies. International Journal of Learning
Technology, 8(4):382–403, 2013.

[105] A. Mitrovic, K. R. Koedinger, and B. Martin. A
Comparative Analysis of Cognitive Tutoring and
Constraint-Based Modeling. In User Modeling, pages
313–322. 2003.

[106] D. Morris. Automatic grading of student’s
programming assignments: an interactive process and
suite of programs. In Frontiers In Education
Conference, pages 1–6, 2003.

[107] S. Narciss. Feedback strategies for interactive
learning tasks. Handbook of research on educational
communications and technology, pages 125–144, 2008.

[108] P. Naur. Automatic Grading of student’s ALGOL
Programming. BIT Numerical Mathematics,
4(3):177–188, 1964.

[109] J. C. Nesbit, L. Liu, Q. Liu, and O. O. Adesope.
Work in Progress: Intelligent Tutoring Systems in
Computer Science and Software Engineering. In
ASEE Annual Conference & Exposition, pages 1–12,
2015.

[110] A. Nguyen, C. Piech, J. Huang, and L. Guibas.
Codewebs: Scalable homework search for massive
open online programming courses. In Conference on
World Wide Web, pages 491–502, 2014.

[111] P. Nordquist. Providing accurate and timely feedback
by automatically grading student programming labs.
Journal of Computing Sciences in Colleges,
23(2):16–23, 2007.

[112] E. Odekirk-Hash and J. L. Zachary. Automated
feedback on programs means students need less help
from teachers. ACM SIGCSE Bulletin, 33(1):55–59,
2001.

[113] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. ACM SIGCSE Bulletin,
39(4):204–223, 2007.

[114] N. Pillay. Developing intelligent programming tutors
for novice programmers. ACM SIGCSE Bulletin,
35(2):78–82, 2003.

[115] K. A. Rahman and M. J. Nordin. A review on the
static analysis approach in the automated
programming assessment systems. In National
conference on programming, 2007.

[116] H. A. Ramadhan, F. Deek, and K. Shihab.
Incorporating software visualization in the design of
intelligent diagnosis systems for user programming.
Artificial Intelligence Review, 16(1):61–84, 2001.

[117] K. A. Reek. The TRY system -or- how to avoid

17

testing student programs. ACM SIGCSE Bulletin,
21(1):112–116, 1989.

[118] J. C. Rodŕıguez-del Pino, E. Rubio-Royo, and
Z. Hernández-Figueroa. A Virtual Programming Lab
for Moodle with automatic assessment and
anti-plagiarism features. In Conference on
e-Learning, e-Business, Entreprise Information
Systems, & e-Government, 2012.

[119] R. Romli, S. Sulaiman, and K. Z. Zamli. Automatic
programming assessment and test data generation a
review on its approaches. In International Symposium
in Information Technology, pages 1186–1192, 2010.

[120] R. Saikkonen, L. Malmi, and A. Korhonen. Fully
automatic assessment of programming exercises.
ACM SIGCSE Bulletin, 33(3):133–136, 2001.

[121] J. A. Sant. ”Mailing it in”: email-centric automated
assessment. ACM SIGCSE Bulletin, 41(3):308–312,
2009.

[122] J. Schwieren, G. Vossen, and P. Westerkamp. Using
Software Testing Techniques for Efficient Handling of
Programming Exercises in an e-Learning Platform.
The Electronic Journal of e-Learning, 4(1):87–94,
2006.

[123] S. C. Shaffer. Ludwig: An Online Programming
Tutoring and Assessment System. ACM SIGCSE
Bulletin, 37(2):56–60, 2005.

[124] V. J. Shute. Focus on formative feedback. Review of
Educational Research, 78(1):153–189, 2008.

[125] J. Sorva, V. Karavirta, and L. Malmi. A Review of
Generic Program Visualization Systems for
Introductory Programming Education. ACM
Transactions on Computing Education, 13(4):1–64,
2013.

[126] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences
with marmoset: designing and using an advanced
submission and testing system for programming
courses. ACM SIGCSE Bulletin, 38(3):13–17, 2006.

[127] M. Striewe, M. Balz, and M. Goedicke. A Flexible
and Modular Software Architecture for Computer
Aided Assessments and Automated Marking.
Conference on Computer Supported Education,
2:54–61, 2009.

[128] M. Striewe and M. Goedicke. A review of static
analysis approaches for programming exercises. In
Computer Assisted Assessment. Research into
E-Assessment, pages 100–113. 2014.

[129] H. Suleman. Automatic Marking with Sakai. In
Research conference on IT research in developing
countries, pages 229–236, 2008.

[130] E. Sykes. Qualitative Evaluation of the Java
Intelligent Tutoring System. Journal of Systemics,
Cybernetics and Informatics, 3(5):49–60, 2005.

[131] E. Sykes. Design, development and evaluation of the
Java Intelligent Tutoring System. Technology,
Instruction, Cognition & Learning, 8(1):25–65, 2010.

[132] M. Sztipanovits, K. Qian, and X. Fu. The automated
web application testing (AWAT) system. In ACM
Southeast Conference, pages 88–93, 2008.

[133] G. Thorburn and G. Rowe. PASS: An automated
system for program assessment. Computers &

Education, 29(4):195–206, 1997.

[134] N. Truong, P. Bancroft, and P. Roe. Learning to
program through the web. ACM SIGCSE Bulletin,
37(3):9–13, 2005.

[135] N. Truong, P. Roe, and P. Bancroft. Static analysis of
students’ Java programs. In Australasian Conference
on Computing Education, pages 317–325, 2004.

[136] H. Ueno. A generalized knowledge-based approach to
comprehend Pascal and C programs. IEICE
Transactions on Information and Systems,
83(4):591–598, 2000.

[137] M. Ulloa. Teaching and learning computer
programming: a survey of student problems, teaching
methods, and automated instructional tools. ACM
SIGCSE Bulletin, 12(2):48–64, 1980.

[138] A. K. Vail and K. E. Boyer. Identifying effective
moves in tutoring: On the refinement of dialogue act
annotation schemes. In Intelligent Tutoring Systems,
pages 199–209, 2014.

[139] J. J. Van Merriënboer and M. De Croock. Strategies
for computer-based programming instruction:
Program completion vs. program generation. Journal
of Educational Computing Research, 8(3):365–94,
1992.

[140] A. Venables and L. Haywood. Programming Students
NEED Instant Feedback! In Australasian Conference
on Computing Education, pages 267–272, 2003.

[141] A. Vizcáıno. A Simulated Student Can Improve
Collaborative Learning. International Journal of
Artificial Intelligence in Education, 15:3–40, 2005.

[142] A. Vizcáıno, J. Contreras, J. Favela, and M. Prieto.
An adaptive, collaborative environment to develop
good habits in programming. In Intelligent Tutoring
Systems, pages 262–271. 2000.

[143] U. von Matt. Kassandra: The Automatic Grading
System. ACM SIGCUE Outlook, 22(1):26–40, 1994.

[144] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang.
Ability-training-oriented automated assessment in
introductory programming course. Computers &
Education, 56(1):220–226, 2011.

[145] G. Weber. Episodic learner modeling. Cognitive
Science, 20(2):195–236, 1996.

[146] G. Weber and P. Brusilovsky. ELM-ART: An
Adaptive Versatile System for Web-based
Instruction. International Journal of Artificial
Intelligence in Education, 12:351–384, 2001.

[147] G. Weber and M. Specht. User Modeling and
Adaptive Navigation Support in WWW-Based
Tutoring Systems. In Conference on User Modeling,
pages 289–300, 1997.

[148] W. Wu, G. Li, Y. Sun, J. Wang, and T. Lai.
AnalyseC: A framework for assessing students’
programs at structural and semantic level. In
Conference on Control and Automation, pages
742–747, 2007.

[149] S. Xu and Y. S. Chee. Transformation-based
diagnosis of student programs for programming
tutoring systems. IEEE Transactions on Software
Engineering, 29(4):360–384, 2003.

[150] A. Zeller. Making students read and review code.
ACM SIGCSE Bulletin, 32(2):89–92, 2000.

18

	Introduction
	Related work
	Reviews of learning tools
	Reviews of assessment tools
	Conclusion

	Method
	Research questions
	Criteria
	Search process

	Results
	RQ1 Feedback type
	RQ2 Technique
	RQ3 Adaptability
	RQ4 Quality

	Discussion
	Conclusions and future work
	References

