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Abstract. Attribute grammars provide a framework to define compu-
tations over trees, by decorating those trees with attributes. Attribute
grammars have been successfully applied in many areas, including compiler
construction and natural language processing. In this paper we present
a translation of attribute grammars to Constraint Handling Rules, a
formalism based on constraint rewriting.

Our translation is able to express in a simple way several extensions to
attribute grammars. Higher-order attributes are attributes whose value
is again a tree, for which attributes can be computed recursively. Look-
ahead enables attribute definitions to depend not only on the current
node, but also on the shape of its subtrees. Specialization provides a way
to override the default computation of an attribute when some conditions
are met; a natural way to define exceptions to the default tree processing.

Keywords: Attribute grammars; Constraint Handling Rules; Higher-order at-
tribute grammars

1 Introduction

Attribute Grammars (AGs from now on) provide a formalism to define computa-
tions over trees [12]. Each node in a tree is augmented with a set of attributes,
the AG describes how the value of each attribute is computed from those of the
parent or the children of a given node. AGs are very useful for implementing
compilers [6], since the operations happen naturally over the Abstract Syntax
Tree of the program. Among their advantages, AGs are very easy to combine and
relieve the programmer from thinking about the order in which a tree ought to
be traversed to compute all the attributes.

As a first example of attribute grammar, let us define one to compute the
minimum value in a binary tree. The first step is describing the shape of the
trees. Throughout this paper we use the syntax from UUAGC, the Attribute
Grammar System of Universiteit Utrecht [19], which is very close to Haskell’s.

* This work was supported by the Netherlands Organisation for Scientific Re-
search (NWO) project on “DOMain Specific Type Error Diagnosis (DOMSTED)”
(612.001.213).



data Tree | Node left, right :: Tree
| Leaf wvalue :: Int

The second step is defining the attributes to be found in each node. In this case
we have only one, holding the minimum value of a tree. The information for this
attribute flows bottom-up; we call this kind of attributes synthesized. Attributes
flowing in the other direction are called inherited.

attr Tree
syn min :: Int

Finally, we must provide semantic functions which explain how to derive the
value of min for each kind of node. In UUAGC we use the syntax @Qfield to refer
to the fields from the data declaration, and @tree.attribute to speak about the
attribute in the stated tree. The name lhs is used to refer to the current node
for which the attribute is being computed.

sem Tree
| Node Ths.min = { min Qleft.min Qright.min }
| Leaf lhs.min = Qualue

The other character in our play is the formalism known as Constraint Handling
Rules [8]. The operation of a set of CHRs is based on constraint rewriting.
Originally devised as a way to describe constraint solvers, CHRs are now used
for a wide variety of scenarios [17]. In this paper we focus on how an attribute
grammar can be implemented as a set of CHRs (§ 3) and the benefits that arise.

A key point in our translation is the representation of a tree as a set of
constraints. We use a different kind of constraint per constructor in our trees.
That constraints holds a unique identifier which identifies the node, plus the
information in each field. Those fields which contain a subtree reference its
identifier. For example, the binary tree Node (Node (Leaf 1) (Leaf 2)) (Leaf 3)
is represented as the following set of constraints:

node («, 3,7), node (3, d, €), leaf (4, 1), leaf (¢, 2), leaf (v, 3)

where «, (3, ...are distinct identifiers.

Attributes in a node are represented in a similar fashion: by a constraint which
holds the identifier of the node and the value attached to that node. Semantic
functions are turned into rules manipulating those constraints. The functions
corresponding to the computation of the min attribute are translated into:

node(Id, L, R), min (L, N),min (R, M) = X =min N M | min(Id, X)
leaf (Id, N) = min(Id,N)

This attribute grammar is fairly simple, though: it computes just a single
synthesized attribute. However, when we have inherited and synthesized attributes
which depend of each other, we need to schedule the computations to ensure that
at each point of execution all the necessary information is available. Kennedy



and Warren [11] and Kastens [10] provide algorithms to statically compute such
a scheduling. In § 3.2 we give a different solution to the problem by encoding the
dependencies between attributes also as constraints.

Our representation of AGs as CHRs inherit the main benefits of the former,
namely, the modularity and ease of composition. In addition, we can implement
some extensions to AGs in a straightforward way:

— In Higher-order Attribute Grammars [21] we can give an attribute a value
which is itself a tree, and then ask for computation of attributes over that
tree. HOAGs can be used to represent different phases of a compiler, or to
perform iterative computations. In § 4 we extend our translation to CHRs to
account for higher-order attributes.

— In standard AGs only the constructor of a node is inspected to decide which
semantic function to use. This is not enough in some cases: for example, when
using specialized type rules [16] we override the default typing algorithm
for some specific expressions. In § 5 we describe how special cases where
look-ahead is needed can be handled by our translation.

2 A quick recap of Constraint Handling Rules

Before we dive in the central topic of this paper, let us refresh some notions about
Constraint Handling Rules. The language of CHRs has three kinds of rules:

H" < G | B simplification
H* = G | B propagation
H¥\ H" <= G | B  simpagation

In each case, H*, H” and B are sets of constraints, called the heads and the
body respectively. We use T to represent an empty set of constraints. In order
for a rule to be applied, some constraints from the current set must match the
heads, and the guard G must be satisfied. Rewriting depends on the kind of rule:
with simplification rules the constraints H" are replaced by B, in propagation
rules the constraints B are added to the set but H* are kept. Simpagation rules
are a generalization of both: H* constraints are kept and H" are removed. In
fact, we can see any CHR as a simpagation rule where the heads might be empty.

CHRs are applied non-deterministically. For a given initial constraint set,
many different sequences of applications of rules are usually possible. Confluence,
that is, the fact that the outcome of the process does not depend on the other in
which rules are applied, must be guaranteed by the author of the CHRs.

The execution trace for the example in the introduction starts by (non-
deteministically) generating min (d,1), min (¢,2) and min (v, 3) from the leaves.
Once we have the values for é and ¢, the rule for the Node case applies and the
system generates a new constraint min (53, 1). Eventually the same rule applies for
the node with 8 and ~ as their children, obtaining a final min («, 1) constraint.



2.1 Extensions to CHRs

The standard language of CHRs is enough to describe AGs, with or without
higher-order attributes, but without special cases. For the latter, we make use in
§ 5 of two extensions to CHRs.

In their original formulation, when more than one rule matches a set of
constraints, the CHR engine is free to choose which one to apply. Once this
decision is made, though, everything is settled: it is not possible to explore the
implications of using the other rule instead. This mode of operation is called
commited choice. In some cases we prefer the engine to try the different options,
performing backtracking if one fails, in a similar fashion to Prolog. CHRY [1]
provides one such choice operator. Rules now take the general form:

HF\H" <= G| By;---;B,

In this setting, we must have some way to indicate the engine that a given branch
leads to failure, and thus another branch should be tried. In this case, it is done
by means of a special constraint 1.

The semantics of the choice operator gives preference to the left-most branch
which succeeds. However, the order of exploration of the branches is not fixed. In
some systems, this order can be programmed by the user of the CHRs [13].

A (certainly convoluted) way to compute the minimum value of a binary
tree involves trying the two possibilities coming from the two subtrees, and then
pruning those cases which are not consistent.

node (P, L, R), min(L, N), min(R, M) = min(P,N) ; min(P, M)
node(P,L,R),min(P,N),min(L,M) = N>M| L
node(P, L, R), min(P,N),min(R,M) = N>M|L
leaf (L, N) = min(L, N)

Y

Even when the set of constraint matches is not equal, more than one rule
may be available for application at a certain moment. Once again, the standard
semantics of CHRs is non-deterministic. Rule priorities [4] add the ability to
prefer application of a rule between others; in case of having more than one rule
than might apply, the one with highest priority is chosen.

This ability is important to have good complexity and performance in some
cases, and even for correctness in others. The archetypical example of the latter
case is the following implementation of Dijkstra’s shortest-path algorithm [4]:

source (A) = dist(4,0) priority 1
dist(A,D1)\ dist(A,D2) < DI <D2|T  priority 1
dist(A, D),edge(A4,B, W) = dist(B,D + W) priority D + 2

For a correct computation of all shortest paths, we must explore vertices with a
known smaller path to them before those with a larger distance. The priority
declaration in the third rule ensures that this is the case. Note that rule priority
may depend on information in the matched constraints.



3 First-Order Attribute Grammars

In this section we present the general methodology for turning an attribute
grammar into a set of CHRs. Initially we generate rules describing only the
relation between attributes; then we concern ourselves with the problem of
scheduling the order of computation of the attributes.

Definition 1 A (first-order) attribute grammar! is a triple (G, A, D) where:

— G contains a set of data type definitions, representing non-terminals in a
context-free grammar, and whose constructors represent the production rules.

— A is the set of attributes of the form (X -a : 7,d), meaning that data type
X holds an attribute a of type 7. Fach attribute is also assigned a direction
d, which can be either inherited or synthesized.

— D is the set of semantic function definitions X, ¢ - a = X, where function A
defines the attribute a in the field f of the constructor ¢ of data type X.

Following the convention in UUAGC, we shall refer to the current node in a
constructor ¢ as X 1ns-

Definition 2 Given a constructor ¢ in a data type X, we define its input
occurences Oy, (X.) and its output occurences O,y (X.).

Oin(X:) ={Xcans - a| X - a is inherited}
U{Xps-a|Xp s is a field of type Y,Y - a is synthesized}
Oout(Xe) ={Xcms - a| X - a is synthesized}
U{Xp s a|Xp s is a field of type Y,Y - a is inherited}

Definition 3 (Normal forms)

— An AG is written in Bochmann Normal Form [2] if the right-hand side of
every semantic function uses only input occurences.

— An AG is normalized if is written in BNF and only output occurences have
semantic functions.

— An AG is complete if there is a semantic function for every output occurence.

From this moment on, we assume that all AGs are normalized, complete, and
that semantic functions are well-typed.

Constraint gathering as an AG. Type inference algorithms based on constraints
are common in the literature [22,18,15]. The operation of these algorithms is
split in two phases: the first one traverses the AST of the program gathering
constraints, and the second one simplifies and solves those constraints.

As a running example, we are going to define constraint gathering for a simple
A-caculus using an AG. Its syntax is given by the following declaration. Note
that abstractions are annotated with the type of its argument.

L Our definition is very similar to the descriptions in UUAGC. For a definition closer
to the area of context-free languages, see [12].



data Ezpr | Var v :: TermVar
| Abs v :: (TermVar, Type), e :: Expr
| App el, e2 :: Expr

The syntax of types contains variables, type constructors and function types:

data Type | TyVar v:: TyVar
| Constr c:: ConstrName, args :: | Type]
| Fun  source, target :: Ty

While traversing the tree we keep track of an environment, a mapping of term
variables to types, which flows top-down. As a result of gathering, at each node in
the tree we synthesize the type and the constraints related to that subexpression.

attr Expr
inh env :: [(TyVar, Type)]
syn res :: (Type, [ Constraint])

The last step is defining the semantic functions. The environment is only enlarged
in an abstraction node.? Constraints are introduced in application nodes to related
the shape of the function and its arguments. In the code we use a freshTyVar
function which returns a fresh type variable each time it is called.

sem Fxpr
| Var lhs.res = (fromJust (lookup @v @lhs.env),[])
| Abs e.env = (fst Qu, snd Qv) : Qlhs.env
lhs.res = (Fun (snd @Qv) (fst @e.res), snd @e.res)
| App el.env = @lhs.env
e2.env = @lhs.env
lhs.res = (o, (fst @el.res = Fun (fst @e2.res) o)
:snd Qel .res H snd @e2.res) where o = freshTyVar

3.1 Translation to CHRs

As hinted in the introduction, if we want to translate AGs to CHRs, we first
need to model the trees themselves, which form the input to the decoration, as
constraints which can be inspected by the CHR engine.

Since once a tree is flattened into a set of constraints we lose the contextual
information about its position, we need to introduce an identifier for each node.
The nature of such identifier is irrelevant: we only need to be able to compare
different identifiers for equality. In order to decide which semantic function to
apply, we need to distinguish which constructor (or production) has been used
to build a node of the tree. For each constructor ¢ in an AG, we introduce a
corresponding constraint ¢. The arity of the constraint c¢ is one plus the arity of
the constructor ¢, to make room for the identifier.

2 We assume that all term variables have been renamed to remain unique.



The procedure for flattening a tree works top-down. It assigns new identifiers
to each node, and replaces subtrees in a node with their identifiers.

flatten(cay ... an) =c(i,a1,...,a,)
where ¢ = fresh identifier

. identifier of flatten(a;) if a; is a subtree
%= a; otherwise

The identifiers also serve to link each subtree with its attributes. For each
attribute a in an AG, we define a corresponding constraint a(i, v), where the first
argument ¢ is the identifier of the tree the attribute is computed for, and the
second v is the value assigned to the attribute.

We have described the shape of constraints in our CHR. It is now time for
the rules: we get one per semantic function in the AG. Or given that our AGs
are always normalized and complete, one per output attribute. Each of these
semantic functions A is given for an attribute a in the context of a constructor c.
Furthermore, it may reference attributes by, ..., b,, from some of the subtrees.
In the CHR world, the dependency on other attributes and the way to compute
the attribute defines a propagation rule:

(I, Ay, ... A, b1 (J1, Vi), oo b (i, Vi) = X = A | a(l, X)

where \ is a version of A in which the references to information in the node
and attributes from other subtrees have been replaced by references to the
metavariables Aq,..., A, and Vi,...,V,,.

Constraint gathering as CHRs. Let us go back to our running example of typing
for A-calculus. As explained above, we need to introduce five kinds of constraints:
var(I, V), abs(I,V,T, E) and app(I, E1, E2) correspond to tree nodes; env(I, F)
and res(I, T, C) to attributes.?

The simplest semantic function is the computation of res for the Var con-
structor. We need to match two constraints in the corresponding rule: the var
corresponding to the node itself, and its env attribute which is used in the lookup.

var(I,V),env(I, E) = T = fromJust (lookup V E) | res(I,T,[])
The propagation of environments flows from parents to children:

abs(I,V,Ty,B),env(I,E) = E' = (V,Ty) : E | env(B, E’)
app(I, By, Es),env(I, F) = env(Ey, E)
app(l, E1, Ez),env(l, E) = env(Es, E)

whereas the computation of types and constraints follows the converse direction:

abs(], V, Tv, B), I’(E'S(B7 TB, CB) = T = Fun TV TB | res(L T7 CB)
app(I, E1, Es),res(Ey,T1,C1),res(Eq, T5,C5) = ... | res(1,T,C)
For conciseness, we have omitted the definition of the 7' and C' metavariables

in the last rule. They can be easily recovered from the corresponding semantic
function by applying the transformation described above.

3 To increase readability, we have inlined pairs as two different arguments.



3.2 Attribute Scheduling

The translation we have described works by forward reasoning. At each point
of the execution, all the additional constraints which could be derived from the
already existing information are generated. One benefit of this working model is
that dependencies are tracked in a very fine-grained way: to compute a certain
attribute we only ask for the minimal information needed to derive it.

Definition 4 (Dependency graphs)

— The dependency graph for a constructor ¢ has as vertices all attribute oc-
curences X ¢ -a and an edge between X, y, -a1 and X, g, - az if the semantic
function for X, s, - ap mentions X f, - a;.

— The dependency graph for a tree T is obtained by pasting the dependency
graphs for each node in T .

Definition 5 We say that an AG is well-defined [12] if for every possible tree
T, the dependency graph for T contains no cycles.

The translation we have described works only if the AG is indeed well-defined.
Otherwise, at some point we might enter a loop or miss some information needed
to move forward. Note however that the order in which attributes are computed
might differ from tree to tree.

There are several disadvantages to forward reasoning, though. The first one is
that we need a CHR engine with set-based semantics, that is, one which stops a
rule from firing if the constraints to generate are already in the current set. Alas,
most CHR implementations do not track duplicates. Since our translation only
uses propagation rules, nothing stops it for running indefinitely.

The second problem is that we might end up doing more work than needed. If
we are only interested in the value of a certain attribute a, we prefer to compute
the least amount of attributes on the tree needed to obtain that information.

In order to solve both problems, we present a different translation based on
backward reasoning about dependencies. For each attribute a, apart from the
constraint a, we introduce two new constraints: deps_a signals that we need to
produce dependencies for a, and needs_a that we are interested in computing a.

For each attribute a in a constructor ¢ which references b1, ..., b, from
subtrees, we have a first rule which defines the dependencies needed for compute
a. Once the dependencies are generated, the deps_a is turned into needs_a.

c(I,A1,...,A,),deps.a(I) <= needs_a(I),deps_b,(J1),...,deps_b,,(Jm)

In order to prevent duplicate computation, we include a rule to ensure that at
most one needs_a constraint is present per node in the tree:

needs_a(l) \ needs.a(l) < T



If the CHR engine supports rule priorities (§ 2.1), the rules for dependency
tracking should be given the highest priority to ensure that duplicates are
removed before any other work is started.

We want to compute the attribute a only if it has been signalled as necessary.
For that reason, we refine the translation of semantic functions to match also a
needs_a constraint. Once the rule fires, we remove that last constraint, to ensure
that the computation does not happen again.

c(I,A1,...,An),b1(J1,Vh), .. b (Jm, Vi) \ needs_a(I) < X =X\ |a(l, X)

Constraint gathering as CHRs, reduxz. The main change to introduce backwards
reasoning in our example of A-calculus is the set of CHRs taking care of depen-
dency tracking. We obtain them by inspection of the semantic functions:

var(I,V), deps_res(I) <= needs_res(I), deps_env([)
abs(I,V, Ty, B), deps_env(B) <= needs_env(B), deps_env(I)
abs(I,V,Ty,B), deps_res(I) <= needs_res(I), deps._res(B)
app(I, E1, E5), deps_env(E;) <= needs_env(E}), deps_env(])
app(I, E1, E5), deps_env(Es) <= needs_env(Es), deps_env(])

app(I, E1, E3), deps_res(I) <= needs_res(I), deps_res(E;),deps_res(Es)

We refrain for writing down the rules preventing duplication of needs_a constraints,
since they all follow the same simple pattern.

Termination. Whereas in the first translation we presented the scheduling of
attributes could depend on information gathered during its processing, in the
new translation the schedule is generated once and for all at the beginning of
the process. The set of needs_a constraints is thus an over-approzimation of the
actual set of dependencies. As a consequence, we have narrowed the set of AGs
for which this process is guaranteed to terminate.

The AGs for which our dependency tracking terminates are known as Ab-
solutely Non-Circular Attribute Grammars (ANCAGs) [11]. This class of AGs
is very important in practice; they are considered the largest class for which
generating a strict evaluator is tractable.

In the class of ANCAGs the choice of which attributes to evaluate in a subtree
may depend on the particular constructor from which the node is built. This
is clear from our characterization as CHRs, since the constraint describing the
node appears in the head. We might ask when is it possible to find a schedule for
the attributes for an entire data type, independently of the constructors used
in each node. This problem has received quite some attention in the literature
[10,14,3], leading to the definition of different subsets of AGs, such as Linearly
Ordered, Partitionable or Ordered AGs.

3.3 Extensibility

Our translation of AGs into CHRs makes them very easy to extend along two
orthogonal axes: either by adding new attributes or by adding new constructors.



These axes corresponds to the two facets of the Expression Problem. We exemplify
this fact by adding a new attribute As which returns the number of A-abstractions
in a program, and a new constructor for let bindings.

The semantic functions for the new attribute are computed as follows:

sem Ezpr
| Var lThs.As =0
| Abs IThs.As =1+ @e.\s
| App lhs.\s = @Qel.As + @e2.)s

As explained above, we need to generate two sets of CHRs. The first one build
up the need_\s constraints by tracking dependencies:

var(I, V), deps_As(I) <= needs_As(I)
abs(I,V, Ty, B), deps_As(I) <= needs_As(I), deps_\s(B)
app(I, Ey, Es), deps_As(I) <= needs_As([), deps_As(E7), deps_As(E2)

The second step is computing the attribute values themselves:

var(I,V) \ needs_As(I) <= As(I,0)
abs(I,V, Ty, B),As(B, L) \ needs_As(I) <= As(I,L+1)
app(I, E1, E3), As(E1, L1), As(Fa, L2) \ needs_As(I) <= As(I, L1 + Lo)

We can just add these new CHRs to the original set and have our new attribute
computed. No change to the original set of CHRs is needed.

The other facet of extensibility is being able to add a new constructor. In this
case, we are interested in the description of the let x :: 7 = e; in e; construct.
Using UUAGC notation, our constructor is defined as:

data Expr | Let v:: TermVar, ty :: Type, el , e2 :: Expr

A new kind of constraint let(I, V, T, Ey, Es) represents this new type of node. The
computation of attributes on the other type of nodes remains the same, so no
change is needed in those CHRs. Of course, we need to specify how to compute
the attributes for the new Let constructor. Fpr the sake of conciseness, we shall
not write down the rules corresponding to dependency tracking.

let(I,V,T, E1, Es),env(I, E) \ needs_env(E;) <= env(Eq, E)

let(I,V,T, E1, Es),env(I, E) \ needs_env(Es) <
E'=(V,T): E | env(Ey, E)

let(I,V,T, Ey, E2),res(Eq1,T1,C1),res(E2, To, Co) \ needs_res(]) <=
C/ = T1 =T: Cl +H CQ | res(LTg,C’)

In conclusion, we have achieved full extensibility for adding both new at-
tributes and new constructors. It should be noted, however, that some of this
power comes from the fact that our CHRs need not be typechecked, in contrast
to implementations such as UUAGC which embodies Haskell’s type system.



4 Higher-Order Attribute Grammars

At the end of the previous section we extended the language of A\-expressions with
a let construct. Then, we defined the typing procedure completely independent
of the rest of constructors. However, we usually expect let z = e; in es to behave
similarly to (Az.e2) e;. Thus, another approach to define typing for let bindings
is to transform them, and then compute the typing on this version.

Let us encode this idea by using a new attribute trans and redefining the
semantic function for res accordingly:

attr Expr
syn trans :: Fxpr
sem Ezpr
| Let lhs.trans = App (Abs Qv Qty Qe2) Qel
Ihs.trans.env = @Qlhs.env
Ihs.res = @lhs.trans.res

In this case, trans is an example of a higher-order attribute, an attribute whose
value is itself a tree. Thus, we can apply the attribute grammar to that value
and decorate it with attributes. In the computation of res we take advantage
of that fact: we make use of the res attribute as computed for the translated
version of the let expression.

Higher-order attribute grammars (or HOAGs, for short) blurry the distinction
between attributes and trees [21]. Semantic functions may not only depend on the
value of other attributes and the fields of a constructor, but also on information
obtained from decorating an attribute. HOAGs embody the idea of multi-pass
compilers, in which the output of a phase over an AST is again another AST,
which is fed to the next analysis or transformation.

The translation of semantic functions into CHRs only needs small changes to
accommodate higher-order attributes:

— In order to apply the attribute grammar over the computed tree, we need to
flatten the tree, in the sense of § 3.1. In most cases this operation makes use
of fresh identifiers for the nodes of the tree.

— The constraint representing a higher-order attribute saves the identifier of
the root node of the tree. In contrast, the constraint representing a regular
attribute saves the entire value.

Applying these ideas we reach the following translation of the new semantic
functions to compute the res value over Let nodes in a A-expression:

let(I,V,T, E1, E3) \ needs_trans(]) <=
trans(I, X),app(X,Y, E1),abs(Y,V, T, E5)
where X and Y are fresh identifiers
let(I,V,T, E1, E3),trans(I, X),env(I, E) \ needs_env(X) < env(X, E)
let(I,V,T, Ey1, Es),trans(I, X),res(X, R) \ needs_res(I) <= res(I, R)



The remaining question is: how do we schedule the attributes? If we try to use
the same approach as for first-order attribute grammars, we end up in a situation
in which we do not know which nodes to refer in the dependency constraints,
because those nodes do not exist before the higher-order attribute is computed.

The solution is to introduce new types of constraints to recall the more
complex dependency structure of the code. Right now we have deps_a(N) to
mean that we need to process the dependencies of attribute a on node N. We
extend this idea to further levels of depth: deps_a_b(/N) means that we need the
attribute b computed over the value of attribute ¢ on node N. The second step
is to introduce tokens on_a_deps_b(IN) to remember that we need to process the
dependencies of attribute b once we know the value of attribute a.

This lengthy description is better understood by looking at our example of
the A-calculus. The attribute trans belongs to a node in the tree, so the simpler
algorithm suffices. Furthermore, it has no dependencies on other attributes.

let(I,V,T, E1, E>) \ deps_trans(I) <= needs_trans([)
In order to compute res for lhs, we need to compute res over the attribute trans:
let(I,V,T, Ey, E3) \ deps_res(I) <= needs_res(I), deps_trans_res(V)

At this point we need to stage our work in two phases. In order to compute
trans.res, we first need to compute trans. However, we cannot schedule the
dependencies of trans.res before we know the value of trans. We need to defer the
computation of dependencies until ¢rans is known. For that reason we introduce
the token on_trans_deps_res and remove it once we know the value of trans.

let(I,V,T, E1, E3) \ deps_trans_res(]) <=
deps_trans(I), on_trans_deps_res(I)
let(I,V,T, E1, E3),trans(I, X) \ on_trans_deps_res(I) <= deps_res(X)

Notice that we do not need to add any rule for trans.env. Rather, if at some point
in the computation of the dependencies of trans.res the value of that attribute
is needed, a constraint needs_env(X) is produced. The rule corresponding to
the semantic function defining its value in terms of the environment of the
pre-translation node then fires and computes the corresponding value.

In conclusion, our approach to AGs as CHRs extends naturally if higher-
order attributes are present. The extra rules we define take care of the implicit
dependency between a tree and the attributes which decorate that tree. Be aware
that if we opt for a forward reasoning translation instead, the initial values
of inherited attributes must be provided at the same time as the tree in the
higher-order attribute is built.

5 Look-Ahead and Specialization

Attribute grammars operate uniformly on trees and base their decision on which
semantic function to apply solely on the kind of node we are looking at. In some



scenarios, though, we need a more flexible way to make this decision. First, we
may look at more elements of the node than just the constructor: some values of
the fields, or the structure of some subtrees. This ability is termed look-ahead [7].
Second, we want to express the fact that a semantic function should only apply
in a specific scenario, and let the rest of the cases be handled by the default rule.
We call this ability specialization. In this section we see how our transformation
of AGs into CHRs copes with these requirements.

Our main application of these ideas comes from specialized type rules [9,16].
Specialized type rules allow the writer of an embedded domain-specific language
to provide a different typing procedure and error messages for the terms in that
language. The goal of this customization is to phrase error diagnosis also in terms
of the specific domain at hand, instead of in host language terms. Since specialized
type rules take over default type rules, they are an example of specialization.
Furthermore, the rules in [16] provide rich mechanisms for matching trees where
a rule applies, which can be simulated using look-ahead.

An example of specialized type rules comes from typing literal lists. After
desugaring, a list [e1, ea, ..., 5] is converted into cons e; (cons e (... (cons e, nil))).
The default typing procedure works bottom-up, which means that if two terms
do not have the same type, the right-most one will be shown as the culprit. A
procedure which is nearer to the programmer expectation is to gather all the
types from the terms, and then check that all of them are equal. As a result, if
typing fails, the blame is on all the expressions, without bias. We express this
procedure using an extension of our attribute grammar Syntax:4

attr Fxpr! list

syn eltTys : [ Type], eltCs : [ Constraint)
attr Expr! list

| Var "nil" lhs.eltTys =[]

lhs.eltCs =[]

lhs.res = (List freshTyVar,[])
| App (App (Var "cons") el) e2

el.env = lhs.env

e2.env = lhs.env

Ihs.eltTys = fst @el.res : @e2.eltTys

Ihs.eltCs = snd @Qel.res H @Qe2.eltCs

lhs.res = @lhs.eltCs # [0 = 7 | 7 < @lhs.eltTys]
where o = freshTyVar

In this case, we have a specialization called list, which makes use of two extra
attributes, eltTys and eltCs, which hold the types and the constraints of each
term in the list, respectively. The new semantic functions for the specialization
only apply to the case of the empty list or the consing operator. Since in the
latter case the definition of res uses the eltCs attribute for e2, which is defined

4 This description is not in Bochmann Normal Form, but it can be rewritten in such a
shape by replacing lhs.eltCs and lhs.eltTys by their definitions in lhs.7res.



only when the list specialization applies, that means that this specialization must
have also been applied to e2. The result is that the specialization only applies if
a complete list literal, ending in nil, is found verbatim in the source code.

5.1 Translation to CHRs

The look-ahead part is easy to encode in our CHR translation. Instead of just
matching on one single node, match on the entire structure you wish to check.
For example, the definition of res for the nil case is:

var(l,"nil") \ needs_res(I) <= o = freshTyVar | res(I, List o,[])

However, in this form the rule overlaps with the default rule for var constraints.
The CHR engine is free to choose whatever rule it prefers. But a specialized type
rule must be preferred over the default one, whenever it applies.

Our solution is to introduce a new sort of constraints, specialization tokens,
which mark the semantic functions chosen for each node. There is one such token
spec(N) per specialization, plus a default(N) one to mark the default case. Now
we can distinguish which semantic function to apply for the case of variables:

list(I), var(I,"nil") \ needs_res(I) <= o = freshTyVar | res(I, List o, ])
default(I), var(I, V) \ needs_res(I) <= ...

The CHRs taking care of dependencies must also be modified to account for
the differences between specializations and default cases. For example, the com-
putation of the res attribute for the cons case in the list specialization needs
both eltCs and eltTys, and such computation in turn needs the value of some
attributes in the inner expressions.

list(I), app(I, X, E2),app(X,V, E1),var(V,"cons") \  deps_res(]) <—
needs_res(I), deps_eltCs(I), deps_eltTys(I)

list(I), app(I, X, E2),app(X,V, E1),var(V, "cons") \ deps_eltTys(]) <
needs_res([), deps_res(E1), deps_elt Tys(E2)

list(1), app(I, X, E2),app(X,V, E1),var(V,"cons") \ deps_eltCs(]) <—
needs_res(I),deps_res(E1), deps_eltCs(E2)

The remaining question is how to assign the specialization tokens to each
node. Since we do know whether a certain assignment will succeed in computing
attributes, we use the disjunction mechanism in CHR" described in § 2.1. The
different possibilities are introduced in a single rule, do(/N), which has to be
generated with all possible specializations in place. In our case it reads:

do(N) <= list_do(N) ; default_do(V)

These do constraints have to be propagated downwards. As in the case of depen-
dencies, we introduce proxy constraints list_do and default_do to ensure that only
one such token is produced per node.

var(I, V) \ list-do(I) <= list(I)
abs(I,V, Ty, B) \ list.do(I) <= list(I),do(B)
app(I, E1, Es) \ list.do(I) <= list(I),do(F1),do(Es)



In the case of specialization, the propagation only happens in those cases matched
by the semantic functions.

var(I,"nil") \ list_do(I) <= list(l)
app(I, X, E2),app(X,V, E1),var(V, "cons") \ list.do() <= list(I),do(F;),do(E>)

Here comes the trick: in the rest of the cases, the specialization cannot be applied.
We encode this by a simplification to L. This in turn starts the backtracking
procedure and tries another specialization or the default case. However, in order
to ensure that such a failure rule only applies when no other matches, we need
to assign the lowest possible priority, which we represent here by —oco.

list.do(I) <= L priority — oo

Using the same ideas, other specialization procedures could be devised. For
example, we could check some property on the fields, not only its shape. Or
we could defer failure, and thus backtracking, until some attributes are already
computed, and base our decision on those. However, the more complex matching
we do, the more convoluted and less modular our set of CHRs becomes.

6 Related and Future Work

One of the most important pieces in our translation from AGs to CHRs is the
handling of dependencies between nodes and attributes. Our rules dealing with
deps and do constraints can be seen as a constraint solver for scheduling attributes
of a specific AG. This contrasts with the classic trend of having just one algorithm
dealing with a subset of AGs.

Another proposal to schedule the attributes per specific AG is to use SAT
solving instead of constraint solving [3]. This approach is quite useful when the
end goal is to produce a strict evaluator for an AG which minimizes the number
of tree traversals. In our CHR translation, however, the notion of traversal is not
present, since we flatten the tree beforehand.

Our translation deals only with AGs defined by semantic functions. This
results on CHR guards composed only of equalities. However, we can lift this
restriction and deal with semantic relations instead. This moves us closer to
relational attribute grammars [5]. We want to explore this relation in future
work, as a way to unify the approaches of bidirectional and constraint-based type
systems.

The CHRs resulting from our translation can be easily combined and extended,
as shown in § 3.3. This property holds even when higher-order attributes are
present. It is not clear, though, how modular and extensible specialization and
look-ahead are. As future work we plan to compare our approach to others such
as the AspectAG system [20] or the fold Haskell package.
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