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Abstract

Customizable type error diagnosis has been proposed as a solution to
achieve domain-specific type error diagnosis for embedded domain
specific languages. A proven approach is to phrase type inferencing
as a constraint-solving problem, so that we can manipulate the order
in which constraints are solved, and associate domain-specific type
error messages with specific constraints to be communicated to the
programmer in case type checking fails. A major challenge in this
area lies in scaling this idea up uniformly to a fully-featured (func-
tional) language, that is, languages that go beyond the polymorphic
A-calculus.

In this paper, we show how within the general framework Con-
straint Handling Rules we can achieve such uniformity and gen-
erality, while at the same time providing the necessary type error
customizability in a natural way. A proof-of-concept implementation
is provided for a Haskell-like language, including support for type
classes, GADTs and higher-ranked types. However, our approach ap-
plies to any language for which a constraint-based non-backtracking
formulation of the type system is available.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications — Constraint and logic languages;
D.3.4 [Programming Languages]: Processors — Compilers

Keywords Constraint Handling Rules, domain specific languages,
custom error messages, type errors

1. Introduction

Type error customization, in whatever form, is an essential ingredient
to support domain-specific type error diagnosis for embedded
domain-specific languages. Domain-specific languages (DSL) are a
widely used technique to solve problems in a particular domain in
an effective way. DSLs can be either external, with its own tooling
(Voelter|2013), or embedded, in which case the DSLs is embedded
in a general-purpose host language (Hudak|1996)). From the point
of view of the host compiler, an embedded DSL is merely a library.
Because of this, the host language compiler has no understanding
of the domain, and will not be able to phrase type error messages
in domain terms, leaking details of the encoding of the DSL into

[Copyright notice will appear here once *preprint’ option is removed. ]

the host language in type error messages, putting users at a serious
disadvantage (Hage|2014).

The diagrams library| | is a DSL for describing drawings
and animations embedded in Haskell. Its fundamental type is
®Diagram b v n m where b refers to the drawing backend
(like SVG or PDF), v to the vector space, e.g., V2 and V3 (so
it can deal with 2D and 3D pictures in a uniform way), n to the
numeric type for coordinates (like Double or Integer), and m to
the type of annotations. Each of these parameters describes a very
(domain-)specific aspect of a drawing.

Most drawing combinators impose restrictions on the combina-
tions of parameters that can occur. One such combinator is

atop :: (OrderedField n, Metric v, Semigroup m)
= QDiagram b v n m — QDiagram b v n m
— @QDiagram b v nm

which puts one picture on top of the other, as long as they share the
same backend, vector space, and so on. If only the vector spaces of
the two arguments to atop differ, we can add to the default message

Couldn’t match expected type ’V2’
with actual type ’V3’

a domain-specific diagnosis of the problem

‘atop‘ cannot combine diagrams from
different vector spaces

Customization is also extremely helpful in education. During
practice sessions, we can provide students with more context by
referring to particular pages in the lecture notes, by restricting
the applicability of very general libraries to specific use cases
(reminiscent of the language levels in Racket (Tobin-Hochstadt
et al.|2011) and the Helium compiler (Heeren et al.|2003)), or by
contextualizing the message based on knowledge of the assignment
they are working on.

In this paper we present a general methodology to support
context-dependent custom error messages for a fully-featured (func-
tional) language. The only requirement for the analysis is to be
organised as a constraint-rewriting process (§ 3). This means it can
be applied to, e.g., the type system implementation of the Glasgow
Haskell Compiler (GHC) (Vytiniotis et al.|2011) and Apple’s Swift
compiler (Swift Team/|2016).

In a constraint-based compiler, the solving order needs not be
dictated, which reduces the bias inherent in standard substitution-
tracking algorithms such as Algorithm W (Lee and Y11998 |[Hage
and Heeren|[2009). Although, the issue of bias has been addressed
in the literature, many specifications and implementations of more
advanced type systems still suffer from it. For example, keeping a

! Available at http://hackage.haskell.org/package/diagrams
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global substitution for the entire solving process inherently bias the
process towards the constraint leading to the substitution.

Buckets provide a way to assign custom error messages to
failure scenarios by encoding the error diagnosis structure related
to a set of constraints. Buckets also influence the order in which
solving proceeds, which in turns helps in localizing error messages.
By gaining control of the order in which solving proceeds, the bias
problems are overcome. It is now the DSL author who chooses the
priority on blaming, and not the compiler.

Throughout the paper we make use of Constraint Handling Rules
(5 2) — CHRs in short. We have decided to present our techniques
using CHRs, because they provide us a well-understood language
with clear syntax and semantics. The ideas, on the other hand, are
not restricted to this formalism, and can be applied to any non-
backtracking constraint rewriting formalism that supports priorities.
The use of CHRs does ease the integration with other techniques to

improve general error diagnosis (§ 5| 7).

In short, this paper offers the following contributions:

e We provide a technique to assign custom error messages and
control constraint solving order, integrating earlier approaches
of type inference directives (Heeren and Hage|2005) and GHC’s
special TypeError constraint (Diatchki[2015). We do so in the
context of Constraint Handling Rules.

e We illustrate the viability of our contribution by applying our
ideas to a small Haskell-like language. In addition, we have
implemented a prototype for a larger language featuring GADTs
and higher-rank polymorphism.

Non-goals. Our work provides a ground base which programmers
can use to improve the quality of error reporting when developing
domain-specific languages. It is not possible for us to directly
evaluate how better error messages become, since they depend
on the DSL author. If such a person decides to make type error
messages less useful by always returning the text “You made a type
error somewhere in your program but [ won’t tell you where”, then
there is nothing we/the underlying machinery can do about it.

Although in we present some syntax for integrating our
technique in a Haskell-like language, this is only for illustration
purposes. Clearly, the programmer must inform the compiler about
the domain-specific information. But how to do so (syntax, same or
different file) is not prescribed by our technique.

2. Constraint Handling Rules

Constraint Handling Rules (CHRs for short) form a high-level,

declarative language originally designed to describe constraint

solvers and simplifiers (Friihwirth|2009). The programmer specifies

a set of rules which describe how to rewrite sets of constraints. The

CHR engine then applies those rules exhaustively; the resulting set

of constraints is thought of as the solution of the constraint problem.
The language of CHRs has three kinds of rules:

H" <= g | B simplification
H* = ¢ | B  propagation
H* \ H" <«<= ¢ | B simpagation

In each case, H k, H" and B are sets of constraints, called the heads
and the body respectively. We use T to represent an empty set
of constraints. In order for a rule to be applied, some constraints
from the current set must match the heads, and the guard g must be
satisfied. Rewriting depends on the kind of rule: with simplification
rules the constraints H" are replaced by B, in propagation rules the
constraints B are added to the set but H* are kept. Simpagation
rules are a generalization of both: H* constraints are kept and H”

are removed. In fact, we can see any CHR as a simpagation rule
where the heads might be empty.

CHRs are applied non-deterministically. For a given initial
constraint set, many different sequences of applications of rules
are usually possible. The rule writer is responsible for guaranteeing
confluence, that is, to ensure that the final result of a CHR query
does not depend on the order in which rules are applied.

To illustrate how CHRs operate, we provide a simple example
to find the largest number in a set S. There are two kinds of
constraints: in(n) says that the number n belongs to S, and max(n)
to represent that the largest observed number is n. The initial state
is {in(n) | n € S} U {max(—o0)}. We need only one CHR:

in(n) \ max(m)

For S = {1, 3,2}, the initial state is in(1),in(3), in(2), max(—o0).
Non-deterministically, the solver may choose in(1) and max(—oo)
to apply the CHR to. Since the guard, 1 > —oo, is true, max(—oo)
is replaced by max(1). Since max has changed, it may try in(1) and
max(1) again; now 1 > 1 is false, so the rule does not apply. Note
the importance of using > instead of > to ensure termination. The
CHR solver may continue with in(3) and max (1), which leads to the
replacement of max(1) with max(3). Finally, max(3) is matched
with every other in constraint, but since no number is higher than 3
the solving process stops.

< n>m | max(n)

2.1 Rule priorities

Sometimes the soundness of a constraint solving procedure is only
guaranteed if some rules are known to be applied before others. In
other scenarios, control of the order in which CHRs are applied is
necessary to increase performance. To achieve more control over
the order rules are applied rule priorities have been added to the
CHR language (De Koninck et al.|2007). In this case, rules have the
general form:

H* \ H"

The expression in e might involve information from the constraints
in the heads, giving a great degree of control. The CHR engine
then guarantees that applications of a rule with a higher priority are
preferred. When more than one rule has the highest priority, the
choice is again non-deterministic. Any ordered set can be used for
priorities. In this paper we use natural numbers, where 0 has the
highest priority and higher numbers represent lower priorities.

An example of the use of priorities is Dijkstra’s shortest path
algorithmﬂ We have three kinds of constraints: edge(A, B, n)
describes a directed edge between nodes A and B with a weight
n and source(A) states the starting point of the search. At the end,
the constraint set is enlarged with dist(B, n) describing the shortest
distance n found from the source to B.

< g | B priority e

source(A) < dist(A,0) priority 1
dist(B,dy) \ dist(B,d2) <= dy <ds | T priority 1
dist(B, d),edge(B,C,w) = dist(C,d + w) priority d + 2

The priorities ensure that the edges are visited as Dijkstra’s algorithm
requires, without the need for any intermediate data structure. Note
that the priority of the last rule depends on the value d encoded in its
head. This ability shall prove itself helpful in the following sections.

3. Type inference using CHRs

Many analyses in a compiler are described via a type system,
which assigns types to each construct (expression, declaration) in a
program. The usual goal of a type system is restricting the kinds of

2 This example is taken from (De Koninck et al.[2007).
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Unif. variables e a,p...

Skolem variables € a,b,...

Type constructors e F,G,...

Type variables v, w = ala

(Mono-)Types o = v |1T—=p | Frn... T

Constraints Q = T=p

Type schemes o = YaQ=r7

Term variables e =z f9, ...

Data constructor e FG,...

Expressions e u= Variable
| Az.e Abstraction
| e1 ez Application
| casee {

F¢£L‘1 P e A
} Pattern matching
Environments r == €el|z:0T

Figure 1. A-calculus with pattern matching

behavior which are allowed at runtime. As the slogan says: “well-
typed programs do not go wrong”.

A traditional way to structure a type engine, the piece of software
which checks adherence of a piece of code to the type system, is
to traverse the Abstract Syntax Tree (AST) representing the code,
performing some computation at each step. This path is taken by the
classical WW and M implementations of the Hindley-Milner type
system (Damas and Milner|1982; [Lee and Yi[1998). However, these
syntax-directed algorithms are known to introduce some problems
related to error reporting, in particular a bias coming from the fixed
order in which they traverse the tree (McAdam|1999).

As motivated in the introduction, we choose instead to use
constraints as the central component of our type engine. In a first
phase the engine traverses the AST to gather the constraints that
the assigned types must satisfy. Afterwards, a dedicated constraint
solver is called, giving us back either a type assignment or a type
error if the constraints are found to be inconsistent. This pipeline of
gathering and solving is repeated per top-level binding in the source.

A constraint-based approach to typing is shown by Heeren et al.
(Heeren et al.|2003; [Heerenl2005)) to be a good choice for better
error diagnosis. The main reason for its aptness is that these systems
do not impose a strict order on the whole process. Furthermore, once
all constraints are gathered, the solver may have a more holistic view
on the structure of the program. For example, it may decide to show
a different error for a given identifier based on its use sites.

The main disadvantage of constraint-based approaches to typing
is its performance. If a faster alternative is available, it can be used
until an error is signalled. When an inconsistency is found, we go
back to the constraint-based formulation. But we do not need to
re-run the whole process: we just need to apply the constraint-based
pipeline to the last top-level binding. This way we reach a good
balance between performance and error diagnosis.

3.1 Constraint gathering

Constraint gathering is usually a syntax-directed process which
traverses the code top-down with information about the environment
and builds a set of constraints while going bottom-up. This process
is represented as a judgment I" - e : 7 ~» C, where the environment
I" and the expression e are taken as inputs, whereas the type 7 and
the constraint set C' are obtained as outputs.

As a running example, we shall use the A-calculus with pattern
matching given in[Figure 1] This language is very similar to that used
in the OUTSIDEIN(X) typing framework (Vytiniotis et al.|2011).
Note that elements in the environment are typed with a scheme,

z:Va.Q=r1€el @ fresh

Fkz:la=alr~ [a—alQ

« fresh z:a,l'Fe:7~C

I'Xee:a—717~C

ABS

o fresh T'Fei:m ~Cy I'kFez:m~Co

APP
F}—eleziaWC1,Cz,7‘1 =79 — &
3,7 fresh I'Fe:T~C
foreach Fi z1 ... zm — e; With F} : Va.7; — Fa,
zj:la=A)m, T e pj~ Cj
CASE

Phcasee {Fiz1 ... xm — €}
B~ C,Chp5 =6, T=F7

Figure 2. Constraint gathering for A-calculus

which admits quantification and local constraints. Thus, we can
have functions in the environment such as id : Va.a — a. We just
focus on the expression language here, an actual language would
include signatures and declarations to introduce those type schemes.

The constraint gathering judgment for this language is given
in[Figure 2] In the case of a term variable, we need to freshen the
variables in the type scheme before returning its type (remember that
the judgment assigns a type to every expression, not a type scheme).
In the case of abstraction and application, we just need to build or
check the types based on its subexpressions. The most complex case
is pattern matching, in which for every branch we need to build
a new environment based on the type of the data constructor; at
the end we need to check that the expression we match upon is
compatible with all the patterns, and that the return types p; of all
branches are equal.

3.2 Implementing unification

Once constraints are generated, we give them to the solver, which
either succeeds or fails if the constraint set is inconsistent. When the
run is successful, it returns a fype assignment, a mapping from type
variables to types. Using that information we can assign a type to
each expression in the program.

The constraint language we have introduced for the A-calculus is
enough to describe type assignments. We just need to ensure that in
case of successful completion, all constraints are of the form o = 7,
where « is a type variable and 7 its assigned type, representing an
idempotent substitution.

Most CHR implementations have a built-in unification operation.
Although it is certainly the way to get the most performant imple-
mentation, it it at odds with our goal to achieve custom type error
messages. The reason is that unification, as implemented in those
engines, is a global operation, which might affect all constraints in
the set. In contrast, we need certain type equalities to be visible only
to a subset of the other constraints.

Our unification algorithm is given in[Figure 3] It is similar to the
algorithm given in (Martelli and Montanari||1982)). Both algorithms
check for syntactic equality and decompose terms (in this case, terms
are those types headed by constructors). We signal an error whenever
the type constructors do not match or the number of arguments differ.
As usual there is an occurs check to forbid infinite types.

The main difference between the algorithm of Martelli and
Montanari and ours lies in the handling of substitutions. Martelli and
Montanari apply a global substitution when an equality of the form
v = 7 is found. Our algorithm does not thread substitutions to all
other equalities at once, but one at a time. However, this has a caveat:
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equalities with cyclic dependencies, such as a = 3, 8 = «, loop
indefinitely. The solution is to impose an arbitrary ordering < on
variables so that in every equality the smaller variable always comes
first (Bachmair and Tiwari|2000). We call this step orientation. We
extend the < relation to all types by mandating type variables to be
always smaller than types headed by a constructor.

Given a set of type equalities, if the solver returns a residual
constraint set with no fail constraint, this resulting set can be
turned into a type assignment. First of all, no equality of the form
F 7 = G p is present, because one of the three decomposition rules
would match otherwise. Thus, we are left with just constraints of
the form v = 7. Furthermore, orientation and substitution ensures
that the obtained type assignment is acyclic, or otherwise the occurs
check would have produced a fail constraint.

3.3 Modeling type classes

Constraint Handling Rules have been used to explain how some
programming language features work. In particular, the theory
behind Haskell’s type classes with functional dependencies has
been modelled in this language (Sulzmann et al.|[2007; Dijkstra
et al.2007). We recap here the main ingredients, and highlight
the changes needed to integrate with our unification procedure. In
Haskell, type class features appear in three different places: type
class declarations, class instance declarations and type schemes.

During type checking, the question is whether a type 7 is an
instance of type class C. We also say that 7 belongs to class C. In
our CHR world, we represent it using a constraint inst(C, 7).

First of all, we have class declarations, whose purpose is
to introduce a type class C' to the compiler. A type class may
define superclasses D1, . .., Dy which every instance of C' must
implement. Haskell’s syntax for these declarations is:

class (D1 7,... D7) = C T

In Haskell each type class come with an associated set of methods.
In this paper we are only interested in the typing perspective of type
classes, and thus omit further discussion of that topic.

Every declaration gives rise to a CHR rule. If we know that 7 is
an instance of C, then it must also be an instance of D1, ..., D,,.
Otherwise, the instance does not satisfy its superclass constraints.
We can express this relationship via a propagation rule:

inst(C,7) = inst(D1,7),...,inst(Dy,T)

The second kind of declarations are instance declarations. In-
stance declarations state that a given type 7 is an instance of a type
class C'. The membership can be conditional on a context, that is, on
instances of subparts of 7. Furthermore, these declarations introduce
a notion of unicity: 7 is an instance of C'if and only if the context
holds, there is no other way to make inst(C, 7) holdﬂ Haskell’s
syntax for instance declarations is:

instance (D1 p1,..., Dim pm) = C T
Each of these declarations is expressed as a CHR:
inst(C,7) <= inst(D1,p1),...,inst(Dm, pm)

As an example, Haskell’s Prelude contains an Eq type class repre-
senting types with decidable equality. The instance for lists [7] is
only available if there is an instance for the element type 7.

inst(Eq, [T]) < inst(Eq,T)

Remember that in our CHR implementation, unification is not
global, but rather we need to apply substitution constraint by
constraint. In the algorithm in[Figure 3|substitution is only threaded
to other type equalities. We need a new rule to apply a substitution

3 If this restriction is relaxed, we speak of overlapping instances.

also over instance constraints:
v=r1\ inst(C,p) <= v € fv(p) | inst(C,[v— 7]p)

In general, for every kind of constraint we have in our system, we
need an explicit substitution rule. Implementors must be careful to
ensure that substitution happens after orientation. Otherwise, cyclic
dependencies between variables may cause the CHR solver to loop
indefinitely.

Instance constraints also appear in type schemes. For example,
the equality operator (=) uses the previously introduced Eq class:

(=) ::Va. Eq a = a = a — Bool

We do not have to make any changes to accommodate for them,
since our VAR rule in the gathering phase already allows any kind
of constraints in schemes.

3.4 Recalling error conditions

We have seen how CHRs give us a unified language to discuss differ-
ent compiler analyses. However, right now our failure mechanism is
very primitive: just a special constraint fail. We would like to recall
at least, which was the constraint that failed, so that the compiler
may report something else than “your program is ill-typed”.

In order to do so, we introduce a first transformation over CHRs.
This will be a general scheme in this paper: a simple CHR system is
progressively changed to account for new information.

In this case, we account for a constraint being part of an
inconsistent set. Every time a set of constraints C' leads to failure,
we rewrite them to fail(C'). If we are in the other scenario, because
either the whole constraint set is satisfiable or the failure has not
been found yet, the constraint is stated as ok(C').

Only if all constraints involved in a rule are still not involved in
a failure, that is, they are all ok, we can apply a rule. Furthermore,
the resulting constraints are still considered OK for solving. Thus,
we need to transform all CHRs rules:

k k
Hy,...,H, \ Hi,..
into corresponding rules:

ok(HY),...,ok(HEF) \ ok(HY),...,ok(H})
< g | ok(B1),...,0k(Bm)

There is one exception: if in a rule we previously generated the
fail constraint, we recall where the problem was. In that case, the
transformation is from:

k k
HY,...,H, \ Hi,..
into a CHR with annotated constraints:

ok(HY),...,ok(HF) \ ok(HY),...,ok(H])
< g | fail({HT],..., H}})

The new rule has the same effect as the original with fail, because it
disallows the H" constraints to be used in further rule applications.

Note that this transformation does not change in any way which
and when a set of constraints may interact using a specific rule.
In addition, no rule applies to fail constraints, as usually happens
with L in CHRs. Thus, confluence and termination properties of the
original set of CHRs are kept in their transformed version.

A simple improvement is to directly generate type error messages
in the rules. We introduce a variation of the fail constraint, now with
two arguments: one for the failing set of constraints, and one for the
message. For example, we can report on unification failing because
of different constructor heads with the rulef]

fail({F 7 = G p})
<= fail{F 7 = G p}, "Diff. constructors" F "and" G)

wH; < g | Bi,...,Bn,

L H] <= g | fail

4 We assume that string concatenation is built in the CHR language.
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v=m1 \ v="
v=T \ w=p

T=T <

Fn Tn:Fpl . Pn <
Fr ™m=Fp1 ... pm <
Frm Tn:Gpl . Pm <
v=FT <<=

T1 = T2 1

<

<~

T1L = P1y-+-3Tn = Pn
n#m | fail
F£G | fail
vefv(T) | fail
T2 < T1 | T2 = T1
| T1 = T2
|

w=[v—Tlp

Figure 3. Unification as CHRs

With these changes, error reporting becomes part of the CHRs.
This is important for our further developments, since now our trans-
formations can depend on the presence of specific fail constraints to
highlight the errors in the process. Note that this addition does not
pose a threat to termination, since at most one step more per each of
the fail constraints, which form a finite set.

4. Context-dependent custom error messages

The combination of error reporting constraints with rule priorities
gives us a first recipe for custom error messages. In short, just
override the generation of the two-argument version of fail for a
specific constraint with a higher priority rule.

For example, we can give a custom message when the error
involves a list. We need to handle the two symmetric cases.

fail({r = [p]}) < fail({r = [p]},"A list was expected")
fail{[p] = 7}) <= fail({[p] = 7},"A list was expected")

This approach is not fine-grained enough for neither education
nor DSL purposes. Following the same example, the explanation
of why we needed a list value is very different depending on the
context in which such a constraint appears. When a student writes
the following:

map (Ax — z*x) 3
we could report as error:
The second argument to ‘map‘ must be a list

The example given in the introduction and featuring a drawing DSL
is another example in which an error message can greatly benefit
from customization based on the context in which it occurs. We only
know that V2 and V& represent vector spaces because they occur
within a call to atop.

Given the usefulness of context-dependent error messages, we
embark in a journey to support them in our system. A first approach
is to move the messages from rules to constraints (Wazny|2006).
The idea is that when a constraint leads to an inconsistency, the
custom message is shown instead of the default one.

In order to account for this extra piece of information, we extend
the ok constraint with a second argument, the error message. If
the constraint leads to failure, we move this message as second
argument to the corresponding fail constraint. For example, for the
decomposition rule in unification:

ok(FT =G p,msg) <= F#G | fail({F 7 = G p}, msg)

This new variation of ok constraints is generated during the con-
straint gathering phase.

The reader could surely think of dozens of different syntaxes to
link constraints and error messages. As an example, we extend the
syntax of our type schemes, optionally attaching a message to each
of the constraints. The signature of map looks like:

map :: Vfnlst a b e.
fn=a— berror "1st. arg. should be a fn."
Ist = [e] error "2nd. arg. should be a list"
a=-e error "Fn and list do not coincide"
= fn — Ist — [b]

Given that type signature, an application of map generates:

ok(fn =a — b, "1st. arg. should be a fn.")
ok(lst = [e], "2nd. arg. should be a list")
ok(a = e, "Fn and list do not coincide")

4.1 Combining sets of constraints

In order for the presented scheme to apply, we need to describe a
transformation that works for every possible CHR. The previous
decomposition rule is just a very special case: only one constraint is
consumed and the body is failure.

When the output is not a failure, it seems reasonable to propagate
the error message to the newly produced constraints. Otherwise, the
message is lost after one step of solving. One example of such a rule
is given again by decomposition in unification, where we produce a
new constraint per argument:

ok(F11 ... 7« =G p1 ... pn,msg)
<= ok(m1 = p1,msg),...,0k(Th = pn, msg)

This is the furthest we can take this idea, though. If the head contains
more than one constraint, it is definitely not clear how to propagate
the message. Take the substitution rule,

ok(v=7,m1) \ ok(w=p,me) < ...

The body of the rule has to generate a messages from m and ms.
We have three options: (1) we can use one of the messages, but
in that case we are biasing the message to be shown, (2) we can
concatenate both messages, but in large programs this might lead
to huge messages which do not help the programmer, or (3) we can
simply drop the message, in which case we lose information.

Even if we suppose that the messages are combined in the right
way, DSL writers still do not have enough control over the solving
process. This lack of control is due to the non-deterministic nature
of CHRs, which might decide to apply matching rules in any order.
If we take three constraints which form an inconsistent set,

a=Int o= Bool o= Char

the type engine could take pair of those and signal an error. Thus,
we have three possible messages:

Different constructors ‘Int‘¢ and ‘Boolf
Different constructors ‘Int¢ and ‘Char‘
Different constructors ‘Bool‘ and ‘Char

This highlights that in order to have control over the error expla-
nations, it is not enough to attach custom messages to constraints.
We also need to think about what to do when several constraints are
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combined, and how to influence the order in which constraints are
considered by the type engine.

These problems are related to that of constraint blaming. Given a
set of constraints known to be inconsistent, you want to point out a
subset of those which can be held responsible for the inconsistency
(Stuckey et al,[2006; Rahli et al.|[2010; Zhang et al.|[2015). In
particular, you want to make this subset as informative as possible.
Even though the techniques developed for blaming can be used to
enhance error reporting, we believe that customization works better
for the scenarios we want to support.

4.2 Introducing error buckets

We have seen that attaching custom messages to the constraints
themselves does not work as expected for reporting. Our solution is
to detach these two pieces of information: on one hand constraints
are again seen as simple sets, and on other hand we have information
about ordering and custom messages. More precisely, constraints
are categorized into nested buckets, each of them holding an error
message. This nesting structure gives us an ordering according to
which constraints ought to be considered by the type engine.

Let us go back to the example of map from the beginning of
the section. The bucket information for that function is depicted
in The picture tells us that the type engine should first
consider the constraints regarding fn being a function, and those
regarding /st being a list, independently from each other, since they
are in different buckets. If in any of those branches an inconsistency
is found, the message leading its bucket is reported (it is possible
that both are reported, too).

When any possible rule has been applied to the constraints over
each argument, then the remainder constraints are allowed to interact
between themselves and with the extra a = e equality. This is done
now under the umbrella of the outer bucket, so if an inconsistency
is found at this stage, then the message to be reported is "Fn and
list do not coincide".

A nice property of error buckets is that once the solver gets to a
certain bucket, it can safely assume that all nested constraints have
completely been solved. Thus, some assumptions can be made about
the state of solving at that time. In our example, we know that once
the solver reaches the top-level bucket, either we have found an
error, or we know that fn is indeed a function.

Definition. A set of constraints with buckets is a triple (Q, B, k):

® () is a set of constraints.

¢ B is a set of buckets which form a rooted tree. That is, each
bucket b has a single parent bucket, except for the root A.

® x : () — B assigns a bucket to each constraint in the set.

The conditions over B allow us to define a partial order b1 < b,
which holds if b2 is an ancestor of b1, and an operation by U b2,
which finds the nearest common ancestor of both buckets. It holds
that b < fR for all buckets b.

Note that in this definition we do not have any information
about error messages. Inside the compiler, we assign to each bucket
label a certain error message, which is the one to be shown to the
programmer. However, during the solving process, the only relevant
information is the initial bucket and the ordering between them.

We lift the bucket assignment operation to sets of constraints:

) = || #(a0)

The bucket reported by « is the smallest one which contains all
constraints. This gives us a precise answer to our question of how to
combine the error messages (now, buckets) for several constraints:
just take the U of their corresponding buckets.

k{q, ...

The ordering imposed by buckets needs to be taken into consid-
eration during CHR solving.

Definition. Let () be an inconsistent set of constraints with bucket
k(Q). We say this set is minimal if there is no constraint ¢ € @ that
appears in another inconsistent set Q" such that £(Q’) < k(Q).

This minimality condition tells us we can only report an inconsistent
set Q if none of the constraints in ( is involved in another error in a
nested bucket. Note that for a given (set of) constraints, there can
be more than one minimal set in which they are involved. In those
cases, the usual error reporting mechanism built in the compiler is
responsible for choosing one.

4.3 Implementing buckets using CHRs

Given a set of CHRs, we accommodate buckets by a transformation
similar to Each constraint is now wrapped within ok or fail,
depending on whether or not it has been found to be inconsistent.
This wrapper includes a second argument which says in which
bucket solving must take place.

Furthermore, we need to encode the relation between each
bucket and its parent bucket. We do so by means of a new kind
of constraint bucket—parent(c1, c2), which establishes that ¢ is
the parent bucket of c;. We assume that the root bucket is named .

The constraint gathering process must be informed of the bucket
in which each constraint must be generated. One possibility is to
enlarge the language of type signatures. In the case of map, this
variation looks like:

map fn lst
:: bucket "Fn and list do not coincide" {
bucket "1st. arg. should be a fn." {
constraints fn,fn =a — b
},bucket "2nd. arg. should be a list" {
constraints Ist, Ist = [e]
}, a = e, result = [b]

Using the same syntax, the bucket structure for the atop function
from the introduction is given in[Figure 3

A more flexible approach is to have specialized type rules which
are triggered by the presence of certain kinds of expressions (Heeren
et al.||2003). An advantage of this approach is that the choice of
bucket may depend on the typing context of the expression (Serrano
and Hage|2016). Regardless of the mechanism chosen to generate
constraints, we assume that at the end of the gathering process all
constraints are annotated with their bucket, and bucket parents are
encoded as explained above.

Our implementation uses bubbling as a mechanism to guide
solving. In short, we only allow constraints in the same bucket to
interact. When we are sure that no more rewriting can be done in a
given bucket, we “bubble up” the remaining constraints to its parent.
This allows interaction with constraints in sibling buckets.

As in[§ 3.4] we only apply a rule if all constraints are still wrapped
in ok. The novelty is that they must all live in the same bucket b,
which is then propagated to the bodies. A general CHR of the form:

k k
Hy,...,H, \ H{,...,H, <= ¢ | B1,...,Bm
is transformed into:

ok(HF,b), ..., ok(HE b) \ ok(H,b),...,ok(Hj,b)
< g | ok(B1,b),...,0k(Bn,b)

We stress the difference with the beginning of here the problem
of flowing information from several heads does not appear, since we
force everything to happen on the same bucket.

2016/11/28



bucket Fn and list do not coincide

a=¢e

/\

constraints for fn  fn=a — b

bucket 1st. arg. should be a fn.

bucket 2nd. arg. should be a list

/\

constraints for lst  Ist = [e]

Figure 4. Error buckets for map fn Ist

atop d1 d2
:: bucket "Space prerrequisites are not met" {

bucket "‘atop‘ cannot combine diagrams with different annotation types" {
bucket "‘atop‘ cannot combine diagrams from different coordinate types" {
bucket "‘atop‘ cannot combine diagrams from different vector spaces" {
bucket "‘atop‘ cannot combine diagrams from different drawing backends" {
bucket "First argument to ‘atop‘ is not a diagram" {

d1 = QDiagram b1 vl n1 ml

},bucket "Second argument to ‘atop‘ is not a diagram" {

d2 = @QDiagram b2 v2 n2 m2
}, b1 =02
Hovl =02
},nl =n2
},m1 =m2
}, OrderedField n1, Metric v1, Semigroup ml
}, result = QDiagram b1 vl nl ml1

Figure S. Type signature with bucket information for atop d1 d2

When the rule ends in an error condition, a slight modification
is needed. Instead of ok constraints, we recall the error in a fail
constraint. The question on which bucket to report is now settled: if
we detect the inconsistency when all constraints are currently living
in bucket b, this is the bucket to be reported. The transformation
takes a CHR of the form:

k k
HY,...,H, \ Hi,..
and turns it into:

ok(H¥,b),...,ok(HE b) \ ok(HT,b),..
<~ g | fail({HT,..., H},b)

With only these transformations, constraints in different buckets
would never be able to interact with each other. The only way for
constraints to interact is when they are in the same bucket, we
introduce a CHR to bubble them up:

bucket—parent(b1,b2) \ ok(Q,b1) <= ok(Q,b2)

That is, if constraint @ lives in bucket b; and by is its parent, then
(Q can be moved to bs.

Unfortunately, the previous rule breaks some of our guarantees
about buckets. Since CHR engines can non-deterministically choose
which rule to apply next, it might decide to move all constraints up
and up until they reach the root 2R and only then begin with the “real”
solving. But thanks to rule priorities, as introduced in§ 2.1] we can
schedule this rule to apply only when no other does. For example,
by giving priority 2 to the bubbling rule and 1 to the restE]

bucket—parent (b1, b2) \ ok(Q,b1) <= ok(Q), b2) priority 2

L H] < g | fail

., ok(H},b)

This is, however, still not enough, because we need to schedule
bubbling to happen in the right order. Consider this situation:

5 Remember smaller numbers mean higher priority.

e Constraint ()1 lives in bucket b1, and Q)2 in ba.
e by and b, are different, but have the same parent b.

e Bucket b is not the root, so it has a parent, say b’.

With the bubbling rule a possible trace of execution is that Q)1 is
bubbled up to b and then to b'. Because Q2 is in bz, no interaction
can take place. Then Q2 is bubbled twice too, to b’. At the end, Q1
and Q2 interact in bucket b’, but we wanted them to do so in b.

The solution is simple: bubbling of more nested buckets happen
before less nested ones. In this case, we must give priority to Q2
moving to b in contrast to Q1 moving from b to b’. We achieve so
by changing the priority of the rule depending on the bucket.

Definition. The height of a constraint b, denoted §(b), is the length
of the shortest path from the root R to b. More formally, we say b’
is an ancestor of b if either (1) b’ is the parent of b, or (2) b’ is an
ancestor of the parent of b. Then:

h(b) = #{b" | b is an ancestor of b}

where #S denotes the cardinality of a set .S.

The height of a set of buckets B, hs is defined as the maximum
height of any of its buckets. This corresponds to the height of the
tree representing the buckets.

The final version of the bubbling rule uses the nesting level to
prefer bubbling constraints lower in the tree over ones closer to the
root bucket. The constant 2 ensures that in any case bubbling has
less priority than rules from the type system.

bucket—parent (b1, b2) \ ok(Q,b1) <= ok(Q,b2)
priority 2 + b — b(b2)

This ensures that no constraint is moved from b; to its parent b
until all constraints that live in buckets nested inside b1 have been
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bubbled up. The combination of this fact with the only interaction
of constraints in the same bucket achieves the minimality condition.

Theorem 1. Given a set of bucket—parent constraints describing
a tree structure on buckets.

1. If the original set of CHRs is confluent, any two traces of the
modified CHRs starting with the same initial set also comes to a
equivalent state, modulo the buckets in the fail constraints.

2. If the original set of CHRs terminate for a given initial set of
constraints, the modified CHRs also terminate for it.

Proof. The key point is noticing that each trace of execution using
the modified CHRs corresponds to a trace of execution using the
original set, plus some applications of the bubbling rule.

We can only apply the bubbling rule a finite number of times,
corresponding to the number of nodes in the bucket—parent tree.
Thus, if the trace is finite with the original CHRs, it is so with the
modified. Hence, (2) holds.

On the same vein, given two traces of the modified CHRs starting
with the same initial set of constraints, the corresponding traces
using the original set must be equivalent, because of the confluence
of the original CHRs. In particular, if at the final state no fail
constraint is in the current set, the final states with the modified
CHRs must also be equivalent. In the case in which fail appears,
we cannot rule out the possibility of finding the inconsistency
on different moments. For that reason, the buckets appearing as
arguments in fail constraints might be different.

The other important property we want for our CHR implementa-
tion of buckets is minimality. That is, the inconsistent sets it finds
are always minimal. Alas, it is not possible to guarantee this fact in
general. The reason is that there might exist an inconsistent set of
constraints whose inconsistency is not detected (ever or at the right
time) by the rules. This refrains the modified CHRs from finding
the correct bucket to report.

Definition. We say that a set of CHRS is inconsistency-exhaustive
if given an inconsistent set of constraints as input, they are guranteed
to generate a fail constraint.

Theorem 2. Assume a given set of constraints with buckets and a
set of CHRs to which the transformation is applied. If the CHRs are
inconsistency-exhaustive, then every argument to fail is a minimal
inconsistent set.

Proof. Suppose that there exists an argument to fail, namely I,
which is not a minimal inconsistent set. Then there exists another
inconsistent set .J such that x(J) < (), but which has not been
found as such by the CHRs. This contradicts the definition of
inconsistency-exhaustive. O

4.4 Obtaining custom messages from buckets

A final step is to make our failure message appear directly as
the residual of rules. One additional fact is needed: the mapping
between buckets and messages, which we can keep as a new kind of
constraint, bucket—message(c, msg). The CHR

bucket—-message(c, msg) \ fail(Q,c¢) < fail(Q, msg)

replaces the bucket from the failure with the message associated to
that bucket. Once the message is set, we no longer need to recall
the bucket in which the inconsistency was found, and discard it.
Whenever an inconsistency shows up in the root bucket, R, and
we have no custom error message to give, then we use the default
compiler messages.

5. Custom messages for CHR rules

As mentioned in the introduction, our work is not the first in the
area of custom type error messages. Our framework can cope with
many of the previous approaches by reformulating them as CHRs.

GHC, since version 8, includes a facility for custom type errors
via the TypeError constraint (Diatchki |2015). Every time this
constraint is found during solving, the compiler shows the custom
message encoded inside of it, and enters an error state. One use case
is the flag erroneous instances of a type class:

instance TypeError "Cannot show functions"
= Show (a — b) where ...

Operationally, when the type engine is faced with a Show (a — b)
instance, it rewrites it to a TypeFError constraint. When it finds a
TypeError, the message is shown.

From the CHR perspective, the important part is to signal a
TypeError constraint as a fail. There is one choice to be made:
does the custom error message encoded in the TypeError take
precedence over the custom message coming from the bucket. If the
TypeError supersedes the current bucket, the rule reads:

ok(inst( TypeError, msg), c)
<= fail({inst( TypeError, msg)}, msg)

On the other hand, we might decide to take the bucket into account:

ok(inst( TypeError, msg), c)
<= fail({inst( TypeError, msg)}, c)

(note the difference in the second argument to fail). In this case, the
TypeError message is only shown if the constraint reaches the root:

fail({inst( TypeError, msg)}, R)
<= fail({inst( TypeError, msg)}, msq)

Along the same lines, more complex policies for dealing with the
precedence of messages can be developed. The important point to
get from this discussion is that our CHR machinery can encode the
operation of TypeError as found in GHC.

Several kinds of directives involving custom information about
type classes are described in (Heeren and Hage|2005). For example,
the never directive instructs the compiler that no instance of a
specific form may exist for a type class.

never Show (a — b) "Cannot show functions"

And the disjoint directive specifies that no type can be an instance
of two classes at the same time. In the Haskell world, Integral and
Fractional are examples of such a pair of classes.

disjoint Integral Fractional
"No type can be both integer and fraction"

The never directive is in fact very similar to the TypeError
one, and the solutions are similar to: as earlier, inst(Show,a —
b) should simply rewrite to an error. But instead of having an
intermediate step with TypeError, we go directly to fail:

ok(inst(Show,a — b), c)
< fail({inst(Show,a — b)}, "Cannot show functions")

The same discussion about precedence of the message of the direc-
tive with respect to buckets apply here. The rule shown is the one
corresponding to precedence of the never directive. Disjointness
can be encoded similarly as a CHR:

ok(inst(Integral, T), c), ok(inst( Fractional, T), c)
<= fail({...},"No type can be both ...")

The various examples of this section show a similar pattern.
First, we have a rule whose consequent is a fail constraint. In
other words, we can identify a constraint (or more than one) which
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are inconsistent. We want that rule to incorporate a custom error
message, usuallu coming from the definition of the rule from
programmer input. The solution is to have a custom Constraint
Handling Rule. This pattern was already described in Section
6.2 of (Wazny|2006). In that work, the underlying technique for
implementing type systems coincides with ours, CHRs.

None of the two approaches to obtain custom messages, namely
buckets and rules, are a generalization of the other. They are rather
complementary, in fact. Custom CHRs allow to express domain-
specific information which holds for every use of a certain type
or constraint, irrespective of its context or position in the AST.
Buckets information, on the other hand, is always generated for
specific expressions. The combination gives a powerful set of tools
to customize error messages, but some care needs to be given to
decide precedence of custom error messages from buckets with
respect of those from rules.

6. Implementation

We have used our techniques to support context-dependent error mes-
sages in a prototype Haskell-like language. The implementation is
available at https://git.science.uu.nl/£100183/quiquel

In addition to the type system features described in this paper,
our prototype also supports Generalized Algebraic Data Types (Xi
et al.[2003)) and higher-rank polymorphism. Both features have in
common the use of local reasoning, that is, solving constraints under
different assumptions. These different environments correspond, for
example, to different branches in a GADT pattern match.

Most compilers making use of local reasoning (Vytiniotis et al.
2011} |Sulzmann et al.|2006; |Pottier and Rémy|[2005) divide its
operation between a solving stage and a driver which takes care of
adjusting the environment in each case. This approach introduces
bias, e.g., when pattern matching on a GADT, the blame for a type
inconsistency is placed on the arms of the case statement, not on the
matched expression. Furthermore, it goes against our philosophy of
a single CHR-based resolution stage.

Our solution involves introducing annotations for each constraint
recording the environment in which they originate. The annotation
on a constraint mandates which other constraints they may interact
with, and whether variables need to be considered as unifiable or
as Skolem rigid constants. In that way, the restrictions imposed by
local reasoning are visible in the CHRs. As a result, an external
driver is no longer needed. In turn, this means that we can make use
of our technique for context-dependent type error messages even
when local reasoning is used. Unfortunately, due to a lack of space,
we cannot present here the procedure to annotate constraints and the
modifications needed for CHRs.

7. Related work

Customizable error messages. Apart from the work discussed in
a few other compilers provide the ability to change the default
error messages generated by the compiler.

In our system, customization is integrated with the analysis
itself: buckets guide the solving process and type errors detected
during solving influence the constraints in a bucket at a given
time. Another possibility is to post-process the output of the typing
process, (Plociniczak et al.[2014} Plociniczak|2016) takes the typing
derivation constructed by the Scala compiler which can then be
programmatically explored. In that way, common patterns can be
detected to produce domain-specific messages.

Post-processing has been applied in the context of the depen-
dently typed programming languages Idris (Christiansen[2014): in
that case the programmer can inspect the erroneous code and the
type error generated for it by means of reflection. If desired, the
default error message can be replaced by a custom message.

An approach based on post-processing has the advantage of not
requiring any change to the resolution process in the analysis, only
some form of instrumentation to generate the output. However, it
does require deep knowledge of the way the compiler represents
its analysis trace, which might change whenever a new version is
released. Moreover, it is not possible to influence the solving process
itself, something we can model by our use of buckets.

Other approaches to enhance error diagnosis. The problem of
giving informative and helpful messages when the compiler detects
an error has been approached from many other directions. We
discuss a few of the more recent advances below.

Several approaches work on a graph representation of the type
constraints. Heuristics geared to detecting particular kinds of mis-
takes, are implemented by traversing such a graph, in order to find
the most likely error from that inconsistent set of constraints. In
(Zhang and Myers|2014) Bayesian techniques are applied to OCaml
and a flow analysis, which is later extended in (Zhang et al.|2015)
to cope with the local reasoning needed in GHC. A representation
of type equalities called type graphs is used in (Hage and Heeren
20006)). In that case, heuristics are used to select which constraint is
to be blamed, and through that which type error message is returned.

Many approaches try to focus on giving one single location as
responsible for an error. Slicing however tries to inform the user of
every place in a piece of code which contribute to an inconsistency.
The aim is to give the programmer a complete view of the problem,
and remove any bias the solver may have to blame specific kinds of
problems or locations. Skalpel (Rahli et al.[2015} Haack and Wells
2004) is a type error slicer for Standard ML based on constraints.
Minimal unsatisfiable subsets are used in (Stuckey et al.[2006) to
provide smaller slices of the program which contribute to an error in
a Haskell program. The set of possible sources of an error can also
be narrowed using programmer interaction. This is the idea behind
type debuggers (Chitil|2001} Tsushima and Asai2013).

Counter-factual typing (Chen and Erwig|[2014) tries to keep
solving while keeping track of erroneous expressions found during
the process. In order to do so, it keeps different variations of the
typing derivations, and then extracts error messages from those
variations which lead to inconsistencies.

8. Conclusion and future work

This paper presents a techniques to integrate context-dependent cus-
tom type error messages into a type system implementation defined
using CHRs. The transformations are mechanical and impose no
conditions over the initial CHRs, so it is widely applicable.

One disadvantage of our method is that unification has to be
entirely based on CHRs. This is sound, but not rather inefficient.
We have already pointed out that this problem can be lessened
by only using the most expensive CHR-based solving when an
error is detected. Nevertheless, we want to explore other options, in
particular keeping track of a global substitution from which each
constraint only has a partial view. In our case, this partial view would
depend on the bucket holding the constraint.

For some type systems, such as Swift’s (Swift Team|2016),
backtracking is needed to explore different possible solutions. A
variant of CHRs, CHR" (Abdennadher and Schiitz| 1998 |[Koninck
et al.[2008) includes disjunction to deal with such scenarios. We aim
to explore which are the changes needed to integrate our techniques
into this larger formalism.
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