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ABSTRACT  

Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and 
monitoring RNA populations. Among the plethora of reconstructed transcripts, one of the main 
bottlenecks consists in correctly identifying the different classes of RNAs, particularly those 
that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we 
present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program which 
accurately annotates lncRNAs based on a Random Forest model trained with general features 
such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five 
state-of-art tools shows that FEELnc achieves similar or better classification performance on 
GENCODE and NONCODE datasets. The program also provides several specific modules that 
enable to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and 
to annotate lncRNAs even in the absence of training set of noncoding RNAs. We used FEELnc 
on a real dataset comprising 20 new canine RNA-seq samples produced in the frame of the 
European LUPA consortium to expand the canine genome annotation and classified 10,374 
novel lncRNAs and 58,640 new mRNA transcripts. FEELnc represents a standardized protocol 
for identifying and annotating lncRNAs and is freely accessible at 
https://github.com/tderrien/FEELnc. 

 

 

INTRODUCTION 

The development of high-throughput RNA sequencing (RNA-seq) has allowed the 
identification of many RNA species in different organisms such as in mammals (1-3), 
insects (4,	5) or plants (6,	7). Particularly, whole transcriptome sequencing shed light on 
the pervasive transcription of the genomes with messenger RNAs (mRNAs) only 
representing a small fraction of the genome, outnumbered by a vast repertoire of small 
and long non-coding RNAs (lncRNAs). LncRNAs, basically defined as transcripts 
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longer than 200 nucleotides and without any protein-coding capabilities, have been 
involved in many aspects of normal and pathological cells. From the pioneer discovery 
of the Xist lncRNA involved in X chromosome inactivation in placental females (8) to 
the more recent links between lncRNAs and cancers (9,	10), lncRNAs have emerged as 
key actors of the cell machinery with diverse modes of action such as gene expression 
regulation, control of translation or imprinting. 
Following RNA sequencing, the computational reconstruction of transcripts models 
either by genome-guided (11, 12) or de novo assembly (13) usually produces tens of 
thousands of known and novel transcript models. Among this wealth of assembled 
transcripts, it remains crucial to annotate the different classes of RNAs and especially to 
distinguish protein coding from non-coding RNAs. To this aim, several bioinformatics 
tools have been developed in order to compute a coding potential score (thereafter 
termed CPS) used to discriminate the coding status of the RNA gene models. Broadly, 
they can be divided into programs using sequence alignments either between species 
(14) or alignments to protein databases (15) and alignment-free software (16-18). The 
alignment-dependent methods, although very specific in term of performance, are often 
very time and resource consuming. For instance, the PhyloCSF program requires a 
multispecies sequence alignments to predict the likelihood of a sequence to be a 
conserved protein-coding based on the evolution of the codon substitution frequencies 
(14). It is thus dependent on the quality of the input alignments and may also be biased 
towards misclassifying species-specific or lowly conserved coding and non-coding 
transcripts (19). On the contrary, the alignment-free methods compute a CPS only 
depending on intrinsic features of the input RNA sequences. One of the main features is 
given by the length of the longest Open Reading Frame (ORF) (20,	21) where usually a 
transcript harbouring a long ORF will most likely be translated into proteins. However, 
the definition of the longest ORF can vary between programs especially when it 
involves the strict inclusion of either or both the start and the stop codons. This is 
particularly important to model since some transcripts from reference annotations and/or 
newly assembled transcripts are not full-length. For instance, the proportion of protein-
coding transcripts in the human EnsEMBL (v83) annotation (22) lacking a start codon or 
a stop codon is 10% (7,677/79,901) and ~25% (16,649/79,901), respectively. A 
complementary feature to discriminate mRNAs from noncoding RNAs is given by the 
relative frequency of oligonucleotides or k-mer (where k designs the size of the 
oligonucleotide). Some tools already used k-mer frequencies but are often limited to one 
or small k-mer (generally k <= 6) whereas longer k-mer could help resolving 
ambiguities by taking into account lncRNAs-specific repeats or spatial information for 
instance (23,	24). Finally, common to all methods is the lack of an explicit modeling and 
cutoffs definition for "non-model" organisms (25) for which it could be crucial to train 
the programs with species-specific data and to automatically derive a CPS cutoff which 
provide better discriminative power. 
Here we present FEELnc, for FlExible Extraction of LncRNAs, a new tool to annotate 
lncRNAs from RNA-seq assembled transcripts. FEELnc is an all-in-one solution from 
the filtering of non-lncRNA-like transcript models, to the computation of a coding 
potential score and the formalization of the definition of the lncRNA classes. As an 
alignment-free method, the program employs Random Forest (26) to classify lncRNA 
and mRNAs based on a relaxed definition of ORFs and a very fast analysis of small and 
large k-mer frequencies (from k = 1 to 12). We benchmarked FEELnc versus five 
existing programs (CNCI, CPC, CPAT, PhyloCSF, PLEK) using known set of lncRNAs 
annotated in multiple organisms (GENCODE for human and mouse (27) and 
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NONCODE for other species (28)), and showed that FEELnc performance metrics 
outperformed or are similar to state-of-the-art programs. We developed FEELnc to be 
used on “non-model”	organisms for which no set of lncRNAs is available by deriving 
species-specific lncRNA models which are shuffled from mRNA sequences and 
automatically computing the CPS cutoff that maximizes classification performances. 
FEELnc also allows user to provide its own specificity thresholds in order to annotate 
high-confidence sets of lncRNAs and mRNAs and to define a class of ambiguous 
transcript status. Finally, we produced 20 RNA sequencing dataset as part of the LUPA 
consortium (29) sampled from 16 different canine tissues and applied FEELnc to 
annotate 10,374 new lncRNAs and 58,640 novel mRNA isoforms. We also classified 
the new lncRNAs into 5,033 intergenic (lincRNAs) and 5,341 genic sense or antisense 
lncRNAs based on the FEELnc classifier module. The number of lncRNA transcripts 
detected by our data considerably expands the canine annotation providing an extended 
resource which will help to deciphering genotype to phenotype relationships (30). 
 
MATERIAL AND METHODS 

1. Datasets  
For the sake of reproducibility, all datasets and scripts made to generate the benchmark 
files are available in supplemental materials. 
Human long non-coding and protein-coding genes were downloaded from the manually 
curated GENCODE version 24 (EnsEMBL v83 on the GRCh38 human genome 
assembly) with the following biotypes “lincRNA”	or “antisense”	and “protein_coding”, 
respectively. From this initial dataset, we extracted 10,000 mRNAs and 10,000 
lncRNAs that were divided into two files for the learning and the testing steps (denoted 
HL and HT, respectively), each of these files contains 5,000 mRNAs and 5,000 
lncRNAs. Importantly, only one transcript per locus was extracted for all biotypes in 
order not to bias by introducing two isoforms of the same gene in both the HL and HT 
sets. For mouse, we used the GENCODE version M4 (EnsEMBL v79) and derived the 
learning and testing files (denoted ML and MT) as for human. Due to the lower number 
of GENCODE lncRNAs annotated in mouse compared to human, each file contains 
~2,000 lncRNAs and 5,000 mRNAs. For "non-model organisms", lncRNAs belonging 
to the antisense and intergenic classes (NONCODE codes 1000 and 0001, respectively) 
were downloaded from the latest version of the NONCODE database (NONCODE 
2016) (28) while mRNAs were retrieved from the EnsEMBL database (v84). A 
summary of the number of mRNAs/lncRNAs per species is available (Supplementary 
Table 1).  
Whole transcriptome sequencing of dog samples (n = 20) were generated in the frame 
of the LUPA consortium. The biological samples were obtained from the 
"Cani-DNA_CRB" (http://dog-genetics.genouest.org) and XXX biobanks. The dog 
owners consented to the use of data for research purposes anonymously. The 
sequencing libraries were constructed using paired-end stranded polyA selection and 
sequenced by HiSeq-2000 Illumina technology. The 20 samples correspond to 16 
unique tissues and 7 breeds (Supplementary Table 2) with about 50 Millions reads per 
sample. The RNASeq data is available in the short read archive (SRA) under NCBI 
bioproject PRJNA327075 and SRA accession SRP077559. 
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2. FEELnc coding potential predictors 

Among the three FEELnc modules, the second one aims at computing a coding potential 
score given the assembled sequences following transcriptome reconstruction. To deal 
with the incompleteness of ORF annotation where both the reference and the 
reconstructed transcripts may not be full-length, FEELnc can compute five types of 
ORF from the stricter "type 0" which corresponds to the longest ORF having both a start 
and stop codons, to the more relaxed "type 4" that is the whole input RNA sequence (see 
Supplementary Material for detailed description of the ORF types). Because the size of 
the protein-coding ORF is generally correlated with the length of the input RNA 
sequence, we used the ORF coverage, i.e. the proportion of the transcript size covered 
by the ORF, as the first predictor to discriminate mRNA/lncRNAs in the FEELnc 
model.  
The second predictor of FEELnc relies on the computation of the multi k-mer 
frequencies between mRNAs and lncRNAs. Biases in nucleotide frequencies and codon 
usage have already been described in the literature as important discriminative features 
between coding and noncoding RNAs (21,	31). Within the framework of FEELnc, we 
developed an extremely fast and exact k-mer counter called KIS (for K-mer In Short) 
that relies on the open-source GATB library (32). For example, KIS can compute all 6-
mers (hexamers) and 12-mers of the human GRCh38 genome assembly (n~3,1 billions 
k-mers) in ~2min and 2m51, respectively. Due to KIS high speed, a major contribution 
of this work was to be able to combine different list of k-mers including longer k-mers 
in order to better discriminate lncRNAs from mRNAs. In more details, we assigned a 
score for each k-mer based on the occurrence of all k-mers of size k in each predicted 
ORF sequences for both lncRNAs and mRNAs. The score 𝑆!!, similar to the one used in 
Claverie et al. in (33), is computed for each specific k-mer 𝐾of size 𝑘 as follow:	

𝑆!! =
!!
!

!!
!!!!

!"#, with 𝐹!! and 𝐹!!"#  the observed frequency of 𝐾 in mRNA ORFs and in 
lncRNA ORFs for the two training sets, respectively. Once the k-mer model is made for 
a size 𝑘, i.e. all 𝑆𝐾𝑘  have been computed, FEELnc associates a k-mer value 𝑉!!  for a 
sequence 𝑋 as follow:	

𝑉!! =
!!
!!!

!!! ×!!
!

!!
!!!

!!!
, with 𝑁!!  the occurrence of 𝐾  in sequence 𝑋 and 𝑁!!!!

!!!  the total 

number of k-mer of size k. Using this scoring method, one k-mer score is associated to 
each sequence for each k-mer size selected in the model. Note that the scanning of the 
predicted ORF sequences is done using a step size of 3 for the all sequences of the 
testing file and the mRNA learning file and 1 for the lncRNA learning file. 
FEELnc coding potential also uses the total RNA sequence length as a predictor of the 
model since lncRNAs are known to be significantly shorter than mRNAs (34,	35). For 
illustration purpose, a distribution of the FEELnc predictor scores with "type 3" ORF 
and multi k-mer scores with k in {1,2,3,6,9,12} is given in Supplementary Fig.1 
regarding the 5,000 mRNAs and 5,000 lncRNAs of the HL dataset. 
 

3. Random Forest classification and optimized coding potential cut-offs 

The aforementioned predictor scores are incorporated into a machine learning method –	
here Random Forest (RF) (26) - that computes a Coding Potential Score (CPS) for each 
input training transcripts. As also shown by others (36), RF often outperforms other 
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machine learning techniques especially due to the random sampling of features to build 
the ensemble of trees. In addition, our RF model could deal with imbalanced training set 
by down-sampling the majority class (most likely mRNAs in many organisms). In fact, 
the CPS in our RF model corresponds to the proportion of all trees (500 trees by 
default) which "vote" for the input sequence to be coding or non-coding. A proportion 
close to 0 will indicate a non-coding RNA and close to 1 for mRNA.  
To define an optimal CPS cut-off, FEELnc automatically extracts the CPS that 
maximizes both sensitivity (Sn) and specificity (Sp) performance (see performance 
section) based on a 10-fold cross-validation. Using the ROCR package (37), FEELnc 
provides user with a two-graph ROC curve in order to display the performances of the 
model and to visualize the optimal CPS (Fig. 1A).  
 

 
Figure 1: A) Two graph ROC curves for automatic detection of optimized CPS threshold and user specificity 

thresholds, the latter defines two conservative sets of lncRNAs and mRNAs and a class of ambiguous biotypes 
transcripts termed TUCp (Transcript of Unknown Coding potential). B) Sub classification types of intergenic 

transcripts/lncRNA interactions and sub classification types of genic transcripts/lncRNA interactions. 

 
 
Even if this approach aims at providing highest performances, it could sometimes 
misclassify transcripts whose CPS is closed to the optimized threshold (38). To take this 
into account, FEELnc allows fixing two minimal specificity cut-offs for lncRNAs and 
mRNAs (this approach is termed "2-cutoffs"). This naturally leads to the annotation of 
two high-confident classes of lncRNAs and mRNAs and also the definition of a third 
class of ambiguous transcripts (i.e transcripts for which the CPS is in-between the 2 cut-
offs) that are named TUCp (38) for Transcripts of Unknown Coding potential (Fig. 1A). 
 

4. FEELnc without long non-coding training set 

One issue when using machine learning algorithms is the requirement to have both 
mRNA and lncRNA learning sets to train the model. While the former is often available 
in most of the organisms, the latter is still in its infancy for some species and especially 
for non-model organisms (25). To model non-coding RNAs in the absence of a true set 
of lncRNAs, we assessed three strategies called "intergenic", "shuffle" and 
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"cross-species". The first one consists in extracting random intergenic sequences of 
length L (L given by the distribution of the mRNA sizes) as the non-coding training set. 
The second employs a different approach by shuffling mRNA sequences from the 
reference annotation using the Ushuffle program (39) while preserving the k-mer 
frequency given a fixed k length of the input sequences. Note that with increasing length 
of k, it is possible that Ushuffle could not permute some input sequences because of the 
constraint to preserve k-mer frequency. Finally, the strategy cross-species makes use of 
lncRNA sets annotated in other species to extract noncoding predictors and train the RF 
model. For the latter strategy, we used the NONCODE lncRNA catalogues in 13 species 
and train FEELnc model using human mRNAs and NONCODE species-specific 
lncRNAs. For all strategies, we assessed the performance on the HT datasets. 
 

5. FEELnc classifier 

Given a known reference annotation, it is essential to classify newly annotated lncRNAs 
based on their closest annotated transcripts. It will potentially guide biologists towards 
functions and relationships between lncRNAs and its annotated partners 
(lncRNA/mRNA pairs for instance). For this purpose, the FEELnc classifier module 
employs a sliding window strategy (whose length is fixed by user) that scans within and 
around each lncRNA all overlapping transcripts from the reference. Not only FEELnc 
classifier annotates intergenic lncRNA (lincRNAs) or antisense but the module also 
formalizes the definition of lncRNA subclasses with respect to annotated transcripts 
(Fig. 1B). First, these rules involve the direction (sense or antisense) and the type of 
interactions (genic or intergenic). Then, within each type of interaction, a subtype level 
allows to narrow down the classification (e.g. divergent for lincRNAs or containing for 
genic lncRNAs). Finally, a location level is added which informs on the position of the 
lncRNAs with respect to the annotated transcripts (e.g. upstream for lincRNA or exonic 
for genic lncRNAs). In addition, the FEELncclassifier can be used with all transcript 
biotypes (e.g. short ncRNAs such as snoRNAs) from a reference annotation and 
therefore is capable of annotating lncRNAs host gene for short RNAs (40) (hence the 
"genic sense exonic" class). 
 
Because one lncRNA could belong to different classes depending on which reference 
transcript is considered, our approach reports all interactions within the defined widow 
and defines a best partner transcript using the following priorities: a lncRNA 
overlapping a reference transcript exon will be prioritized over intronic (and over 
containing) for genic lncRNAs, while the nearest reference transcript will be selected for 
lincRNAs.  
 

6. Performances 

We evaluated the performances of FEELnc and five other programs: CNCI (version 2 
Feb 28, 2014), CPC (version 0.9-r2), CPAT (version 1.2.1), PhyloCSF (version 
20121028-exe) and PLEK (version 1.2) by computing classical performance metrics: 

- Sensitivity (Sn) or True Positive Rate = !"
!"!!"

 , 

- Specificity (Sp) or True Negative Rate = !"
!"!!"

 , 
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- Precision (Prec) or Positive Predicted Value = !"
!"!!"

 , 

- Accuracy (Acc) = !"!!"
!"!!"!!"!!"

 , 

with TP: True Positive, TN: True Negative, FP: False Positive and FN: False Negative.  
In addition, we used two complementary metrics that could be considered as more 
global values of performance. 

- F1-score = 2× !"#$%&%'(×!"#!$%$&$%'
!"#$%&%'(!!"#!$%$&$%'

 , which is a statistic measuring the harmonic mean of 
precision and sensitivity. 

- MCC (Matthews Correlation Coefficient) = !"×!"!!"×!"
!"!!" !"!!" !"!!" !"!!"

, which is 
particularly useful when the two classes are of very different sizes (often the case 
between mRNA and lncRNA in non-model organisms) and which could be seen a 
correlation coefficient between trained and tested datasets. 
For each performance metric, we considered lncRNAs as the negative class and mRNAs 
as the positive class. As a binary classification, the mRNA specificity corresponds to the 
lncRNA sensitivity (and conversely). For the CPAT and PLEK programs, which allow 
training their models, we used species-specific set of mRNAs/lncRNAs for training 
(called CPATtrain and PLEKtrain, denoted as CPAT_train and PLEK_train in Figures and 
Tables). For CPATtrain, we referred to the optimal CPS cut-off mentioned on the website 
to discriminate between coding and non-coding RNAs (18). A detailed description of the 
command lines used to run each program is given in Supplementary Materials. 
 
RESULTS 

1. FEELnc modules to annotate lncRNAs 
Starting from assembled transcripts and a reference annotation, the FEELnc pipeline is 
composed of three independent modules to classify and annotate lncRNAs (Fig.2). The 
first module (FEELncfilter) aims at identifying and removing non-lncRNA transcripts 
from the reconstructed transcript models. To achieve this goal, FEELnc removes every 
assembled transcript that overlaps in sense any exon of the reference annotation. 
Importantly, FEELnc enable to parameterize the percentage of overlap and the transcript 
biotype (e.g “protein_coding” or “pseudogene”) from the reference annotation. Indeed, 
to identify lncRNAs, transcripts matching protein-coding exons shall be removed as 
they likely indicate novel mRNA isoforms. Consequently, novel transcripts overlapping 
other short ncRNAs for instance will be kept as these may correspond to long non-
coding RNAs host genes for small RNAs for instance (41). FEELncfilter filters out short 
transcripts (default 200 nt) and can deal with single-exon transcripts depending on 
whether the protocol used to construct libraries is stranded or not. Remaining transcripts 
are thus candidates to be new lncRNAs or mRNAs.  
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Figure 2: General overview of the FEELnc pipeline. The FEELnc filter module identifies newly 

assembled RNA-seq transcripts and removes non-lncRNA transcripts. The FEELnc coding potential 
module computes a coding potential score (CPS) and automatically defines the optimal CPS score cut-off 

to discriminate lncRNAs versus mRNAs (and eventually TUCPs). The FEELnc classifier annotates 
lncRNAs classes based on RNAs from the reference annotation. 

 
 
The second module (FEELnccodpot) computes a coding potential score for every 
candidate transcripts based on a RF model trained with several predictors such as ORF 
coverage, multi k-mer frequencies and RNA sizes (see Methods). Using the "gold-
standard" GENCODE human learning set (HL) for training, we evaluated the 
performances of FEELnc on 5,000 lncRNAs and 5,000 mRNAs from the test dataset 
with respect to the five ORF types and multi k-mer combinations. We observed that 
"type 1" and "type 3" ORF models, which extract the longest ORF even in the absence 
of stop codon, consistently display better achievements (mean MCC = 0.816) than "type 
0" and "type 2" ORFs (mean MCC = 0.67 and 0.68, respectively) whatever the 
combination of k-mer is considered (Supplementary Fig.2). In addition, the multi k-mer 
strategy improves the performance of the program with a MCC performance starting at 
0.80 when only using 6-mers but reaching 0.85 with a combination of 
{1,2,3,6,9,12}-mers (with a fixed ORF type 3) (Supplementary Fig.2). 
In addition to measuring performance, we conducted several evaluations to assess the 
robustness of FEELnc predictions. First, we showed that FEELnc is not biased by 
unbalanced or low numbers of transcripts in the input training set with sensitivity and 
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specificity values higher than 0.9 using only 400 mRNAs and lncRNAs (Supplementary 
Fig.3). Second, FEELnc performs similarly or better than other methods to classify 
small or long mRNAs and lncRNAs (Supplementary Fig.4). Third, in order to model 
incompletes RNA reconstruction, we removed 10%, 25% and 50% from the 5’ of each 
sequence from HT data set. Even if FEELnccodpot performance decreased with increasing 
degradation percentage (MCCs = 0.827, 0.749 and 0.53 for 10%, 25% and 50%, 
respectively), it performed better than other tested methods (Supplementary Fig.5). 
Fourth, we were able to replicate the performance with mouse GENCODE dataset ML 
and MT (see materials) composed of 5,000 mRNAs and 2,000 lncRNAs where FEELnc 
achieves 0.938 in sensitivity, 0.941 in specificity and a MCC of 0.856. Finally, among 
the manually curated list of 35 "well-characterized" lncRNAs from (42), FEELnc 
correctly classifies 33 (95%) of them as non-coding. The two discordant lncRNAs are 
PWRN1 which has a CPS just above the cutoff (0.374 versus 0.372) and more 
surprisingly, the lncRNAs FIRRE having the highest CPS = 0.58 (the median CPS of 
the 35 lncRNA is 0.088). The high protein-coding score for FIRRE lncRNA can be 
explained by a large and complete ORF (546 nt i.e. 58% of the total RNA sequence) and 
a high level of similarity with the FAM195A protein-coding gene. Using the 2-cutoff 
strategy (see Method) with specificity cutoffs fixed at 0.95 for both mRNA and lncRNA 
biotypes, FEELnc classifies PWRN1 and nine other lncRNA as ambiguous (TUCps) but 
still predicts FIRRE as the only protein-coding transcript. 
The third FEELnc module (FEELncclassifier) formalizes the annotation of lncRNAs based 
on neighbouring genes in order to predict lncRNA functions and RNAs partners (see 
classes in methods). To illustrate the outcome of the FEELncclassifier, we applied it on the 
human EnsEMBL v83 annotation composed of 24,659 lncRNAs (“lincRNA” and 
“antisense” biotypes) and 79,901 mRNA transcripts (“protein_coding” biotype). For 
instance, FEELncclassifier annotates 5,544 "lncRNAs intergenic antisense upstream" 
among which 40% (n = 2,234) are less than 5kb from their mRNA partner transcription 
start sites (TSS). This class directly pinpoints to lincRNAs potentially sharing a bi-
directional promoter with its mRNA partner (43). At the opposite, 408 lincRNAs located 
less than 5kb from the mRNA, belongs to the "sense intergenic upstream" class and may 
correspond to dubious lncRNAs that are actually 5'UTR extensions of the neighboring 
protein-coding RNAs. FEELncclassifier also annotates 5,006 lncRNAs in the "antisense 
exonic" class as potential candidates for complementary interactions with the mRNA 
transcribed in opposite direction (44,	45).  
 

2. Benchmarking FEELnc in comparison with existing tools 
We next compared the performance of FEELnc with five state-of-the-art programs 
either alignment-free (CPAT, CNCI and PLEK) or alignment-based (PhyloCSF and 
CPC). As for FEELnc, CPAT and PLEK allow building their models using user-
specified learning dataset. Hence, we used the balanced HL dataset (5,000 lncRNAs and 
5,000 mRNAs) to construct the models for these two programs denoted CPATtrain and 
PLEKtrain. Contrary to FEELnc, PLEK and CPAT required to a priori extract the CDS of 
the mRNA input file to learn the coding parameters. We also used default pre-built 
models for PLEK and CPAT although some of the transcripts from the human 
GENCODE dataset test file (HT) could have been used for building these models. For 
all programs, performance metrics were calculated according to the human GENCODE 
dataset (HT). It showed that FEELnc had the highest classification power (AUC value 
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0.97) compared to the others tools as illustrated by the ROC curve (Fig.3A). 

 
Figure 3. A) ROC curve analysis of FEELnc versus ncRNA annotation programs based on GENCODE human 

dataset (HT). B) Empirical cumulative distribution of FEELnccodpot feature scores with the true set of human 
lncRNAs (lncRNA) in comparison with the “shuffle” and “intergenic” approaches. C) FEELnccodpot MCC values 

tested on human set and trained using human mRNAs and species-specifc NONCODE lncRNAs. In x-axis is 
represented the time of speciation between human and NONCODE species as given in (57). Species abbreviations 
are the following: Atha: Arabidopsis; Btau: Cow; Cele: Nematode; Dmel: Fly; Drer: Zebra; Ggal: Chicken; Ggor: 
Gorilla; Hsap: Human; Mdom: Opossum; Mmul: Rhesus; Mmus: Mouse; Oana: Platypus; Pabe: Orangutan; Ptro: 

Chimpanzee; Rnor: Rat. 

 
Accordingly, FEELnc displays the highest sensitivity (0.923) and secondly ranked 
specificity (0.915) values among all tools while PLEK displays the highest specificity 
(0.985) and precision (0.981). In general, alignment-based methods have lower 
classification metrics than alignment-free programs and it appears that most of the CPC 
misclassified lncRNAs are lincRNAs (37%) versus antisense lncRNAs (10%). Finally, 
FEELnc also shows the highest performance metrics for classification accuracy (0.919), 
F1-score (0.919) and MCC values (0.838) indicating that it performs well on the human 
GENCODE dataset in comparison to other tools (Table 1A).  
We further investigated performance on the mouse datasets composed of 2,000 
lncRNAs and 5,000 mRNAs in order to replicate the analysis in another organism and 
using an unbalanced dataset. For this benchmark, we included all the same programs 
except PhyloCSF due to the labour-intensive task to extract input cross-species multiple 
alignments. Again, FEELnc displays the highest classification accuracy, F-score and 
MCC (Table 1B) while CPC shows the best specificity (0.992) and precision (0.996) 
despite a weak sensitivity (0.744). As for human dataset, the CPAT program performs 
well even if we consider both the re-trained and prebuilt models. Interestingly, CPAT 
with the trained mouse model has only slightly better performance than using the human 
prebuilt model indicating that cross-species training achieves relatively few performance 
gains. 
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Finally, we assessed the computational time of each program including the time 
required for computing the model for trained-based tools. It results that FEELnc took 
~46 min to classify the 10,000 human lncRNAs and mRNAs while PLEK was the 
fastest (6 min compared to ~10h when we train the model i.e. PLEKtrain) and CPC the 
longest (~2 days; with default parameters). 
 

3. Annotating lncRNAs without a species-specific training set of lncRNAs 
In the absence of species-specific lncRNAs set, machine-learning strategies require to 
simulate non-coding RNA sequences to train the model. As DNA composition varies 
between species, a first naive approach called "intergenic" consists in extracting random 
sequences from the genome of interest to model species-specific noncoding sequences. 
More precisely, using the human genome as example, the intergenic	approach consists 
in randomly extracting n human sequences (with n corresponding to the number of input 
mRNAs) that do not overlap any mRNAs from the reference annotation. Another more 
sophisticated approach involves that lncRNAs derived from "debris" of protein-coding 
genes as exemplified by the Xist lncRNA that emerged from the disruption of the 
mRNA gene Lnx3 (46). For this strategy that we called "shuffle", we took the 5,000 HL 
mRNAs and shuffled the sequences while preserving k-mer frequencies using Ushuffle 
(39). We tested different size of k and showed that preserving 7-mer frequencies gave 
the best MCC values on the HT set while sustaining a high number of permuted 
sequences (Supplementary Fig.6). In order to evaluate the intergenic and shuffle 
strategies on the training sets, we computed their predictor scores in comparison with 
the true set of 5,000 HL lncRNAs. We first observed that the cumulative distribution of 
predictor values for the shuffle strategy tend to be closer to the one observed in the true 
set of human lncRNAs compared to the intergenic approach (Supplementary Fig.7). We 
then confirmed on the HT dataset that the shuffle method outperformed the intergenic 
approach (MCCs = 0.768 versus 0.646) as compared to true set of lncRNAs (MCC = 
0.846) (Supplementary Fig.7). 
As described above, FEELnc can be used in a stringent mode in order to distinguish and 
annotate high-confidence set of lncRNAs and mRNAs. To this end, the 2-threshold 
module was applied for both strategies with increasing specificity thresholds (0.93, 0.96, 
0.99) as compared to the automatic optimal CPS cut-off defined previously. With these 
cut-offs, we observed higher performances for the shuffle approach (MCCs = 0.823, 
0.881 and 0.943) versus intergenic (MCCs = 0.646, 0.654 and 0.785) (Supplementary 
Fig.7). Moreover, the greater interest of the shuffle approach could be appreciated by the 
lower variability between sensitivity and specificity metrics as defined within the 
FEELnc methodology compared to the intergenic approach (Supplementary Fig.7). 
In order to directly evaluate FEELnc performance for "non-model" organisms, we used 
the FEELnc shuffle strategy where the coding parameters were learned on species-
specific mRNAs and the noncoding ones on species-specific mRNAs shuffled by 
Ushuffle with preserved 7-mer frequencies. All tests were further assessed on the 
catalogues of lncRNAs annotated in NONCONDE database. We also compared 
performances with CNCI knowing that NONCODE uses both CNCI and matching 
protein-coding coordinates from RefSeq database to remove all ncRNAs annotated as 
protein coding. In Supplementary Table 3, we showed that FEELnc without annotated 
lncRNAs achieved good classification metrics in many species (MCC ranging from 0.70 
for rat to 0.903 for cow) and even better than CNCI in five species (nematode, fly, 
gorilla, orangutan and rhesus macaque).  
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As a third approach to model noncoding sequences, we sought to use cross-species 
lncRNAs for learning FEELnc model parameters. To this end, NONCODE lncRNAs 
from 13 organisms were used to serve as proxy for human lncRNAs and performance 
were then evaluated on the HT dataset. As expected, FEELnc performance is negatively 
correlated with the time of speciation between human and NONCODE species 
(spearman rho = -0.85; p-val = 5.6e-05) with MCC values of 0.374 when using 
Caenorhabditis elegans lncRNAs to 0.823 with chimpanzee lncRNAs (Supplementary 
Table 4). This probably reflects the variability in term of lncRNA sequence 
conservation (and thus in noncoding k-mer frequencies) between human and 
NONCODE species (35,	42). Interestingly, the shuffle strategy that has a MCC of 0.748 
would correspond to performance obtained with lncRNAs that diverged about 100 Myr 
indicating that it constitutes an interesting approach when no lncRNAs from closely 
related species are available. 
 

4. Application to identify an extended catalogue of canine lncRNAs 
 

Within the framework of the LUPA consortium (29), we performed 20 whole transcriptome 
sequencing of 16 tissues (Supplementary Table 1). After QC, ~1,3 billions reads were 
mapped onto the canfam3 genome using the STAR mapper (47). Cufflinks (11) was further 
used to reconstruct the transcriptome models in each tissue separately guided by a 
consensus reference annotation given by the BROAD (48) and EnsEMBL v83 (22) 
annotations (called canFam3.1). Then, the cuffmerge tool merged the tissue samples files 
into a single GTF file containing 211,794 transcripts and 50,547 genes. In order to annotate 
new transcribed loci, we used the FEELncfilter module to remove all transcripts which 
overlap exons (in sense) from the reference annotation, single exonic intergenic transcripts 
and transcripts with a size below 200 nt. A total of 5,523 candidate transcripts were 
retained and then given to FEELnccodpot analysis. The two-thresholds option was run with a 
minimal specificity threshold fixed at 0.93 in both biotypes. This cut-off allows leveraging 
the number of ambiguous transcripts (TUCps) while optimizing classification specificity. 
This analysis identified 3,822 novel lncRNA transcripts, 477 new mRNA transcripts and 
884 TUCps. 

In a second analysis, we aimed at developing a comprehensive annotation of novel 
transcript isoforms based on RNA-seq assembled models overlapping (but not included in) 
canFam3.1 annotation (n = 69,602) (See Supplementary Methods for details). On this 
subset of assembled transcripts, we used FEELnccodpot with the exact same parameters as 
previously. Because a novel transcript isoform could fuse two or more genes from the 
reference annotation, we defined rules to avoid the merging of transcripts having different 
biotypes by removing these incompatible transcripts (see Supplementary Methods for 
details). This resulted in the annotation of 67,312 transcripts with much more mRNA 
isoforms (58,163) compared to lncRNAs (6,552) and TUCps (2,597). 

At the end, the new canine annotation that we called canFam3.2, includes a total of 36,237 
loci with 3,145 new genes and 10,374 novel lncRNA, 58,640 new mRNA and 3,481 TUCp 
transcripts (Supplementary Table 1). 
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This study improves the dog genome annotation by several factors. First, we extended the 
number of mRNA transcripts by 50% and lncRNA transcripts by ~100%. Second, we 
found that novel lncRNA and mRNA transcripts are longer in term of number of exons, 
CDS/UTRs and RNA sizes compared to canFam3.1 transcripts suggesting a more 
complete reconstruction of their gene structures (Supplementary Table 6). Also, the 
number of isoforms per gene locus has been expanded to ~2.19 and ~7.2 for lncRNAs and 
mRNAs, respectively. Third, using STAR and RSEM (49) to quantify transcripts 
expression levels, we found that 86% of novel lncRNAs have at least a TPM (transcript per 
million) value >0.5 in at least one of the 20 samples highlighting a robust set of new 
lncRNAs. Finally, among the 2,658 canine novel lncRNA genes, 15% are also found in 
human GENCODE annotation by using the EnsEMBL compara EPO alignments (50). For 
instance, canFam3.2 now annotates three Cancer Susceptibility candidates lincRNAs 
(CASC lincRNAs) such as the CASC9 lincRNA located on chr29:23,554,585-23,605,371 
and involved in esophageal squamous cell carcinoma (51). Other examples include the 
well-described MALAT1 cancer-associated lincRNA (52) which was considered as an 
unclassified non-coding transcript in canFam3.1 and the IFNG-AS antisense lncRNA 
involved in T-cell differentiation (53). 

By employing the FEELncclassifier on the new canFam3.2 transcripts, we identified 2,130 
intergenic lncRNAs (lincRNAs) and 342 divergent lincRNAs closely located to their 
mRNA partner (distance < 5kb) highlighting potential bi-directional promoters. 
Conversely, FEELncclassifier identified 276 antisense exonic lncRNAs and 308 sense exonic 
lncRNAs overlapping short ncRNAs. This canFam3.2 annotation constitutes a new 
resource that will help providing lncRNA as candidates for understanding and establishing 
genotype to phenotype relationships. 	

 

DISCUSSION 

In this study, we designed a new program to identify and annotate lncRNAs called FEELnc for 
FlExible Extraction of Long non-coding RNAs. Using the gold standard GENCODE annotation 
in human and mouse (27), we showed that FEELnc performs well to discriminate long non-
coding versus protein-coding RNAs. FEELnc include predictors (multi k-mer frequencies and 
ORF coverage) that are general enough to capture all lncRNAs classes whereas alignment-
based methods will be biased towards misclassifying species-specific transcripts or coding 
transcripts that are not referenced in peptide databases. The integration of a random forest-
based model in FEELnc contributes to the good achievements of the tool because of the 
intrinsic properties of randomly sub-sampling features thereby encompassing diverse lncRNA 
characteristics. In recent years, major advances have been made in the machine-learning field 
(54) allowing to cope with the thousands of parameters simultaneously and it would thus be of 
great value to adapt deep learning approaches to coding and non-coding RNA annotations. 
The contribution of FEELnc is not only limited to provide high classification performance 
metrics on models organisms since the tool is also accompanied with several modules and 
options that enable fine-tuning and precisely adjusting lncRNA annotations for any species of 
interest. To our knowledge, it is the first tool allowing users to annotate conservative sets of 
lncRNAs and mRNAs by fixing their own specificity thresholds(38). Second, FEELnc can be 
used for any given species even in the absence of lncRNA training set due to the possibility to 
model species-specific lncRNAs. Third, we expect the FEELnc classifier module to be of great 
interest to researchers in order to automatically annotate novel lncRNAs thus directly providing 
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candidate pairs of lncRNAs and (m)RNA partners to be investigated for experimental 
validations.  
For non-model organisms, we have shown that FEELnc performs similarly to CNCI although 
the benchmark was done on NONCODE lncRNAs that were a priori filtered by the CNCI tool. 
As for human and mouse where the manually curated GENCODE annotation is considered as a 
standard, this stressed the importance of also defining gold-standard sets of lncRNAs/mRNAs 
to correctly evaluate programs for "non-model" organisms annotation. This could be envisaged 
within the framework of collaborative projects such as the FAANG (30) for instance. 
Finally, we illustrated the usefulness of FEELnc on the dog transcriptome for which 20 
RNA-seq samples were sequenced in the frame of the LUPA consortium. The biological 
relevance of this expanded canine resource is supported by the annotation of novel dog 
lncRNAs orthologous to known lncRNAs in human and the increased transcripts and CDS sizes 
as well as exon numbers suggesting more complete RNA structures. Although this improved 
annotation will facilitate the identification of genotype to phenotype associations, it is still 
incomplete given the plethora of RNA classes beside lncRNA and mRNAs. For instance, one 
could consider annotating transcribed (processed or unprocessed) pseudogenes or enhancer 
RNAs (eRNAs) by using FEELnc as a multiclass classifier instead of a binary classifier (e.g 
coding versus noncoding). Some preliminary results on 1,123 human transcribed pseudogenes 
annotated in GENCODE showed that their FEELnc CPS distribution (mean CPS = 0.622) is 
clearly in-between lncRNAs and mRNAs CPS (mean CPS = 0.085 and 0.923, respectively) 
suggesting that it would be feasible to discriminate pseudogenes from lncRNA and mRNA. 
Similarly, eRNAs defined as non-coding transcripts derived from enhancer elements (55, 56) 
should harbor small ORFs and specific patterns of k-mers corresponding to the transcription 
factor binding sites which could be caught by FEELnc predictors. 
All together, the FEELnc tool provides a standardized and exhaustive protocol to identify and 
annotate lncRNAs. 
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HUMAN 
dataset	

Program	 Sensitivity	 Specificity	 Precision	 Accuracy	 F1-
score	

MCC	

 	 FEELnc	 0.923	 0.915	 0.916	 0.919	 0.919	 0.838	

CPAT	 0.899	 0.924	 0.922	 0.912	 0.91	 0.823	

CPAT_train	 0.92	 0.901	 0.903	 0.91	 0.911	 0.821	

CNCI	 0.829	 0.979	 0.975	 0.904	 0.896	 0.817	

PLEK		 0.732	 0.985	 0.981	 0.858	 0.838	 0.741	

PhyloCSF	 0.906	 0.802	 0.82	 0.854	 0.861	 0.712	

PLEK_train	 0.582	 0.96	 0.936	 0.77	 0.718	 0.584	

CPC	 0.699	 0.739	 0.728	 0.719	 0.713	 0.438	

Table 1A: Tools performance on GENCODE human datasets. Bold-underlined values 

correspond the highest. CPAT_train and PLEK_train correspond to program versions trained 

with the HL dataset. Programs are sorted by MCC values. 

 

MOUSE 
dataset	

Program	 Sensitivity	 Specificity	 Precision	 Accuracy	 F1-
score	

MCC	

 	 FEELnc	 0.938	 0.941	 0.976	 0.939	 0.956	 0.856	

CPAT_train	 0.95	 0.88	 0.952	 0.93	 0.951	 0.828	

CPAT	 0.892	 0.96	 0.982	 0.911	 0.935	 0.806	

CNCI	 0.857	 0.972	 0.987	 0.89	 0.918	 0.772	

CPC	 0.744	 0.992	 0.996	 0.815	 0.852	 0.667	

PLEK 	 0.71	 0.913	 0.954	 0.768	 0.814	 0.564	

PLEK_train	 0.63	 0.891	 0.936	 0.704	 0.753	 0.47	

Table 1B: Program performances on GENCODE mouse datasets. Bold-underlined values 

correspond the highest. Programs are sorted by MCC values.  
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