
Software Energy Profiling: Comparing Releases of a
Software Product

Erik A. Jagroep,
Jan Martijn van der Werf,

Sjaak Brinkkemper
Utrecht University

Dept. of Information and
Computing Sciences

Utrecht, The Netherlands
{e.a.jagroep,

j.m.e.m.vanderwerf,
s.brinkkemper}@uu.nl

Giuseppe Procaccianti,
Patricia Lago

Vrije Universiteit Amsterdam
Dept. of Computer Science

Amsterdam, The Netherlands
{g.procaccianti,
p.lago}@vu.nl

Leen Blom, Rob van Vliet
Centric

Gouda, The Netherlands
{leen.blom,

rob.van.vliet}@centric.eu

ABSTRACT
In the quest for energy efficiency of Information and Com-
munication Technology, so far research has mostly focused
on the role of hardware. However, as hardware technol-
ogy becomes more sophisticated, the role of software be-
comes crucial. Recently, the impact of software on energy
consumption has been acknowledged as significant by re-
searchers in software engineering. In spite of that, measur-
ing the energy consumption of software has proven to be a
challenge, due to the large number of variables that need to
be controlled to obtain reliable measurements. Due to cost
and time constraints, many software product organizations
are unable to effectively measure the energy consumption
of software. This prevents them to be in control over the
energy efficiency of their products.

In this paper, we propose a software energy profiling meth-
od to reliably compare the energy consumed by a software
product across different releases, from the perspective of
a software organization. Our method allows to attribute
differences in energy consumption to changes in the soft-
ware. We validate our profiling method through an empir-
ical experiment on two consecutive releases of a commer-
cial software product. We demonstrate how the method can
be applied by organizations and provide an analysis of the
software related changes in energy consumption. Our re-
sults show that, despite a lack of precise measurements, en-
ergy consumption differences between releases of a software
product can be quantified down to the level of individual
processes. Additionally, the results provide insights on how
specific software changes might affect energy consumption.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889216

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

Keywords
Energy Efficiency, Profiling, Software Architecture, Software
Product

1. INTRODUCTION
In the search for energy efficient solutions for the Infor-

mation and Communication Technology (ICT) industry, re-
search has mostly focused on hardware aspects in order to
reduce the environmental impact of the sector. Indeed, ev-
ery new generation of hardware improves its Energy Effi-
ciency (EE) by either increased performance (i.e. more per-
formance per Watt) or decreased Energy Consumption (EC)
in absolute terms. Considering the growing number of hard-
ware devices, the impact of these improvements can be sig-
nificant. However, a crucial aspect that has been long over-
looked is the role of software [18]. Although hardware ulti-
mately consumes energy, software provides the instructions
that guide the hardware behavior [33].

For example, the impact of software is clearly visible in
the mobile phone domain. Although the EC of mobile ap-
plications is typically closely monitored due to battery con-
straints [3, 21, 25], we have reached the point of requiring
quad-core processors to ensure smooth operation. Nowa-
days, software updates require the user to buy a new mobile
phone every few years, sometimes even without a clear ben-
efit in terms of performance. Additionally, new phones are
often equipped with higher capacity batteries, to prevent
deterioration of the operation time.

Looking at larger software products, e.g. business ap-
plications, a similar pattern can be observed. Depending
on the deployment, increasingly more powerful hardware is
required to run new releases of applications. However, in
contrast to the mobile domain, EC measurements with re-
gard to business software products are more complicated to
perform. The diversity of deployments and levels of abstrac-
tion (e.g. virtualization and cloud computing) require more
sophisticated measurement approaches to properly analyze
software EC [29]. Recently, several of such approaches have
been proposed, both hardware [7] and software based [24],

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 523

http://dx.doi.org/10.1145/2889160.2889216

which were able to identify opportunities for considerable
savings in EC.

However, these approaches have not been adopted in in-
dustrial contexts so far. Although Software Product Organi-
zations (SPOs), i.e. independent software vendors and open-
source foundations, have software development as their core
activity [13], having accurate software EC measurements
still requires significant investments in terms of resources
and specialized knowledge. As a consequence, SPOs are un-
able to directly address software energy efficiency, even when
required to do so (e.g. in the Netherlands, the government
specifies EC related requirements in their tenders).

In practice, performance is often used as a proxy for en-
ergy efficiency. Software performance optimization is a more
mature field of study, hence more people with such skills are
available on the market. However, although much can also
be derived from performance measurements, EC and per-
formance are not always positively correlated; contradicting
goals could require a trade-off to be made [12].

A deeper understanding of the matter is required to prop-
erly address the EC of the software itself. In this research we
investigate a method that can be applied by SPOs to gain
control over the EC of their software products. Given the
dynamics of the software industry, such as multiple releases
in relatively rapid succession, the method should explicitly
address these dynamics by enabling an SPO to report any
improvement or deterioration in EC with a new release. Our
proposed profiling method is applied in an empirical exper-
iment on a commercial software product.

The remainder of the paper is organized as follows: in
Section 2 we present our research questions. In Section 3,
Section 4 and Section 5 we describe the design, execution
and results of our empirical experiment. We discuss the
threats to validity in Section 6 and present related work in
Section 7. Concluding remarks and an outline for future
work are provided in Section 8.

1.1 Contributions
The main contributions of this paper are:
Empirical study: To the best of our knowledge this is

one of the few papers that compares the EC of software
products across releases on a commercial software product.
The study includes a demonstration of tooling and metrics
to find the relevant energy hotspots [29] for software prod-
ucts and enables an SPO to quantify EC differences brought
about by changes in the software.

Profiling method: We show in detail how to set up an
environment to perform EC measurements across releases.

Regression model: In addition to the method, we pro-
vide insight in how to create a regression model to predict
EC more accurately based on performance and EC data.
With this regression model we add to the ‘green mining’
research area [10].

2. RESEARCH QUESTIONS
Based on the problem explained in Section 1 we formulate

our main research question as follows:

RQ: How can we reliably compare the energy consumption
of large scale software products across different releases?

In the RQ, we explicitly refer to large-scale software prod-
ucts as multi-tenant, multi-user distributed software appli-

cations, as opposed to e.g. single-user mobile applications
which are out of scope for our research.

A prerequisite for comparing the EC of a software product
is being able to measure the software EC. Therefore our first
research sub-question is:

SQ1: How can we reliably measure the EC of a software
product?

Software-only approaches can be roughly categorized in two
sets: (source code) instrumentation [24] and energy profil-
ers [11]. Hardware-based approaches (e.g. [6]) rely instead
on physical power meters to be connected to hardware de-
vices. Given our focus on large scale software products, we
see two potential issues with source code instrumentation:
the complexity overhead and the required investment to ap-
ply them in terms of software development skills. Hence, we
do not see them as usable in an industrial setting. Software
energy profilers do not require a high effort to be adopted,
but are shown to be inaccurate in their measurements [11].
On the other hand, hardware-based approaches do not pro-
vide fine-grained measurements at software level, i.e. they
are not able to trace the energy consumption of single soft-
ware elements such as processes or architectural compo-
nents. In Section 3 we design our experiment to leverage
both measurements: we use software profilers to obtain fine-
grained, software-level estimations and validate them with
hardware measurements obtained via power meters.

Our proposed profiling method is applied in an empirical
experiment on a commercial software product, described in
Section 3 and Section 4. For SPOs to actually be able to
influence the EC, changes in EC should be related to the
individual software elements. To this end we formulated
two more sub-research questions (Section 5):

SQ2: How can we attribute energy consumption to
individual software elements?

SQ3: How can we relate differences in energy consumption
to changes in a software element?

The second sub-question (SQ2) is set to investigate how the
EC is divided over the combination of software elements
that comprise the software product. For this, we make use
of a software tool, Joulemeter, as software measurements
can provide these details. After relating EC to software ele-
ments, we answer SQ3 by analyzing the impact of software
changes on EC.

3. EXPERIMENT DESIGN
To answer the research questions presented in the previ-

ous section, we performed an experiment to compare the
EC of a commercial software product, Document Genera-
tor (DG), across different releases and to explain differences
at software architecture level. Our experiment follows the
guidelines provided in [14, 17, 31, 36] and the “green min-
ing” method [9] consisting of seven prescribed activities; (1)
choose a product and context, (2) decide on measurement
and instrumentation, (3) choose a set of versions, (4) develop
a test case, (5) configure the testbed, (6) run the test for per
each version and configuration, and (7) compile and analyze
the results. In this Section we describe our experimental de-
sign, in terms of Product Under Study, setup, metrics and
protocol used for the experimentation. Note that compil-
ing and analyzing the results is described in Section 4 and
Section 5 respectively.

524

Figure 1: The functional architectures for Document Generator (DG) releases 7.3 (left) and 8.0 (right)
portrayed on a commercial deployment. The changes are in red.

3.1 Product Under Study: DG
Document Generator (DG) is a commercial software prod-

uct that is used to generate a variety of documents ranging
from simple mailings to complex documents concerning fi-
nancial decisions. The product is used by over 300 organiza-
tions in the Netherlands, counting more than 900 end-users,
and annually generates more than 30 million documents.
This experiment focuses on two releases of DG, 7.3 and 8.0,
allowing us to compare the effects of a major release [37].

In Figure 1 the Software Architecture (SA) is shown for
the DG releases included in the experiment. Starting with
the Connector element, we have a central hub in the SA
responsible for receiving user input through the Interface,
collecting data from the Composer and handling communi-
cation with the Service bus. Together with the Composer
element, responsible for merging document templates and
definitions with database data, the Connector element han-
dles all activities before documents are generated. Utilities
and Interface respectively provide configuration options and
an interface for DG. The final element on the application
server is the Server element responsible for the actual gen-
eration of the documents and delivering the documents to
where they are required. The database server hosts an Or-
acle SQL Database.

3.1.1 Differences between Releases
Looking at the SA, the major difference is the encryption

provider introduced on the application server in release 8.0.
Data encryption was introduced in release 8.0 in order for
DG to comply with the upcoming General Data Protection
Regulation (GDPR) set up for the European Union. In the
case of DG ‘Microsoft Enhanced Cryptographic Provider’ is
used; a module that software developers can dynamically
link when cryptographic support is required. Encryption is
applied in relation to the ‘Server’ element to remain inde-
pendent from the database that is used, i.e. encrypted data
is sent to the database

Another difference, which is not visible in the SA, can be
found in the data model for the database. As release 8.0 is
compliant with a new document management system, the
datastructure is more complicated compared to release 7.3.
Cross-checking our findings with the DG architect ensured
completeness of our list of relevant changes for the experi-
ment.

3.1.2 Test Case

For the experiment we chose to stress DG with its core
functionality, namely the generation of documents. DG was
instructed to erase existing documents of a certain type and
consecutively regenerate these documents. The selected doc-
ument type contains both textual information and financial
calculations and a total number of 5014 documents was gen-
erated per each execution of the test case. During each
execution, the 8 processes ‘Interface’, ‘Run’, ‘Connector’,
‘Server’, ‘Oracle’, ‘TNSLSNR’, ‘omtsreco’ and ‘oravssw’ pro-
cesses are to be monitored on their respective servers. As
the ‘Microsoft Enhanced Cryptographic Provider’ is not an
executable but a dynamic library, it cannot be monitored in
isolation.

3.2 Experimental Setup
In line with the deployment portrayed in Figure 1, two

servers have been used: one for the application and one
for the database. The setup is depicted in Figure 2. The
specifications of the application and database servers are
provided in Table 1. To ensure consistency with regard to
external factors (e.g. room temperature), the servers were
installed in an operational data center.

Both releases of DG were installed on the application
server and Oracle was installed on the database server. The
setup of the experiment, including the servers, is comparable
with a commercial setting of the product. In the experiment,
both releases use the same data set of an actual customer.

3.2.1 Baseline Measurements
To obtain a clean measurement of the EC related to solely

DG, we need to determine the idle EC for the hardware that
is used. This figure represents our baseline, and as such is
subtracted from the total EC during a measurement, un-
der the assumption that the increase in EC solely depends
on running the software under test. As the idle EC heav-
ily depends on the used hardware, this number should be
determined separately for each hardware device in the ex-
periment by performing measurements while the hardware
is running without any active software.

However, using this method, the EC is not only related to
DG, but also includes the effects of measurement software
and Operating System (OS)-specific activities (e.g. back-
ground daemons), which we are not (yet) able to consider
separately and thus considered to be part of the idle mea-
surement. As we cannot completely control these aspects,
we suggest to stop any service and process known not to be

525

Table 1: Specifications of the hardware and software used for the experiment.
Application server Database server

Hardware HP Proliant G5, 2 x Intel Xeon E5335
(8 cores @ 2GHz), 8 GB DDR2 mem-
ory, 300 GB hard disk @ 15.000 RPM

HP Proliant G5, 1 x Intel Xeon E5335
(4 cores @ 2GHz), 8 GB DDR2 mem-
ory, 300 GB hard disk @ 15.000 RPM

Operating system Windows 2008 R2 Standard (64-bit),
Service Pack 1

Windows 2008 R2 Standard (64-bit),
Service Pack 1

Software DOCGEN 7.3 and 8.0 Oracle 11.0.2.0.4.0

related to or required for the software product under test to
minimize their effects. For example, in our case the auto-
matic Windows update service was disabled. In our setup,
we additionally use a separate logging server to minimize
the overhead caused by the data collection process.

Another software related aspect is the cooldown time a
server needs after rebooting. After a reboot, several ser-
vices related to the OS are active without direct instruc-
tions from a user. As these services require computational
resources, they most likely will pollute measurements if the
experiment starts while these services are running. Hence,
measurements have to be taken in a “steady state” i.e. when
the extra services become inactive.

As with the idle baseline, the cooldown time should be
determined for every hardware device included in the exper-
iment. EC and performance measurements give an indica-
tion of when the steady state is reached. The cooldown time
for our servers was determined to be 15 minutes.

3.2.2 Hardware– and Software–Based Measurements
A measurement method concerning software EC should

include both hardware and software approaches to obtain
the right level of detail in the measurements. In terms of
hardware measurements, we rely on power metering devices.
As these meters are installed between a device and its power
source, a meter is required for each power supply unit of the
devices under test. Although these meters are capable of
achieving high levels of accuracy, their specifications should
be taken into account in the analysis as even small measure-
ment errors might prove significant at software level.

Each of the servers in our setup is instrumented with a
single WattsUp? Pro (WUP) device1 (see Figure 2). WUP
devices record the total energy consumption of the hardware
once per second.

Regarding software profilers, we require such tools to not
only estimate the total energy consumption of the system,
but also to profile individual software processes. Using their
respective power models, software profilers estimate the EC
of a system at run time, based on the computational re-
sources used by applications and by monitoring the hard-

1http://www.wattsupmeters.com/secure/products.php?pn
=0, last visited on February 10th, 2016

Figure 2: Experiment environment.

ware resource usage. Unfortunately, although a more fine-
grained interval is desired [10], these tools record measure-
ments with a one second interval. While the usability and
accuracy of energy profilers still have margins for improve-
ment [11,22], the reported measurements could still be used
to detect differences in EC. In other words, although mea-
surements in absolute terms may not be fully accurate, the
relative differences between EC of releases can still provide
useful insights.

In our experiment, we make use of the tool Jouleme-
ter (JM) of Microsoft, that allows to estimate the power
consumption of a system down to the process level. JM es-
timates EC on a model that first needs to be calibrated for
the hardware it runs on. Previous experience with JM [11]
shows that although JM provides a general idea of EC, it
differs significantly from the actual EC. Since only one pro-
cess can be measured per instance of JM, a separate instance
for each of the concurrent DG processes is instantiated (see
Section 3.1). Although relatively coarse, measurements on
process level (i.e. the concurrency views on the system [30])
can be translated to more fine-grained aspects using an ar-
chitectural perspective [12].

3.3 EC and Performance Metrics
Comparing literature (cf. [9,12,15]) we find similarities in

the measurement method that is applied, but a clear differ-
ence in the reported metrics. Although all report EC, the
metrics target different stakeholders while still providing the
details required to be in control of the software EC. During
the design of an experiment, a choice should be made on
what metrics are to be reported, as they should facilitate
discussion between stakeholders, e.g. product managers and
(potential) customers [4], especially in the case of a pioneer-
ing topic like the EC of software [7]. For the experiment
we want to measure the SEC and UEC metrics as defined
in [12] at the level of the concurrent processes of the product,
facilitating discussion with software architect of DG.

In addition to the EC, the hardware performance needs to
be recorded as performance data could fill the gap when it
comes to accurately relating EC to individual software ele-
ments [2,12,15]. Profiling the performance requires the user
to have a basic understanding of the hardware components
that have to be monitored (e.g. hardware-specific details)
and the context in which they are installed.

The performance of the application and database servers
are measured using the standard performance monitor (perf-
mon) provided with Microsoft Windows. As perfmon does
not include network performance counters at process level,
we exclude these from the experiment. Following the defini-
tion of the ‘Unit Energy Consumption’ [12], in our experi-
ment we set up performance counters for the most frequently
monitored hardware resources:

• Hard disk: disk bytes/sec, disk read bytes/sec, disk

526

write bytes/sec

• Processor: % processor usage

• Memory: private bytes, working set, private working
set

• Network: bytes total/sec, bytes sent/sec, bytes re-
ceived/sec

• IO: IO data (bytes/sec), IO read (bytes/sec), IO write
(bytes/sec)

Performance data is remotely collected using the logging
server, thereby minimizing the overhead of measurement on
the actual hardware.

3.3.1 Data Synchronization
An important requirement for data analysis is to have

synchronized measurements. As measurements are obtained
from different sources, their timestamps have to be synchro-
nized to avoid irregularities in the data. For example, if
a specific activity is performed and the timestamps across
sources is not in sync, there is a risk of missing the data
related to this activity. A simple solution to this problem
is to synchronize the clocks for all measurement instances
using the Network Time Protocol (NTP).

3.4 Protocol
While the “green mining” method [9] provides a solid ba-

sis for designing an experiment, no details are provided on
how to actually perform reliable measurements within an
experiment. To this end, we propose the following protocol
applying the information presented in this section, which is
an extension to the activities presented by [9]:

i Restart environment;

ii Check time synchronization;

iii Close unnecessary applications;

iv Start performance measurements;

v Remain idle for a sufficient amount of time;

vi Start EC measurements;

vii Run measurement and wait for run to finish;

viii Collect and check data;

ix Revert environment to initial state;

The protocol ensures consistency across measurements and
improves the reliability of each measurement [36]. To in-
crease the consistency across measurements, a script is used
to generate 5014 documents using DG.

Summarizing the data collected for each individual mea-
surement we have:

• WUP measurements of the energy consumption at the
level of the hardware;

• JM estimates for each of the processes together with
an estimate of the total energy consumption;

• one perfmon file containing the performance measures
for both the application and the database server;

• the start and end timestamp for each measurement;

After each measurement, both servers have been reverted to
the initial state. To mitigate the risk of mismatched time
data, all devices are continuously synchronized using the
Network Time Protocol (NTP).

4. EXPERIMENT RESULTS
In this section we extensively report our experimental re-

sults. Both the WUP as well as the JM measurements re-
port the EC as an average of the instantaneous power over
the sampling interval. To calculate the total EC, we either
multiply the average power with the time the system was
running, or sum up the recorded energy measurements. We
report our findings in Watt (W) or Watthour (Wh) where
applicable.

4.1 Baseline Measurements
The results of the idle and JM overhead measurements are

presented in Table 2 along with the measurement time to de-
termine the averages. Starting with the idle EC we found
an average power consumption of 274.54 W and 252.59 W
for respectively the application and database server. Con-
sidering that the servers are almost identical, we can only
allocate this difference of 21.95 Watt (W) to the extra pro-
cessor available in the application server.

An interesting finding is the fact that there is minimal
to no overhead on the account of JM. Further investiga-
tion showed a base memory usage by JM, which increased
when JM was actually logging measurement data. While
logging, performance measurements show increases in the
memory usage of the JM instances which are periodically
‘reset’ to a base memory usage. Our guess is that the pat-
tern in memory usage corresponds to incrementally adding
measurements to the CSV file. Despite this variability in
memory usage we could not detect any change in EC. If we
use the JM measurements to determine the average power
consumption (right of Table 2), a larger difference is per-
ceived which is in line with the findings presented in [11].

4.2 DG measurements
We performed 20 executions for each DG release (7.3 and

8.0). During each execution, we collected the data described
in Section 3.4. Table 3 summarizes the results in terms of the
averages for the application and database server. Notice that
the process-level results for the database server only include
the JM results for the ‘Oracle’ process. The other processes
were excluded from the table as their EC was reported as
zero by JM, despite them being active. The same holds for
the ‘Interface’ process on the application server, that runs
the GUI of DG: it was not active during the experiment as
the DG execution was scripted.

Comparing the measurements between releases, two dif-
ferences are clearly visible. First is the difference in average
run length of 12 seconds, which is surprising considering the
fact that the scripts used to stress both releases were iden-
tical. A second difference is the overall increase in energy
consumption of DG 8.0 as compared to 7.3 with 4.14 Wh
according to the WUP measurements; 2.97 Wh for the ap-
plication server and 1.17 Wh for the database server. Such
increase, to a lower extent, is also reflected in the JM data.
If the ‘idle with JM’ EC is subtracted from these differences
for 12 extra seconds, to remove the effect of having longer

527

Table 2: Comparison of server power consumption in “idle” and “idle with JM” scenarios.

Server
Idle Idle with JM Idle with JM according to JM

Total time Avg. Power (W) Total time Avg. Power (W) Total time Avg. Power (W)
Application 57:11:30 274.54 54:06:21 275.28 54:06:21 276.18
Database 57:11:30 252.59 54:06:21 252.79 54:06:21 253.39

measurements, we still find a difference of 2.05 Wh and 0.32
Wh that is on the account of DG.

The SEC for both DG releases is calculated by subtract-
ing the ‘idle with JM’ EC from the total EC as reported by
the WUP for the length of the run. These EC figures are
obtained by calculating the area under the power consump-
tion curve. For release 7.3 we find a SEC of 2.57 Wh for
the application server and 8.03 Wh for the database
server. Measurements for release 8.0 provide a SEC of 4.61
Wh and 8.34 Wh for the application and database
server. Although small, all differences found could add up
significantly with each installation and generated document.
Consider [9], where a savings of 0.25 W is shown to poten-
tially equal the power use of an American household for a
month.

4.3 Joulemeter Estimations
The SEC can also be calculated using the estimations pro-

vided by JM. Using this data we find a SEC of 1.45 Wh
and 5.69 Wh for the application and database server with
release 7.3, and 1.57 Wh and 5.72 Wh with release 8.0.
Straightaway we notice the differences between these SEC
figures and the ones obtained using WUP. In our data we
observe that the WUP on average provides a higher SEC
of 1.12 Wh and 2.34 Wh for the application and database
servers. This difference is probably due to an underestima-
tion given by the JM power model.

Apart from the total EC, the JM data allows us to calcu-
late the SEC according to measurements on process level, i.e.
the ‘Run’, ‘Server’ and ‘Connector’ processes on the applica-
tion server and the ‘Oracle’ process on the database server.
The measurements for release 7.3 provide a SEC of 0.89
Wh and 5.69 Wh for the application and database server.
With release 8.0 we find a SEC of 0.97 Wh and 5.62 Wh
respectively. The large differences in the SEC figures could
be an indication of a multitude of processes that become
active in the background alongside the DG processes.

5. DISCUSSION
In this section we discuss the results presented in the pre-

vious Section and answer our research sub-questions. The
complete dataset of the experiment is openly available2.

5.1 SQ1: Measuring the EC
The profiling method that was applied in the experiment

encompasses activities to ensure that the relevant variables
(that can be influenced) are under the control of the re-
searcher. It also provides guidelines for the data collection
and processing. By following the measurement protocol we
obtained consistent and comparable data across measure-
ments, confirmed by the small standard deviations found
with each item. We also did not come across any peculiari-
ties while collecting and processing the data. This allows us

2https://www.dropbox.com/sh/kk9
kastzo2cypur/AABA3ZuWbSi-F4k8o8Af6KJJa?dl=0

to conclude that the measurement method we adopted
is able to reliably measure the EC of a software prod-
uct.

5.2 SQ2: Relating EC to Software Elements
The percentages of EC that JM leaves unexplained on

process level (on average 61.9% for the application server
and 69.3% for the database server) indicate that we are still
unable to explain a relatively large amount of the energy
overhead of software execution.

One possible explanation is a lack of accuracy of JM. The
profiling tool is based upon a linear model that takes into
account only a limited amount of hardware resources [16].
Hence, it is reasonable to conclude that this energy estima-
tion gap is due to unaccounted resources in the linear model.
For this reason, we tried to build a special–purpose linear
model, trained by using performance data and the energy
consumption measured by the WUP. The model was built
by means of penalized linear regression [34], a regression
technique that enables to specify constraints for the model
features. This was done in order to enforce a positive value
for the predictors. This assumption builds upon the ratio-
nale that a software process will use a positive and finite
share of the system resources.

Our special-purpose model outperforms JM at machine-
level prediction i.e. trying to predict the total system EC,
see Figure 3. The model has a MAPE of 0.004 when com-
pared to WUP measurements, whereas JM has 0.005. How-
ever, the process-level prediction is quite overestimated, prob-
ably due to an incorrect determination of the intercept term.
This is a strong indication that other factors are playing a
role. Examples might be networking devices, or OS-level
processes and system calls that the profiler is unable to de-
tect as separate processes. Hence, further work must be

Figure 3: Performance of our special-purpose re-
gression model (in red) vs. Joulemeter (in blue).
Measured values by WUP are in black.

528

Table 3: Summary of the experimental results for both DG releases.
Application server Database server

7.3 8.0 Diff 7.3 8.0 Diff
µ σ µ σ ∆ µ σ µ σ ∆

Run length (hh:mm:ss) 2:48:16 4 s 2:48:28 7 s +12 s 2:48:16 4 s 2:48:28 7 s +12 s
Processed Documents 5014 5014 5014 5014
WUP (Wh) 774.59 1.18 777.56 0.84 +2.97 716.99 0.45 718.16 0.61 +1.17

Run
Total (Wh) 765.20 0.32 766.21 0.63 +1.01
Process (Wh) 0.0002 0.00009 0.0003 0.0001 +0.0001

Server
Total (Wh) 765.18 0.33 766.21 0.63 +1.03
Process (Wh) 0.744 0.00002 0.758 0.007 +0.014

Connector
Total (Wh) 765.19 0.34 766.22 0.63 +.03
Process (Wh) 0.144 0.004 0.22 0.004 +0.76

Oracle
Total (Wh) 706.37 0.29 707.27 0.51 +0.9
Process (Wh) 5.63 0.02 5.62 0.02 -0.01

done to reliably attribute EC to specific software elements.
That being said, our profiling method allows us to

observe relevant changes between the different pro-
cesses composing our software product which allows us
to make informed hypotheses about the impact of each el-
ements on our software product. For example, the ‘Oracle’
process in the database server is by far the most energy–
consuming. This indicates that the database is a potential
hotspot [29] and, as such, a candidate for optimization.

5.3 SQ3: Relate EC Differences to Software
Changes

The most apparent difference between the DG releases
is the introduction of the encryption provider element on
the application server. Unfortunately, as this element is a
dll, we were not able to perform measurements specifically
on this element and thus could not be identified separately
from the SEC figures. We are, however, able to analyze the
effects that are caused by the addition of this elements and
infer possible explanations for EC differences.

According to the architect, the introduction of the en-
cryption provider was accompanied by minor changes in the
‘Server’ element. Interestingly though, while an increase in
EC is found in the ‘Server’ element, the main EC difference
was found in the ‘Connector’ element going from 0.144 Wh
to 0.215 Wh. A difference that could not be explained based
on the adjustments applied in release 8.0. This unforeseen
change in EC was reason for the architect to further inves-
tigate the matter in the near future.

With regard to the difference in run length an explanation
is sought in the encryption that is applied, possibly extend-
ing the time required to set up a connection and communi-
cate data. Apart from increased duration of the run, we also
found that the net number of seconds that JM reports that
energy is consumed increases with release 8.0 for the ‘Server’,
‘Connector’ and ‘Oracle’ processes. Combining this finding
with the linear model applied by JM, more seconds of mea-
surement, i.e. more activity, should mean a higher EC for
these processes. However, this only holds for the processes
running on the application server.

Overall we can conclude that the changes applied in re-
lease 8.0 increased the SEC with 4.14 Wh for the generation
of 5014 documents. With these results stakeholders of DG
are now able to quantify and justify changes in EC. Consid-
ering the cause of this increase, i.e. being compliant with a
new document management system and ready for the Gen-
eral Data Protection Regulation, the stakeholders accept the

increase in EC. To increase efficiency, however, the software
architect will still look into the ‘Connector’ element.

The results in this section show that, by using the re-
sults of the profiling method, we are able to think of
grounded explanations for differences found in the
EC across releases of a software product. Although
our profiling method requires more detailed measurements
to draw hard conclusions, we are able to provide guidance
when EC aspects are discussed and point out possible unex-
pected differences.

6. THREATS TO VALIDITY
This section presents the threats to internal, external and

construct validity as required by [14,31,36].

6.1 Internal Validity
The internal validity is concerned with the uncontrolled

factors that might affect the results of the experiment.
JM reliability. Although we were able to clearly iden-

tify differences between the estimated energy consumption
of the selected processes, the estimations only accounted for
percentages of the variation in EC. A brief cross–validation,
conducted by means of a self-obtained regression model ba-
sed on resource consumption information, reveals a much
higher impact of single processes on total energy consump-
tion than estimated by Joulemeter. Hence, additional work
is needed to have a clear and reliable attribution of the en-
ergy impact of single processes.

Measurement Interval. Both hardware and software
measurement approaches have a sampling interval of one
second. Given the nature of electrical power, this low sam-
pling frequency might result in an underestimation of EC
due to high-frequency energy components. However, this
interval is also commonly applied in the state of the art [9].

OS Effects. In the experiment the EC of the OS was in-
cluded in the reported SEC for DG as we could not measure
the OS separately during a measurement. Ideally, the OS
would be considered as a separate layer with its own, distin-
guishable EC. Also, there is the possibility of OS processes
and services that might become active during a measure-
ment without a direct, controllable trigger. Deep analysis of
the performance measurements could show whether such an
activity has occurred during a measurement, provided that
the activity can be measured to begin with.

EC Overhead. The EC of software not related to DG
was measured and taken into account (as overhead) while
calculating the SEC. These measurements were performed

529

separately to obtain clean overhead figures. However, by do-
ing so we do not include any effect of having multiple soft-
ware applications running simultaneously. Further research
is required to fully understand and control this effect.

6.2 External validity
The external validity addresses the extent to which the

results can be generalized beyond the experiment.
Experiment Setting. Our experiment is limited to a

single application and tested on a single testbed. Hence, we
cannot generalize the effect size of changes in the EC on our
target population of commercial software products. Never-
theless, we argue that our work can be useful to generate
awareness in software developers and architects about the
knowledge gap in software energy efficiency.

Hardware Specificity. One of the main factors that
could influence the EC measurements is the specific hard-
ware; new generations of hardware often boast improved
performance and EE. For this reason we explicitly added,
among others, idle EC in the measurement method, to create
a matching EC profile for the hardware. We argue that dif-
ferences might be found when comparing the absolute num-
bers, but that the relative proportions should be consistent
across different hardware setups.

Measurement tooling. Both hardware and software
measurement approaches are applied to obtain the experi-
ment data. Given the diversity of power meters and software
tools available, each with their own advantages and limits,
there is an unavoidable dependency on the equipment when
it comes to the accuracy and detail of the measurements.

6.3 Construct validity
Construct validity addresses the degree to which the mea-

sures capture the concepts of interest in the experiment.
Metrics vs. outcome. A central aspect in performing

EC measurements is to have a clear view on the metrics that
should be reported. In the experiment method we included
a section on choosing the appropriate metrics for the exper-
iment and the stakeholders. In our experiment design, the
measurements reflect the data required to calculate the met-
rics. With regard to the metrics themselves, a solid list is
already available in the literature [2].

Definition of change. Our goal is to relate software
changes with their effects on the EC. Although we can em-
pirically assess the difference between the energy consump-
tion of the two application releases, we do not aim to provide
a general definition of what a ‘change’ represents in software.
For that purpose, we simply use two different releases of the
DG product. Then, we provide insight as to which specific
changes could affect the observed difference in EC. Further
work is needed to pinpoint (and predict) the exact energy
consumption impact of a generic software change.

7. RELATED WORK
Measurement method: EC measurements on mobile

devices are commonly performed to prevent the software
from having a deteriorating effect on the battery life of the
device., e.g. by software tools performing measurements on
the device itself (Joulemeter [8], eprof [25]), or by emula-
tion tools that allow developers to estimate the EC of their
application on their development stations [21]. Since bat-
tery drain can be monitored relatively easily and mobile
devices have similar hardware architectures, approaches sur-

face where EC is related to source lines [19]. Additionally, as
performance profilers are quite mature in mobile computing,
EC profilers can build upon such tools [20].

In the area of large scale software products, multiple ap-
proaches can be identified for energy profiling in complex
environments. A commonly accepted approach is to use
performance measurements to explain and characterize soft-
ware and its EC characteristics [2, 15]. Others focus on
finding more fine-grained power models [22] used by multi-
ple tools to deliver more accurate measurements at software
level. Finding a regression model using EC and performance
data could be considered part of green mining [10]. Unfortu-
nately, due to lack of publicly available data, green mining
is still an immature area.

Although different information is used, the ‘JalenUnit’
[23] can be used to, a.o., detect energy bugs and understand
energy distribution. The ‘JalenUnit’ infers the energy con-
sumption model of software libraries from execution traces.
Despite the differences in approach and accuracy, measure-
ment methods all focus on identifying energy hotspots [24].

Software architecture: Although diverse, the results
in this field of research share a common principle able to
relate them to software and software design; SA. For exam-
ple, recent study shows data locality plays an important role
in the EC of multi-threaded programs [27]. An information
viewpoint [30] could be used to structurally consider this as-
pect. Characterizing software using performance measure-
ments on the other hand is more related to the deployment
and functional viewpoint. Combining multiple viewpoints of
a software product, i.e. creating a perspective [30], enables
stakeholder to structurally address concerns on different as-
pects of the system design.

SA also allows a stakeholder to explore design trade-offs
for the software. Increased performance, a quality attribute
for the software, does not always have a direct relation with
EC [35]. A different design trade-off is to exchange modules
or services for more energy efficient sustainable variants, e.g.
cloud federation [28]. SA helps to identify adjustments on
different levels in complex environments [5].

EC comparison between releases: Comparing aspects
across releases is often discussed in terms of software evo-
lution [32]. However, only few papers were found that in-
vestigate the EC of software and include a comparison be-
tween different releases. In [9] a comparison is made between
three releases of rTorrent by ‘mining’EC and performance
data. A direct relation is described between the granular-
ity of the measurements and the ability to determine the
cause of changes in EC. Another approach is to character-
ize software using Petri nets [38]. Assuming that a complex
software product can be fitted into a Petri net, analysis could
show the path of lowest EC to perform a specific task. If the
changes in a new release can be included in the Petri net,
the difference(s) between releases can be quantified.

Awareness: A different approach is to increase developer
awareness in software energy efficiency. The ‘Eco’ program-
ming model [39], for example, introduces energy and tem-
perature awareness in relation to the software and challenges
developers to find energy friendly solutions. Awareness of
the software community about the impact of software on EC
is increasing [1]. However, Pinto et al. [26] point out that
this is still far too little to make a difference. In spite of
recent progress, the state-of-the-Art in software energy effi-
ciency did not reach sufficient quality yet to deliver reliable,

530

detailed measurements. Comparing the EC between releases
can be used to create awareness at the right place for a SPO,
and hence exert control over the EC of their software.

8. CONCLUSIONS
In this paper we present the results of an experiment per-

formed on the EC of a commercial software product. We
consider the perspective of a SPO aiming to exert control
over the EC of its software products, and posed the follow-
ing main research question: ‘How can we reliably com-
pare the energy consumption of large scale software prod-
ucts across different releases?’. We provide an answer to
this question by investigating three sub-research questions.

To reliably measure the EC of a software product (SQ1),
we followed a prescribed methodology to perform an exper-
iment extended with hands-on instructions to create an en-
ergy profile of the hardware, obtain EC data that is consis-
tent across measurements and ensure that the data is ready
for analysis. We managed to successfully perform an exper-
iment in an industrial setting, using a commercial software
product. The reported EC metrics proved useful to commu-
nicate and discuss the results with industrial stakeholders.

The second and third sub-questions aim at providing an
SPO with the required information to actually control the
EC of a software product. Starting with relating EC to
individual software elements (SQ2), our experiment includes
the estimation of the EC at process level by means of energy
profilers. Our analysis showed that energy profilers can only
explain percentages of the total EC for the application server
and an even lower percentage for the database server. We
tried to find a regression model to fill this gap in the data,
but were (yet) unable to create an accurate model at the
process level. However, our method successfully identified
changes in EC at process level.

The final sub-question (SQ3) addresses how changes in
EC can be related to changes in the software elements. This
requires a clear overview of the changes that are made and
an energy profile of the application. Any differences found
in the measurements between releases are considered to be
caused by at least one of these changes and as such should be
further investigated using the data available. Ideally, aspects
of the energy profile can be related to the individual software
elements in order to find quantifiable possible explanations
for any changes in the EC. Our experiment showed that the
total EC of DG increased with release 8.0 w.r.t. 7.3. While
this increase was expected, actual EC data (provided by the
WUP) now verifies it quantitatively. Relating the increased
EC to the changes in the software, stakeholders deemed this
increase as justifiable, and the SPO experts could use the
quantification to establish a better causation link.

An SPO that follows the experiment design can compare
the EC of their products across different releases and gather
insights in where adjustments should be made to decrease
EC. In future work, we plan to apply our method during the
development phase, aiming to provide software developers
with direct EC feedback while developing.

Software energy efficiency is a pioneering field that re-
quires a large amount of empirical evidence to be produced.
We strongly encourage other researchers to contribute to this
field of research, and we make our data available (see Section
Section 4)for reproduction and replication of our results, or
to allow the discovery of new and interesting findings.

9. ACKNOWLEDGMENTS
We would like to thank Edwig Huisman, Yuri Idris and

Ronald Roos for their help in setting up the experiment and
actively proposing and discussing possibilities to improve the
experiment, and Fabiano Dalpiaz, Garm Lucassen and Leo
Pruijt for their valuable discussions and feedback.

10. REFERENCES
[1] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook,

B. Penzenstadler, N. Seyff, and C. Venters.
Sustainability Design and Software: The Karlskrona
Manifesto. In Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on,
volume 2, pages 467–476. IEEE, May 2015.

[2] P. Bozzelli, Q. Gu, and P. Lago. A systematic
literature review on green software metrics. Technical
report, Technical Report: VU University Amsterdam,
2013.

[3] H. Chen, B. Luo, and W. Shi. Anole: A case for
energy-aware mobile application design. In Parallel
Processing Workshops (ICPPW), 2012 41st
International Conference on, pages 232–238, 2012.

[4] C. Ebert and S. Brinkkemper. Software product
management - an industry evaluation. Journal of
Systems and Software, 95(0):10 – 18, 2014.

[5] A. M. Ferreira and B. Pernici. Managing the complex
data center environment: an integrated energy-aware
framework. Computing, pages 1–41, 2014.

[6] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser,
and J. Visser. Seflab: A lab for measuring software
energy footprints. In GREENS, pages 30–37. IEEE,
May 2013.

[7] K. Grosskop and J. Visser. Identification of
application-level energy optimizations. Proceeding of
ICT for Sustainability (ICT4S), pages 101–107, 2013.

[8] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan,
T. Bhat, and S. Emran. Detecting energy patterns in
software development. Microsoft Research Microsoft
Corporation One Microsoft Way Redmond, WA,
98052, 2011.

[9] A. Hindle. Green mining: a methodology of relating
software change and configuration to power
consumption. Empirical Software Engineering, pages
1–36, 2013.

[10] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow,
J. C. Campbell, and S. Romansky. Greenminer: A
hardware based mining software repositories software
energy consumption framework. In Proceedings of the
11th Working Conference on Mining Software
Repositories, MSR 2014, pages 12–21, New York, NY,
USA, 2014. ACM.

[11] E. Jagroep, J. M. E. M. van der Werf, S. Jansen,
M. Ferreira, and J. Visser. Profiling energy profilers.
In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, pages 2198–2203. ACM, 2015.

[12] E. A. Jagroep, J. M. E. M. van der Werf, R. Spauwen,
L. Blom, R. van Vliet, and S. Brinkkemper. An energy
consumption perspective on software architecture. In
9th European Conference on Software Architecture,
number 9278 in LNCS, pages 239–247. Springer, 2015.

[13] S. Jansen, S. Brinkkemper, J. Souer, and
L. Luinenburg. Shades of gray: Opening up a software

531

producing organization with the open software
enterprise model. Journal of Systems and Software,
85(7):1495–1510, 2012.

[14] N. Juristo and A. M. Moreno. Basics of Software
Engineering Experimentation. Springer Publishing
Company, Incorporated, 1st edition, 2010.

[15] G. Kalaitzoglou, M. Bruntink, and J. Visser. A
practical model for evaluating the energy efficiency of
software applications. In ICT for Sust. 2014
(ICT4S-14). Atlantis Press, 2014.

[16] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A.
Bhattacharya. Virtual machine power metering and
provisioning. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, pages
39–50, New York, NY, USA, 2010. ACM.

[17] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,
P. W. Jones, D. C. Hoaglin, K. E. Emam, and
J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions
on Software Engineering, 28(8):721–734, 2002.

[18] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A.
Müller, F. Paulisch, G. Scanniello, B. Penzenstadler,
and O. Zimmermann. Exploring initial challenges for
green software engineering: summary of the first
GREENS workshop, at ICSE 2012. ACM SIGSOFT
Software Engineering Notes, 38(1):31–33, 2013.

[19] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating source line level energy information for
android applications. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 78–89, New York, NY,
USA, 2013. ACM.

[20] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and
detecting performance bugs for smartphone
applications. In Proceedings of the 36th International
Conference on Software Engineering, pages 1013–1024.
ACM, 2014.

[21] R. Mittal, A. Kansal, and R. Chandra. Empowering
developers to estimate app energy consumption. In
Proceedings of the 18th annual international
conference on Mobile computing and networking,
Mobicom ’12, pages 317–328, New York, NY, USA,
2012. ACM.

[22] A. Noureddine, R. Rouvoy, and L. Seinturier. A
review of energy measurement approaches. SIGOPS
Operating Systems Review, 47(3):42–49, Nov. 2013.

[23] A. Noureddine, R. Rouvoy, and L. Seinturier. Unit
testing of energy consumption of software libraries. In
Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, pages 1200–1205, New
York, NY, USA, 2014. ACM.

[24] A. Noureddine, R. Rouvoy, and L. Seinturier.
Monitoring energy hotspots in software. Automated
Software Engineering, pages 1–42, 2015.

[25] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proceedings
of the 7th ACM european conf. on Computer Systems,
EuroSys ’12, pages 29–42, New York, NY, USA, 2012.
ACM.

[26] G. Pinto, F. Castor, and Y. D. Liu. Mining questions
about software energy consumption. In Proceedings of

the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 22–31, New York, NY,
USA, 2014. ACM.

[27] G. Pinto, F. Castor, and Y. D. Liu. Understanding
energy behaviors of thread management constructs.
SIGPLAN Not., 49(10):345–360, Oct. 2014.

[28] G. Procaccianti, P. Lago, and G. A. Lewis. A
catalogue of green architectural tactics for the cloud.
In Maint. and Evol. of Service-Oriented and
Cloud-Based Systems (MESOCA), 2014 IEEE 8th
Int’l Symp. on the, pages 29–36, Sept 2014.

[29] G. Procaccianti, P. Lago, A. Vetro, D. M. Fernández,
and R. Wieringa. The green lab: Experimentation in
software energy efficiency. In Proceedings of the 37th
International Conference on Software Engineering
(ICSE), 2015.

[30] N. Rozanski and E. Woods. Software systems
architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley, 2012.

[31] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical software engineering,
14(2):131–164, 2009.

[32] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan,
M. W. Godfrey, M. Nasser, and P. Flora. An
exploratory study of the evolution of communicated
information about the execution of large software
systems. Journal of Software: Evolution and Process,
26(1):3–26, 2014.

[33] Y. Sun, Y. Zhao, Y. Song, Y. Yang, H. Fang, H. Zang,
Y. Li, and Y. Gao. Green challenges to system
software in data centers. Frontiers of Comp. Sc. in
China, 5(3):353–368, 2011.

[34] R. Tibshirani. Regression shrinkage and selection via
the lasso. J. R. Stat. Soc. Series B Stat. Methodol.,
58(1):267–288, 1 Jan. 1996.

[35] A. E. Trefethen and J. Thiyagalingam. Energy-aware
software: Challenges, opportunities and strategies.
Journal of Computational Science, 4(6):444 – 449,
2013. Scalable Algorithms for Large-Scale Systems
Workshop (ScalA2011), Supercomputing 2011.

[36] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson,
B. Regnell, and A. Wessln. Experimentation in
Software Engineering. Springer Publishing Company,
Incorporated, 2012.

[37] L. Xu and S. Brinkkemper. Concepts of product
software. European Journal of Information Systems,
16(5):531–541, 2007.

[38] G. Zhang, K. Zhang, X. Zhu, M. Chen, C. Xu, and
Y. Shao. Modeling and analyzing method for cps
software architecture energy consumption. Journal of
Software, 8(11), 2013.

[39] H. Zhu, C. Lin, and Y. Liu. A programming model for
sustainable software. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference
on, volume 1, pages 767–777, May 2015.

532

