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Abstract
We show how to represent a simple polygon P by a (pixel-based) grid polygon Q that is simple
and whose Hausdorff or Fréchet distance to P is small. For any simple polygon P , a grid polygon
exists with constant Hausdorff distance between their boundaries and their interiors. Moreover,
we show that with a realistic input assumption we can also realize constant Fréchet distance
between the boundaries. We present algorithms accompanying these constructions, heuristics to
improve their output while keeping the distance bounds, and experiments to assess the output.
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1 Introduction

Transforming the representation of objects from the real plane onto a grid has been studied
for decades due to its applications in computer graphics, computer vision, and finite-precision
computational geometry [14]. Two interpretations of the grid are possible: (i) the grid graph,
consisting of vertices at all points with integer coordinates, and horizontal and vertical edges
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Figure 1 From left to right: input; symmetric-difference optimal result is not a grid polygon; grid
polygon computed by our Fréchet algorithm; grid polygon computed by our Hausdorff algorithm.

between vertices at unit distance; (ii) the pixel grid, where the only elements are pixels (unit
squares). In the latter, one can choose between 4-neighbor or 8-neighbor grid topology. In
this paper we adopt the pixel grid view with 4-neighbor topology.

The issues involved when moving from the real plane to a grid begin with the definition of
a line segment on a grid, known as a digital straight segment [18]. For example, it is already
difficult to represent line segments such that the intersection between any pair is a connected
set (or empty). In general, the challenge is to represent objects on a grid in such a way that
certain properties of those objects in the real plane transfer to related properties on the grid;
connectedness of the intersection of two line segments is an example of this.

While most of the research related to digital geometry has the graphics or vision perspec-
tive [17, 18], computational geometry has made a number of contributions as well. Besides
finite-precision computational geometry [12, 14] these include snap rounding [11, 13, 16], the
integer hull [4, 15], and consistent digital rays with small Hausdorff distance [10].

Mapping polygons. We consider the problem of representing a simple polygon P as a
similar polygon in the grid (see Fig. 1). A grid cycle is a simple cycle of edges and vertices
of the grid graph. A grid polygon is a set of pixels whose boundary is a grid cycle. This
problem is motivated by schematization of country or building outlines and by nonograms.

The most well-known form of schematization in cartography is called a metro map, in
which metro lines are shown in an abstract manner by polygonal lines whose edges typically
have only four orientations. It is common to also depict region outlines with these orientations
on such maps. It is possible to go one step further in schematization by using only integer
coordinates for the vertices, which often aligns vertices vertically or horizontally, and leads
to a more abstracted view. Certain types of cartograms like mosaic maps [8] are examples of
maps following this visualization style. The version based on a square grid is often used to
show electoral votes after elections. Another cartographic application of grid polygons lies in
the schematization of building outlines [20].

Nonograms – also known as Japanese or picture logic puzzles – are popular in puzzle
books, newspapers, and in digital form. The objective is to reconstruct a pixel drawing from
a code that is associated with every row and column. The algorithmic problem of solving
these puzzles is well-studied and known to be NP-complete [6]. To generate a nonogram from
a vector drawing, a grid polygon needs to be made on a coarse grid. We are interested in the
generation of grid polygons from shapes like animal outlines, which could be used to construct
nonograms. To our knowledge, two papers address this problem. Ortíz-García et al. [22]
study the problem of generating a nonogram from an image; both the black-and-white and
color versions are studied. Their approach uses image processing techniques and heuristics.
Batenburg et al. [5] also start with an image, but concentrate on generating nonograms from
an image with varying difficulty levels, according to some definition of difficulty.

Considering the above, our work also relates to image downscaling (e.g. [19]), though this
usually starts from a raster image instead of continuous geometric objects. Kopf et al. [19]
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P Q1 Q2

Figure 2 dH(P,Q1) is small but dH(∂P, ∂Q1) is not. dH(P,Q2) and dH(∂P, ∂Q2) are both small
but the Fréchet distance dF (∂P, ∂Q2) is not.

apply their technique to vector images, stating that the outline remains connected where
possible. In contrast to our work, the quality is not measured as the geometric similarity
and the conditions necessary to guarantee a connected outline remain unexplored.

Similarity. There are at least three common ways of defining the similarity of two simple
polygons: the symmetric difference1, the Hausdorff distance [1], and the Fréchet distance [2].
The first does not consider similarity of the polygon boundaries, whereas the third usually
applies to boundaries only. The Hausdorff distance between polygon interiors and between
polygon boundaries both exist and are different measures; this distance can be directed or
undirected. Let X and Y be two closed subsets of a metric space. The (directed) Hausdorff
distance dH(X,Y ) from X to Y is defined as the maximum distance from any point in X to
its closest point in Y . The undirected version is the maximum of the two directed versions.
To define the Fréchet distance, let X and Y be two curves in the plane. The Fréchet distance
dF (X,Y ) is the minimum leash length needed to let a man walk over X and a dog over Y ,
where neither may walk backwards (a formal definition can be found in [2]).

Contributions. In Section 2 we show that any simple polygon P admits a grid polygon Q
with dH(P,Q) ≤ 1

2
√

2 and dH(Q,P ) ≤ 3
2
√

2 on the unit grid. Furthermore, the constructed
polygon satisfies the same bounds between the boundaries ∂P and ∂Q. This is not equivalent,
since the point that realizes the maximum smallest distance to the other polygon may lie
in the interior (Fig. 2). Our proof is constructive, but the construction often does not give
intuitive results (Fig. 2, P and Q2). Therefore, we extend our construction with heuristics
that reduce the symmetric difference whilst keeping the Hausdorff distance within 3

2
√

2. The
Fréchet distance dF [2] between two polygon boundaries is often considered to be a better
measure for similarity. Unlike the Hausdorff distance, however, not every polygon boundary
∂P can be represented by a grid cycle with constant Fréchet distance. In Section 3 we present
a condition on the input polygon boundary related to fatness (in fact, to κ-straightness [3])
and show that it allows a grid cycle representation with constant Fréchet distance. Finally,
in Section 4 we evaluate how our algorithms perform on realistic input polygons.

2 Hausdorff distance

We consider the problem of constructing a grid polygon Q with small Hausdorff distance to
P . Though minimizing the Hausdorff distance is NP-hard (Theorem 1, see [7]), we present
an algorithm that achieves low, constant Hausdorff distance between both the boundaries
and the interiors of the input polygon P and the resulting grid polygon Q. We first show

1 The symmetric difference between two sets A and B is defined as the set (A \B) ∪ (B \A). When using
symmetric difference as a quality measure, we actually mean the area of the symmetric difference.
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M(c)

c

Figure 3 Module M(c)
(dashed) of a cell c.

Q

P

Figure 4 Example of the Hausdorff algorithm; the input and
output are shown on the right. Colors: Q1, Q2, Q3, Q4.

how to construct such a grid polygon. Then, we provide an efficient algorithm to compute Q.
Finally, we describe heuristics that can be used to improve the results in practice.

I Theorem 1. Given a polygon P , it is NP-hard to decide whether there exists a grid polygon
Q such that both dH(∂P, ∂Q) ≤ 1

2 and dH(∂Q, ∂P ) ≤ 1
2 .

2.1 Construction
We represent the grid polygon Q as a set of cells (or pixels). We say that two cells are
adjacent if they share a segment. If two cells share only a point, then they are point-adjacent.
If two cells c1 ∈ Q and c2 ∈ Q are point-adjacent, and there is no cell c ∈ Q that is adjacent
to both c1 and c2, then c1 and c2 share a point-contact. We construct Q as the union of four
sets Q1, Q2, Q3, Q4 (not necessarily disjoint). To define these sets, we define the module
M(c) of a cell c as the 2× 2-region centered at the center of c (see Fig. 3). Furthermore, we
assume the rows and columns are numbered, so we can speak of even-even cells, odd-odd
cells, odd-even cells, and even-odd cells. The four sets are defined as follows; see also Fig. 4.

Q1: All cells c for whichM(c) ⊆ P .
Q2: All even-even cells c for whichM(c) ∩ P 6= ∅.
Q3: For all cells c1, c2 ∈ Q1 ∪Q2 that share a point-contact, the two cells that are adjacent

to both c1 and c2 are in Q3.
Q4: A minimal set of cells that makes Q connected, and where each cell c ∈ Q4 is adjacent

to two cells in Q2 andM(c) ∩ P 6= ∅.

Set Q1 ∪Q2 is sufficient to achieve the desired Hausdorff distance. We add Q3 to resolve
point-contacts, and Q4 to make the set Q simply connected (a polygon without holes). The
lemmas below show that Q is indeed a grid polygon.

I Lemma 2. The set Q1 ∪Q2 is hole-free, even when including point-adjacencies.

Proof. For the sake of contradiction, let H be a maximal set of cells comprising a hole. Let
set B contain all cells in Q1 ∪Q2 that surround H and are adjacent to a cell in H. Since Q2
contains only even-even cells, every cell in Q2 ∩B is (point-)adjacent to two cells in Q1 ∩B
(see Fig. 5). Hence, the outer boundary of the union of all modules of cells in Q1 ∩B is a
single closed curve C. Since C ⊂ P by the definition of Q1, the interior of C must also be in
P . Since all modules of cells in H lie completely inside C, they are also in P , so the cells in
H must all be in Q1. This contradicts that H is a hole. J
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H

C

Figure 5 A hole in Q. Colors: Q1 ∩B; Q2 ∩B.

I Lemma 3. The set Q is simply connected and does not contain point-contacts.

Proof. Consider a point-contact between two cells c1, c2 ∈ Q1 ∪Q2 and a cell c /∈ Q1 ∪Q2
that is adjacent to both c1 and c2 (so c ∈ Q3). Since Q2 contains only even-even cells, we
may assume that c1 ∈ Q1. Recall thatM(c1) ⊆ P by definition. We may further assume
that c1 is an odd-odd cell, for otherwise a cell in Q2 would eliminate the point-contact.
Hence, all cells point-adjacent to c1 are in Q1 ∪Q2, and thus c has three adjacent cells in
Q1 ∪Q2. This implies that adding c ∈ Q3 to Q1 ∪Q2 cannot introduce point-contacts or
holes. Similarly, cells in Q4 connect two oppositely adjacent cells in Q2, and thus cannot
introduce point-contacts (or holes, by definition). Combining this with Lemma 2 implies
that Q is hole-free and does not contain point-contacts.

It remains to show that Q is connected, that is, the set Q4 exists. Consider two cells
c1, c2 ∈ Q. We show that c1 and c2 are connected in Q. We may further assume that
c1, c2 ∈ Q2, as cells in Q1 ∪Q3 ∪Q4 must be adjacent or point-adjacent to a cell in Q2. Let
p ∈ M(c1) ∩ P , q ∈ M(c2) ∩ P and consider a path π between p and q inside P . Every
even-even cell c withM(c) ∩ π 6= ∅ must be in Q2. Furthermore, the modules of even-even
cells cover the plane. Every cell connecting a consecutive pair of even-even cells intersecting
π satisfies the conditions of Q4, and thus can be added to make c1 and c2 connected in Q. J

Upper bounds. To prove our bounds, note thatM(c) ∩ P 6= ∅ for every cell c ∈ Q. This is
explicit for cells in Q1, Q2, and Q4. For cells in Q3, note that these cells must be adjacent
to a cell in Q1, and thus contain a point in P .

I Lemma 4. dH(P,Q), dH(∂P, ∂Q) ≤ 1
2
√

2.

Proof. Let p ∈ P and consider the even-even cell c such that p ∈M(c). Since c ∈ Q2, the
distance dH(p,Q) ≤ dH(p, c) ≤ 1

2
√

2. Now consider a point p ∈ ∂P . There is a 2× 2-set of
cells whose modules contain p. This set contains an even-even cell c ∈ Q and an odd-odd
cell c′ /∈ Q. The latter is true, because odd-odd cells in Q must be in Q1. Therefore, the
point q shared by c and c′ must be in ∂Q. Thus, dH(p, ∂Q) ≤ dH(p, q) ≤ 1

2
√

2. J

I Lemma 5. dH(Q,P ), dH(∂Q, ∂P ) ≤ 3
2
√

2.

Proof. Let q be a point in Q and let c ∈ Q be the cell that contains q. SinceM(c) ∩ P 6= ∅,
we can choose a point p ∈ M(c) ∩ P . It directly follows that dH(q, P ) ≤ dH(q, p) ≤ 3

2
√

2.
Now consider a point q ∈ ∂Q, and let c ∈ Q and c′ /∈ Q be two adjacent cells such that
q ∈ ∂c ∩ ∂c′. We claim that (M(c) ∪M(c′)) ∩ ∂P 6= ∅. If c /∈ Q1, then M(c) * P . As
furthermoreM(c)∩P 6= ∅, we have thatM(c)∩ ∂P 6= ∅. On the other hand, if c ∈ Q1, then
M(c) ⊆ P , soM(c′) ∩ P 6= ∅. As furthermoreM(c′) * P (otherwise c′ ∈ Q1), we have that
M(c′) ∩ ∂P 6= ∅. Let p ∈ (M(c) ∪M(c′)) ∩ ∂P . Then dH(q, ∂P ) ≤ dH(q, p) ≤ 3

2
√

2. J

I Theorem 6. For every simple polygon P a simply connected grid polygon Q without point-
contacts exists such that dH(P,Q), dH(∂P, ∂Q) ≤ 1

2
√

2 and dH(Q,P ), dH(∂Q, ∂P ) ≤ 3
2
√

2.
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3/2

3/2

P

Q

Figure 6 A polygon that does not admit a grid polygon with Hausdorff distance smaller than
3/2. The brown line signifies an infinitesimally thin polygon.

P ′ P ′′P

Figure 7 A simple polygon P with its vertical decomposition, and the construction of P ′ and P ′′.

Lower bound. Fig. 6 illustrates a polygon P for which no grid polygon Q exists with low
d(Q,P ). A naive construction results in a nonsimple polygon (left). To make it simple, we can
either remove a cell (center) or add a cell (right). Both methods result in dH(Q,P ) ≥ 3/2− ε.
Alternatively, we can fill the entire upper-right part of the grid polygon (not shown), resulting
in a high dH(Q,P ). This leads to the following theorem.

I Theorem 7. For any ε > 0, there exists a polygon P for which no grid polygon Q exists
with d(Q,P ) < 3/2− ε.

In the L∞ metric, the lower bound of 3/2− ε given in Fig. 6 also holds. A straightforward
modification of the upper-bound proofs can be used to show that the Hausdorff distance is
at most 3/2 in the L∞ metric. In other words, our bounds are tight under the L∞ metric.

2.2 Algorithm
To compute a grid polygon for a given polygon P with n edges, we need to determine the
cells in the sets Q1–Q4. This is easy once we know which cells intersect ∂P . One way to do
this is to trace the edges of P in the grid. The time this takes is proportional to the number
of crossings between cells and ∂P . Let us denote the number of grid cells that intersect ∂P
by b. Clearly, there are simple polygons with Θ(nb) polygon boundary-to-cell crossings. We
show how to achieve a time bound of O(n+B), where B is the number of cells in the output.
The key idea is to first compute the Minkowski sum of ∂P with a square of side length 2 and
use that to quickly find the cells intersecting ∂P .

To compute this Minkowski sum we first compute the vertical decomposition of ∂P , see
Fig. 7. For every of the O(n) quadrilaterals, determine the parts that are within vertical
distance 1 from the bounding edges. The result P ′ is a simple polygon with holes with a
total of O(n) edges, and ∂P ⊂ P ′. We compute the horizontal decomposition of every hole
and the exterior of P ′ and determine all parts that are within horizontal distance 1 from
the bounding edges. We add this to P ′, giving P ′′. These steps take O(n) time if we use
Chazelle’s triangulation algorithm [9]. Essentially, the above steps constitute computing the
Minkowski sum of ∂P with a square of side length 2, centered at the origin and axis-parallel.

I Lemma 8. For any cell c, at most four edges of P ′′ intersect its boundary twice.
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Proof. For any edge of P ′′, by construction, the whole part vertically above or below it
over distance at least 2 is inside P ′′, and the same is true for left or right. For any edge e
that intersects the boundary of c twice, one side of that edge is fully in the interior of P ′′,
and hence, cannot contain other edges of P ′′. Hence, e can be charged uniquely to a corner
of c. J

I Corollary 9. The number of polygon boundary-to-cell crossings of P ′′ is O(n+ b), where b
is the number of grid cells intersecting ∂P .

By tracing the boundary of P ′′, we can identify all cells that intersect it. Then we can
determine all cells that intersect the boundary of P , because these are the cells that lie
fully inside P ′′. The modifications needed to find all cells whose module lies inside P are
straightforward. In particular, we can find all cells whose module lies inside P , but have a
neighbor for which this is not the case in O(n + b) time. This allows us to find the O(B)
cells selected in step Q1 in O(n+B) time. Steps Q2 and Q3 are now straightforward as well.

We now have a number of connected components of chosen grid cells. No component
has holes, and if there are k components, we can connect them into one with only k − 1
extra grid cells. We walk around the perimeter of some component and mark all non-chosen
cells adjacent to it. If a cell is marked twice, it is immediately removed from consideration.
Cells that are marked once but are adjacent to two chosen cells will merge two different
components. We choose one of them, then walk around the perimeter of the new part and
mark the adjacent cells. Again, cells that are marked twice (possibly, both times from the
new part, or once from the old and once from the new part) are removed from consideration.
Continuing this process unites all components without creating holes.

I Theorem 10. For any simple polygon P with n edges, we can determine a set of B cells that
together form a grid polygon Q in O(n+B) time, such that dH(P,Q), dH(∂P, ∂Q) ≤ 1

2
√

2
and dH(Q,P ), dH(∂Q, ∂P ) ≤ 3

2
√

2.

2.3 Heuristic improvements
The grid polygon Q constructed in Section 2.1 does not follow the shape of P closely (see
Fig. 4). Although the boundary of Q remains close to the boundary of P , it tends to zigzag
around it due to the way it is constructed. As a result, the symmetric difference between
P and Q is relatively high. We consider two modifications of our algorithm to reduce the
symmetric difference between P and Q while maintaining a small Hausdorff distance:
1. We construct Q4 with symmetric difference in mind.
2. We post-process the resulting polygon Q by adding, removing, or shifting cells.

Construction of Q4. Instead of picking cells arbitrarily when constructing Q4 we improve
the construction with two goals in mind: (1) to directly reduce the symmetric difference
between P and Q, and (2) to enable the post-processing to be more effective. To that end,
we construct Q4 by repeatedly adding the cell c (not introducing holes) that has the largest
overlap with P . These cells are the ones that reduce the symmetric difference between P
and Q the most.

Post-processing. After computing the grid polygon Q, we allow three operations to reduce
the symmetric difference: (1) adding a cell, (2) removing a cell, and (3) shifting a cell to a
neighboring position. These operations are applied iteratively until there is no operation that
can reduce the symmetric difference. Every operation must maintain the following conditions:

ESA 2016
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(a) (b) (c) (d)

Figure 8 Constructing Q for the upper bound on the Fréchet distance. (a) Input polygon on the
grid and the squares it visits (shaded); initial state of C with revisited vertices slightly offset for
legibility. (b) Initial mapping µ (white triangles) between the vertices of C and ∂P . (c) Removal of
duplicate vertices in C, and its effect on µ. (d) Resulting cycle represents a grid polygon.

(1) Q is simply connected, and (2) the Hausdorff distance between P (∂P ) and Q (∂Q) is
small. For the second condition we allow a slight relaxation with regard to the bounds of
Lemma 4: dH(P,Q) and dH(∂P, ∂Q) can be at most 3

2
√

2 (like dH(Q,P ) and dH(∂Q, ∂P )).
This relaxation gives the post-processing more room to reduce the symmetric difference.

3 Fréchet distance

The Fréchet distance dF between two curves is generally considered a better measure for
similarity than the Hausdorff distance. For an input polygon P , we consider computing
a grid polygon Q such that dF (∂P, ∂Q) is bounded by a small constant. We study under
what conditions on ∂P this is possible and prove an upper and lower bound. However, if
∂P zigzags back and forth within a single row of grid cells, any grid polygon must have a
large Fréchet distance: the grid is too coarse to follow ∂P closely. To account for this in our
analysis, we introduce a realistic input model, as explained below.

Narrow polygons. For a, b ∈ ∂P , we use |ab|∂P to denote the perimeter distance, i.e., the
shortest distance from a to b along ∂P . We define narrowness as follows.

I Definition 11. A polygon P is (α, β)-narrow, if for any two points a, b ∈ ∂P with |ab| ≤ α,
|ab|∂P ≤ β.

Given a value for α, we refer to the minimal β as the α-narrowness of a polygon. We
assume α < β, to avoid degenerately small polygons. We note that narrowness is a more
forgiving model than straightness [3]. A polygon P is κ-straight if for any two points a, b ∈ ∂P ,
|ab|∂P ≤ κ · ‖a− b‖. A κ-straight polygon is (α, κα)-narrow for any α, but not the other way
around. In particular, a finite polygon that intersects itself (or comes infinitesimally close to
doing so) has a bounded narrowness, whereas its straightness becomes unbounded.

Upper bound. With our realistic input model in place, we can bound the Fréchet distance
needed for a grid polygon from above. In particular, we prove the following theorem.

I Theorem 12. Given a (
√

2, β)-narrow polygon P with β ≥
√

2, there exists a grid polygon
Q such that dF (∂P, ∂Q) ≤ (β +

√
2)/2.

Proof. To prove the claimed upper bound, we construct Q via a grid cycle C that defines
∂Q. The construction is illustrated in Fig. 8. We define the square of a grid-graph vertex v
to be the 1× 1-square centered on v. Let C be the cyclic chain of vertices whose square is
intersected by ∂P , in the order in which ∂P visits them. We define a mapping µ between the
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√
2

p1

p2

pn pn−1

1
2

√
β2 − 2

ϕ

p1

pn

p2

Figure 9 Polygon P (left) for which any grid polygon will have high Fréchet distance (center);
polygon P for β < 2 (right).

vertices of C and ∂P . In particular, for each c ∈ C, let µ(c) be the “visit” of ∂P that led to c’s
existence in C, that is, the part of ∂P within the square of c. By construction, we have that
‖c− pc‖ ≤

√
2/2 for all c ∈ C and pc ∈ µ(c). The visits µ(c) and µ(c′) for two consecutive

vertices, c and c′, in C intersect in a point (or, in degenerate cases, in a line segment) that lies
on the common boundary of the squares of c and c′; let p denote such a point. For any point σ
on the line segment between c and c′, we have that ‖σ−p‖ ≤ max{‖c−p‖, ‖c′−p‖} ≤

√
2/2,

as the Euclidean distance is convex (i.e., its unit disk is a convex set). Hence, µ describes a
continuous mapping on ∂P and acts as a witness for dF (∂P,C) ≤

√
2/2.

However, C may contain duplicates and thus not describe a grid polygon Q. We argue
here that we can remove the duplicates and maintain µ in such a way that it remains a
witness to prove that dF (∂P,C) ≤ (β +

√
2)/2. Let c and c′ be two occurrences in C of the

same vertex v. Let p ∈ µ(c) and p′ ∈ µ(c′), both in the square of v. As they lie within the
same square, ‖p − p′‖ ≤

√
2 and hence we know that |pp′|∂P ≤ β. Hence, at least one of

the two subsequences of C strictly in between c and c′ maps via µ to a part of ∂P that has
length at most β. We pick one such subsequence and remove it as well as c′ from C. We
concatenate to µ(c) the mapped parts of ∂P from the removed vertices. As the length of the
mapped parts is bounded by β, the maximal distance between any point on these mapped
parts is β/2 +

√
2/2. Hence, after removing all duplicates, we are left with a cycle C, with µ

as a witness to testify that dF (∂P,C) ≤ (β +
√

2)/2.
If C contains at least three vertices, it describes a grid polygon and we are done. However,

if C consists of at most two vertices, then it does not describe a grid polygon. We can extend
C easily into a 4-cycle for which the bound still holds (see [7] for details). J

The proof of the theorem readily leads to a straightforward algorithm to compute such
a grid polygon. The construction poses no restrictions on the order in which to remove
duplicates and the decisions are based solely on the lengths of µ(v). Hence, the algorithm
runs in linear time by walking over P to find C and handling duplicates as they arise.

Lower bound. To show a lower bound, we construct a (
√

2, β)-narrow polygon P for which
there is no grid polygon with Fréchet distance smaller than 1

4

√
β2 − 2 to P , for any β >

√
2.

First, construct a polygonal line L = (p1, . . . , pn), where n = 2
⌈ 1

4

√
β2 − 2

⌉
+ 1. Vertex pi is

(0, i/2) if i is odd and ( 1
2

√
β2 − 2, i/

√
2) otherwise. Now, consider a regular k-gon with side

length (n− 1)/
√

2 and k ≥ 4 such that its interior angles are at least ϕ = arccos (1− 4/β2).
Assume the k-gon has a vertical edge on the right-hand side. We replace this edge by L to
construct our polygon P . Fig. 9 shows a polygon for k = 4 (β ≥ 2) and for k = 7 (β < 2).

The two lemmas below readily imply our lower bound on the Fréchet distance. We omit
proof of the first, but details can be found in [7].
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Figure 10 The input categories.

I Lemma 13. The constructed polygon P described above is (
√

2, β)-narrow.

I Lemma 14. For constructed polygon P and any grid polygon Q, dF (∂P, ∂Q) ≥ 1
4

√
β2 − 2.

Proof. We show this by contradiction: assume that a grid polygon Q exists with
dF (∂P, ∂Q) = ε < 1

4

√
β2 − 2. For any vertex pi of P , there must be a point qi ∈ ∂Q

(not necessarily a vertex) such that ‖pi − qi‖ < ε. Moreover, these points q1, . . . , qn need to
appear on ∂Q in order. Equivalently, if we draw disks with radius ε centered at p1, . . . , pn,
curve ∂Q needs to visit these disks in order.

The disks centered at p1, p3, . . . , pn never intersect the disks centered at p2, p4, . . . , pn−1.
In particular, the disks centered at p1, p3, . . . , pn are all to the left of the vertical line
v : x = 1

4

√
β2 − 2, and all disks centered at p2, p4, . . . , pn−1 are all to the right of this line.

Hence, between q1 and q2, ∂Q must contain at least one horizontal line segment crossing line
v to the right, and between q2 and q3 there must be at least one horizontal segment crossing
v to the left, and so on until we reach qn. Since Q is simple, this requires that the difference
between the maximum and the minimum y-coordinate of the these horizontal segments on
∂Q is at least n− 1. The y-difference between p1 and pn is only (n− 1)/

√
2. This implies

dF (∂P, ∂Q) ≥ n− 1− (n− 1)/
√

2 > 1
4

√
β2 − 2 and thus contradicts our assumption. J

I Theorem 15. For any β >
√

2, there exists a (
√

2, β)-narrow polygon P such that
dF (∂P, ∂Q) ≥ 1

4

√
β2 − 2 holds for any grid polygon Q.

4 Experiments

Here, we apply our algorithms to a set of polygons that can be encountered in practice.
We investigate the performance of the Hausdorff algorithm and its heuristics as well as the
Fréchet algorithm. Moreover, we consider the effects of grid resolution and the placement of
the input. Full details on the experiments can be found in [7].

Data set. We use a set of 34 polygons: 14 territorial outlines (countries, provinces, islands),
11 building footprints and 9 animal silhouettes (see Fig. 10 for six examples). We scale all
input polygons such that their bounding box has area r; we call r the resolution. Unless
stated otherwise, we use r = 100. This scaling is used to eliminate any bias introduced from
comparing different resolutions.
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Table 1 Normalized symmetric difference, as an increase percentage w.r.t. optimal, of the
algorithms. Note that “optimal” here means optimal for the symmetric difference when not insisting
on a connected set of cells. For the Hausdorff algorithm, results for the various heuristic improvements
are shown. In the second row, None means that no postprocessing heuristic was used; A, R and S
mean additions, removals and shifts, respectively. In the third row, 3 and 7 indicate whether Q4

was chosen arbitrarily (7) or using the symmetric difference heuristic (3).

Optimal Hausdorff Fréchet

postproc. None A / R A / R / S

Q4 heur. 7 3 7 3 7 3

Maps 0.223 + 316 % + 238 % + 39 % + 3 % + 11 % + 3 % + 23 %
Buildings 0.257 + 270 % + 197 % + 47 % + 9 % + 21 % + 8 % + 17 %
Animals 0.333 + 246 % + 188 % + 60 % + 12 % + 29 % + 11 % + 8 %

4.1 Symmetric difference

We start our investigation by measuring the symmetric difference between the input and
output polygon. If the symmetric difference is small, this indicates that the output is similar
to the input. We normalize the symmetric difference by dividing it by the area of the input
polygon. The results of our algorithms depend on the position of the input polygon relative
to the grid. Hence, for every input polygon we computed the average normalized symmetric
difference over 20 random placements.

Computing a (simply connected) grid polygon that minimizes symmetric difference is
NP-hard [21]. Hence, as a baseline for our comparison, we compute the set of cells with the
best possible symmetric difference by simply taking all cells that are covered by the input
polygon for at least 50 %. This set of cells is optimal with respect to symmetric difference
but may not be simply connected. It can hence be thought of as a lower bound.

Overview. In Table 1, we compare the Fréchet algorithm and the various instantiations
of the Hausdorff algorithm in terms of the (normalized) symmetric difference. The second
column lists the average symmetric difference of the symmetric-difference optimal solution,
calculated as described above. The other columns are hence given as a percentage representing
the increase with respect to the optimal value. We aggregated the results per input type.

The table tells us that, with the use of heuristics, the Hausdorff algorithm gets quite
close to the optimal symmetric difference, while still bounding the Hausdorff distance and
guaranteeing a grid polygon. The Fréchet algorithm is performing more poorly in comparison,
though interestingly performs better on the animal contours.

Fig. 11 shows three solutions for one of the input polygons: symmetric-difference optimal,
Fréchet algorithm and Hausdorff algorithm with heuristics. The symmetric-difference optimal
solution looks like the input, but consists of multiple disconnected polygons. The result of
the Fréchet algorithm is a single grid polygon, but the algorithm cuts off narrow parts. The
result of the Hausdorff algorithm is also a single grid polygon, but does not have to cut off
parts when input is narrow.

Below, we examine the effect of the different heuristics for the Hausdorff algorithm to
explain their success. Moreover, we show that the performance of the Fréchet algorithm is
highly dependent on the grid resolution.
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Figure 11 Example outputs for the symmetric-difference optimal algorithm (left), the Fréchet
algorithm (center) and the Hausdorff algorithm (right). Note that the first does not yield a grid
polygon.

c

Figure 12 Without the heuristic for the Q4 construction (a), the algorithm gets stuck in the post
processing phase (b). The smart Q4 construction gives a better starting point (c) resulting in the
desired shape (d).

Hausdorff heuristics. Table 1 shows that using the heuristic for Q4 makes a tremendous
difference, especially if a postprocessing heuristic is used as well. Fig. 12 illustrates this
finding with four results on the same input. In (a–b) Q4 is chosen arbitrarily and the
resulting shape does not look like the input – even after postprocessing. In particular, the
postprocessing heuristic cannot progress further: the cell marked c cannot be added to Q
since that would increase the symmetric difference. In (c–d) Q4 is chosen using the heuristic;
it provides a better initial solution which allows the postprocessing to create a nice result.

In the postprocessing heuristic, allowing or disallowing shifts can influence the result. See
for example Fig. 13. Without shifts, the heuristic cannot move the connection between the
two ends of the input polygon to the correct location as it would first need to increase the
symmetric difference. With a series of diagonal shifts this can be achieved. Our experiments
show that in practice allowing shifts indeed decreases the symmetric difference. However, the
effect is only marginal if we use the heuristic for the Q4 construction. Hence, we conclude
that shifts only significantly improve the result if Q4 is chosen badly.

Resolution and placement. While developing our algorithm we noticed that not just the
grid resolution but also the placement of the input polygon effected the symmetric difference.
Hence we set up experiments to investigate these factors. First we tested how much the
resolution influences the symmetric differences. In Table 2, the results are shown, averaged
over all 34 inputs. As expected, for all algorithms, the normalized symmetric difference
decreases when the resolution increases.

To investigate how much the results of our algorithms depend on the input placement,
we compared the minimal, maximal and average symmetric difference over 20 runs of the
algorithms. The polygons were placed randomly for each run, but per polygon the same
20 positions were used for all three algorithms. We found that the difference between the
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no post-processing additions / removals shifts

Figure 13 Without allowing shifts, the post-processing phase cannot move the cells in the middle
to coincide with the input polygon. With shifts, this is possible.

Table 2 Normalized symmetric difference for the various algorithms on five resolutions.

r = 100 r = 225 r = 400 r = 625 r = 900

Optimal 0.263 0.188 0.147 0.119 0.101
Hausdorff 0.282 0.201 0.155 0.123 0.103

Fréchet 0.306 0.227 0.184 0.148 0.122

minimum and the maximum symmetric difference for each algorithm/polygon combination
is rather large. We hence concluded that placement can have a significant effect on the
achieved symmetric difference. Hence, if the application permits us to choose the placement,
it is advisable to do so to obtain the best possible result. This leads to an interesting open
question of whether we can algorithmically optimize the placement, to avoid the need to find
a good placement with trial and error. In the upcoming analysis, we also consider the effect
of resolution and placement, with respect to the Fréchet distance.

4.2 Fréchet analysis
Theorem 12 predicts an upper bound on the Fréchet distance based on

√
2-narrowness.

However, if the points defining the narrowness lie within different squares of grid vertices,
this bound may be naive. Moreover, it assumes a worst-case detour, going away in a thin
triangle to maximize the distance between the detour and a doubly-visited cell. Hence, the
algorithm has the potential to perform better, depending on the actual geometry and its
placement with respect to the grid. Here, we discuss our investigation of these effects.

Procedure. We use all 34 polygons for our experiments. As we may expect the grid
resolution to significantly affect results, we used 20 different resolutions. In particular, we
use resolutions varying from 10 000 to 25, using (100/s)2 with scale s ∈ {1, . . . , 20}.

For each resolution-polygon combination (case), we measure its
√

2-narrowness (see [7]
for details on how to compute narrowness) and derive the predicted upper bound. Then, we
run the Fréchet algorithm, using the 25 possible offsets in {0, 0.2, 0.4, 0.6, 0.8}2, and measure
the precise Fréchet distance between input and output. We keep track of three summary
statistics for each case: the minimum (best), average (“expected”) and maximum (worst)
measured Fréchet distance.

Effect of placement. We consider placement with respect to the grid (offset) to have a
significant effect on the result computed for a polygon, if the difference between the maximal
and minimal Fréchet distance over the 25 offsets is at least 2. Almost 30 % of cases exhibit
such a significant effect, with the animal contours being particularly affected (35 % significant).
Again, this raises the question of whether we can algorithmically determine a good placement.
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Figure 14 Red cells cause a cut-off and have high symmetric difference.

Upper bound quality. We define the performance as the measured Fréchet distance as a
percentage of the upper bound. We consider a performance of 40 % significantly better than
the upper bound. Using the best placement, over 95 % of cases perform significantly better.
Averaging performance over placement, we still find such a majority (over 81 %). Interestingly,
this drop is mostly due to the animal contours, of which only 63 % now perform significantly
better. Thus, although we have a provable upper bound, we may typically expect our simple
algorithm to perform significantly better than the upper bound. This holds even without
any postprocessing to further optimize the result and when taking a random offset.

Effect of resolution. The influence of the resolution on the above results does not seem
to exhibit a clear pattern. Nonetheless, resolution likely plays an important role in these
results, but not as straightforward as either low or high resolution being more problematic.
Instead, it is likely the most problematic resolutions are those at which the

√
2-narrowness of

the polygon jumps as a new pair of edges comes within distance
√

2 of each other. However,
an in-depth investigation of this is beyond the scope of this paper.

Heuristic improvement. In contrast to the Hausdorff algorithm, the Fréchet algorithm needs
no heuristic improvement on inputs that are not too narrow. However, badly placed narrow
polygons can be problematic: large parts of the polygon may be cut, greatly diminishing
similarity. A solution may be to select an appropriate resolution (if our application permits
us to). In our experiments the algorithm tends to perform well at resolutions where the
symmetric-difference optimal solution is a single grid polygon. The advantage of our Fréchet
algorithm is that it guarantees a grid polygon on all outputs and bounds the Fréchet distance.

Nonetheless, we may want to consider heuristic postprocessing to obtain a locally-optimal
result. If we want to do this in terms of the symmetric difference, we may use similar
techniques as for the Hausdorff algorithm. However, this does not perform well: the narrow
strip that causes the Fréchet algorithm to perform badly tends to effect a high symmetric
difference for the nearby grid cells (Fig. 14). As such, the result is already (close to) a local
optimum in terms of the symmetric difference.

5 Conclusion

We presented two algorithms to map simple polygons to grid polygons that capture the
shape of the polygon well. For measuring the distance between the input and the output,
we considered the Hausdorff and the Fréchet distance. We achieved a constant bound on
the Hausdorff distance; for the Fréchet distance we require a realistic input assumption
to achieve a constant bound. We also evaluated our algorithms in practice. Although the
Hausdorff algorithm does not produce great results directly, the algorithm achieves good
results when combined with heuristic improvements. The Fréchet algorithm, on the other
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hand, struggles with narrow polygons, and it is not clear how to improve the results using
heuristics. Designing an algorithm for the Fréchet distance that also works well in practice
remains an interesting open problem. Another interesting open problem is to algorithmically
optimize the placement of the input polygon, for the best results of both the Hausdorff and
the Fréchet algorithm.
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