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Abstract— Caging grasps are valuable as they can be robust
to bounded variations in object shape and pose and do not
depend on friction. Full caging is useful but may not be neces-
sary in cases where forces such as gravity are present (consider
a stone in a cupped hand). This paper extends caging theory
by defining energy-bounded cages under a constant potential
energy field (such as gravity) based on the minimum energy
required to escape. This paper also introduces Energy-Bounded-
Cage-Analysis-2D (EBCA-2D), a sampling-based algorithm for
planar analysis that takes as input a constant energy field
specified as a function over poses, a polygonal object, and a
configuration of rigid polygonal obstacles, and returns a lower
bound on the minimum escape energy, which can be infinite
when the object is fully caged. Building on recent results in
collision detection and the computational geometric theory of
weighted α-shapes, EBCA-2D is provably-correct and runs in
time O(N2 +N log(1/∆)+NV 3) time where N is the number
of samples, ∆ is an energy resolution used for binary search,
and V is the total number of object and obstacle vertices. We
implemented EBCA-2D and evaluated it with nine parallel-jaw
gripper and four nonconvex obstacle configurations across six
nonconvex polygonal objects. We found that the lower bounds
returned by EBCA-2D are consistent with intuition and with
an RRT* optimal motion planning algorithm that was unable
to find escape paths with lower energy. EBCA-2D required an
average of 3 minutes per problem on a single-core processor
but has potential to be parallelized in a Cloud-based imple-
mentation. Additional proofs, data, and code are available at:
http://berkeleyautomation.github.io/caging/.

I. INTRODUCTION

Consider a single movable object and a configuration of
fixed obstacles. The object is caged if it cannot escape [22],
[33]. When the obstacles describe the links of a robot gripper,
they can can restrain and, by moving, transport the caged
object. Caging grasps are valuable as they can be robust
to bounded variations in object shape and pose and do not
depend on friction [1], [37], [47].

Full caging is useful but may not be necessary in cases
where forces such as gravity are present. This paper extends
caging theory by defining energy-bounded cages under a
constant potential energy field (such as gravity) based on
the minimum energy required to escape. For example, the
objects in Fig. 1 would have to overcome gravitational forces
to escape by lifting above the obstacles. However, computing
the minimum escape energy may be challenging for arbitrary
nonconvex objects and obstacles because there are typically
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Fig. 1: Two energy-bounded cages of industrial parts (blue) by robotic
grippers (black) under a gravitational field indicated by the center arrow.
Neither object is caged by the classical definition, but both configurations are
energy-bounded cages because the object must overcome the forces exerted
by gravity to escape.

an uncountable number of paths that an object can take to
escape a cage. This is also a problem in classical caging, as
currently cages in 2D can only be verified under assumptions
on the number of gripper fingers [1], [31], [42], the geometry
of obstacles [37], or the geometry of the object [14], [43].

We present Energy-Bounded-Cage-Analysis-2D (EBCA-
2D), the first sampling-based algorithm that can verify cages
and energy-bounded cages for 2D nonconvex polygonal
objects and an arbitrary number of nonconvex polygonal ob-
stacles under a constant potential energy field. Our algorithm
computes a lower-bound on the minimum escape energy
using weighted α-shapes [11], [12], a discrete representation
of the configuration space between the object and obstacles
that has been used for proving path non-existence in motion
planning [2], [30], [50]. We use weighted α-shapes to
decompose the object configuration space into cells from a
set of sampled object poses and a conservative estimate of
their penetration depth. We then mark forbidden cells that
lie strictly within the collision space or above an energy
threshold and examine the connectivity of the free cells to
prove the non-existence of object escape paths [30]. Finally,
we lower bound the minimum escape energy by performing
a binary search over energy levels, querying the connectivity
of the free cells for each threshold. We evaluate our algorithm
on a set of nine parallel-jaw gripper configurations and four
configurations of nonconvex obstacles across six polygonal
objects under gravity, and find that in each case an RRT*
optimal path planner is not able to plan an escape path with
lower energy than our estimated lower bound within 120
seconds of planning.

II. RELATED WORK

For surveys of the substantial literature on grasping, see
Bicchi and Kumar [3] or Prattichizzo and Trinkle [32].
Many metrics for grasp quality follow one of two directions:
wrench-space metrics or caging metrics. Grasp wrench space
metrics measure the ability of a grasp to resist external forces
and torques applied to a grasped object [15]. Wrench space

CONFIDENTIAL. Limited circulation. For review only
IEEE RA-L submission 15-0261.1

Preprint submitted to IEEE Robotics and Automation Letters as Submission for RA-L and ICRA
Received August 31, 2015 15:58:31 PST



metrics have also been developed to measure the ability
to resist task-specific wrenches on an object from point
contacts [21], [20], [25], the set of perturbation wrenches
that can be applied to an object [27], or robustness to
uncertainty [17], [23], [28], [48].

While wrech space metrics depend on local properties of
an object, caging metrics depend on the global geometry
of an object and gripper. Early works defined a cage as a
configuration of a “hand” (n points in a plane) such that a
planar object could not be moved arbitrarily far away from
the hand [22], [35]. Rimon and Blake [33] later characterized
the space of caging hand configurations for a 1-parameter
two-fingered gripping system with convex fingers. Rimon
and Blake [34] also developed an algorithm to determine the
maximal set of two-finger gripper configurations that cage an
object, which was later extended to three fingers by Davidson
and Blake [9]. Other research has presented algorithms for
computing the set of caging configurations for grasps with
two or three disc fingers on convex polygons [14], non-
convex polygons [31], [42] and grasps on 3D polyhedra with
fingers that can be decomposed into points [1].

Several works have studied the relation of caging configu-
rations to uncertainty and to form closure grasps. Vahedi and
van der Stappen [42] developed the concepts of squeezing
and stretching cages for two-finger grippers, and showed
that two-finger cages in the plane can always lead to a
form closure grasp by either opening or closing the fingers.
Rodriguez and Mason [36] extended this property to two
finger cages of compact and contractible objects in arbitrary
dimensions, and later generalized the link between caging
and grasping to more than two fingers, showing that cages
can be a useful waypoint to a form closure grasp of a
polygonal object when the gripper stays in a sub- or super-
level set of a gripper shape function [37]. Cages have also
been shown experimentally to offer robustness to shape and
pose uncertinaty. Diankov et al. [10] found that caging grasps
were empirically more successful than those ranked by local
force closure metrics when manipulating articulated objects
with handles. Other work has studied the robustness of
caging grasps to object pose uncertainty [47] or uncertainty
in object shape due to vision [39].

Due to the difficulty of computing the entire space of
caging configurations for complex hand and object ge-
ometries, several recent works have studied heuristics for
determining whether or not a single hand configuration
cages an object such as leveraging holes in the object [38].
Makpunyo et al. [29] introduced the concept of partial cage
quality for a hand configuration, arguing that configurations
that allow only rare escape motions may be successful in
practice. The authors proposed a heuristic metric based on
the length and curvature of escape paths generated by a
motion planner. Wan et al. [46] determined cages for 2D
polygons by mapping out the configurations in collision in
a voxelized representation of the configuration space and
checking connectivity. In comparison, we present a formal
definition and metric of energy-bounded cages and formally
prove that a cell decomposition of the 3D configuration space

Fig. 2: A total cage and an energy-bounded cage illustrated in the workspace
(top) and translational configuration space (bottom) for a gravitational
potential field. (Left) An object (blue) is caged by obstacles (black) if
it cannot reach poses arbitrarily far away from its initial pose q0. In
configuration space this corresponds to a disconnection between the object
initial pose q0 and the free space F outside of the obstacles. (b) A gripper
forms a u-energy-bounded cage of an object if all escape paths cross the
u-superlevel set of a potential energy function E : SE(2)→ R (yellow).

can be used to verify cages and energy-bounded cages.
Our work is also related to the problem of proving path

existence and non-existence in the field of motion planning.
When the free configuration space can be described by
semi-algebraic functions, the free space can be analytically
decomposed into cells to answer path existence queries [24].
However, such functions may not exist or computing such
a decomposition may be prohibitively expensive, motivating
alternative methods. Basch et al. [2] provided a quadratic-
time algorithm to prove path non-existence of a polygon
through a polygonal hole in an infinte wall. Zhang et al. [50]
developed a method for approximately decomposing the free
space and obstacle space for a robot into rectangular cells,
labelling cells as being in collision using penetration depth
computation, and searching for paths through cells in free
space. McCarthy et al. [30], used configuration samples to
approximate the collision space using α-shapes and present
an algorithm that can verify path non-existence between two
configurations. See [11] for a complete treatment of weighted
α-shapes.

III. DEFINITIONS

A. Definitions

We consider the problem of caging a compact 2D polygo-
nal object O ⊂ R2 with Vo vertices by a fixed configuration
of compact polygonal obstacles G ⊂ R2 with Vg total
vertices. We consider G to be fixed in the environment and
denote the object polygon in pose q ∈ SE(2) relative to
its initial configuration q0 as O(q). Example obstacles G
include the end-effectors of a robotic gripper or parts of the
environment such as walls or support surfaces. Note that
we are interested in verifying cages for a fixed gripper con-
figuration and currently do not jointly consider all possible
configurations of the gripper.
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Fig. 3: Illustration of the subset property of cages. (a) An object in pose q0 is
caged because it cannot reach poses qf arbitrarily far away without crossing
a forbidden region Z . (b) If no path from q0 to qf exists without passing
through a subset Y ⊆ Z , then the object must be caged. (c) However, we
are not guaranteed to verify a cage using any subset Y ′ ⊆ Z because Y ′

may not block all paths from q0 to qf .

B. Caging

Consider a forbidden subset Z of a topological space
describing the configuration space C of an object:

Definition 3.1: Let C be a path-connected non-compact
topological space and Z ⊂ C. We call a point x ∈ C\Z caged
by Z in C if x lies in a compact path connected component
of C \ Z . This definition is illustrated in the left panel of
Fig. 2.

We can verify cages using a sufficient condition for caging:
Lemma 3.1: Let Y ⊆ Z ⊂ C. If x ∈ C \ Z is caged by

Y , then x is caged by Z .
Proof: C \ Z ⊆ C \ Y , which implies that any path in

C \ Z can be restricted to C \ Y .
This property is illustrated in Fig. 3. Thus if we can prove
the caging condition for a subset Y of the true set of interest
Z , then the result will hold for Z .

In this work, we are interested in the case where C ⊂
SE(2) is a subset of rigid transformations of a rigid object
O in the plane and Z ⊆ SE(2) is the collision space of O
relative to G [24]:

Z =
{
q ∈ SE(2)

∣∣ int(O(q)) ∩ G 6= ∅
}
.

Note that Z is compact based on our assumptions. We denote
by F = SE(2) \ Z the free configuration space.

C. Energy-Bounded Caging

When the object can escape, we seek to quantify the
amount of potential energy required for the object to escape.
Let E : SE(2) → R be a potential energy function on the
space of poses that is convex when restricted to R2, such as
gravity. Also define E−1(X) = {q ∈ SE(2) | E(q) ∈ X}
for any subset X ⊆ R. Given an energy threshold u ∈ R, we
denote by Zu = Z ∪ E−1([u,∞)) the u-energy forbidden
space and by Fu = SE(2) \ Zu the u-energy admissible
space. Using the previous definitions, we formally introduce
a the notion of an energy-bounded cage:

Definition 3.2: Let E : SE(2) → R be a function on the
poses of O relative to an initial pose q0 ∈ SE(2). We call
G a u-energy-bounded cage of O with respect to E if the
initial configuration q0 ∈ SE(2) of O lies in a compact
path-connected component of Fu.

When u can be arbitrarily large, we obtain the standard
notion of caging of a polygonal object O relative to a
collection of fixed obstacle polygons G [22]. Fig. 2 illustrates

Fig. 4: Illustration of EBCA-2D, our algorithm to lower bound the minimum
escape energy u∗ for an obstacle configuration G (best viewed in color).
1) First, we randomly sample object poses in collision, embed the poses in
R3, and compute the penetration depth ri for each pose, which corresponds
to a ball within the collision space (red). 2) The union of balls centered at
the samples conservatively approximates the collision space Z . We then
decompose the configuration space into cells by computing the weighted
Delaunay triangulation D from the points and use the weighted α-shape A
at α = 0 (white triangles) to approximate Z . 3) Finally, we search for the
smallest u such that the object can escape by finding a set of forbidden cells
Vu ⊆ Zu and checking the connectivity of D\Vu. Blue and green indicate
connected components, while yellow indicates poses such that E(q) > u.

both the classical notion of caging and a u-energy-bounded
cage with respect to the gravitational potential energy E .
To rank energy-bounded cages, we introduce the notion of
the minimum escape energy for an object O and gripper
configuration G:

Definition 3.3: The minimum escape energy for an object
O and obstacle configuration G, denoted u∗, is the smallest
value of u such that G is not a u-energy-bounded cage of O.
The rest of this work is dedicated to computing a lower
bound on the minimum escape energy for a configuration G
and O.

IV. METHODOLOGY

We now detail EBCA-2D, our algorithm for lower bound-
ing the minimum escape energy for an object O and obstacle
configuration G, which is illustrated in Fig. 4. We first
generate N samples of object poses in collision Q =
{q1, ...,qN}, embed the samples into R3 to form a set
X , and compute a conservative estimate of the penetration
depth R for each embedded pose. We then use weighted α-
shapes to construct a cell decomposition of the convex hull
of X and mark forbidden cells that lie strictly within the
collision space or above an energy threshold and examine
the connectivity of the free cells to prove the non-existence
of object escape paths [30]. We then use binary search to
find the highest value of u for which for a no path exists in
our cell decomposition, thus lower-bounding the minimum
escape energy.

A. Verifying Cages in SE(2)

Given a set of N sampled poses in collision Q =
{q1, ...,qN} where each qi ∈ SE(2), the first step of our
algorithm is to embed the samples in R3. Let z be the
center of rotation of O and ρ = max

v∈O
‖v − z‖2 be the
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maximum moment arm of O. Then let π : R3 → SE(2) =
R2 × S1 be the covering map defined by π(x, y, z) =
(x, y, (z/ρ) mod 2π), for (x, y, z) ∈ R3. We map from
poses to the covering space with an inverse map π−1n :
SE(2) → R3 defined by π−1n (x, y, θ) = (x, y, ρθ + 2πn)
for n ∈ Z [7]. Given R ∈ Z, a fixed number of rota-
tions to embed, our lifted set of pose samples is X ={
q̂i,n = π−1n (qi) | qi ∈ Q, n ∈ {−R, ..., 0, ..., R}

}
.

We relate path existence in the covering space to cages in
the configuration space by means of the following result [18]:

Theorem 4.1: Let Y ⊂ R3 be a bounded subset. Let q0 ∈
SE(2) such that q0 ∈ π(Conv(Y))\π(Y) and let q̂0 be any
point such that π(q̂0) = q0. If there exists no continuous
path from q̂0 ∈ R3 to ∂Conv(Y) ⊂ R3, then q0 ∈ SE(2)
is caged by π(Y) in SE(2).

Proof: Suppose the contrary. Since q0 is not caged
by π(Y) in SE(2) and S1 is compact, there exists a
continuous escaping path γ(t) : [0, 1] → SE(2) such that
γ(0) = q0 = (x0, y0, θ0) and γ(1) = (x1, y1, θ1) where
‖(x0, y0) − (x1, y1)‖2 > diam(Conv(π(Y))) [7]. By the
properties of the covering map π, there exists a lifting of
γ to a covering path γ̂ : [0, 1] → R3 with γ̂(0) = q̂0 and
π(γ̂(t)) = γ(t) for all t ∈ [0, 1], where ‖γ̂(0) − γ̂(1)‖2 >
diam(Conv(Y)). Hence by the continuity of γ̂(t) there exists
a smallest t0 ∈ (0, 1) such that γ̂(t0) ∈ ∂ Conv(Y) and
γ̂([0, t0]) ⊂ R3 \Y . This contradicts our supposition that no
continuous path exists from q̂0 to ∂Conv(Y).
This result implies that a lifting of the u-energy forbidden
space Ẑu ⊂ R3 such that π(Ẑu) = Zu can be used to check
the existence of energy-bounded cages.

B. Approximating the u-Energy Forbidden Space Zu
It remains to construct a conservative approximation of the

lifted u-energy forbidden space Vu ⊆ Ẑu and to computa-
tionally prove path non-existence in the lifted space, which
would prove an energy-bounded cage by Lemma 3.1 and
Theorem 4.1. We first approximate the lifted collision space
Ẑ by a set B using a conservative estimate of penetration
depth, then decompose the convex hull of B into cells using
weighted α-shapes, and finally form Vu from cells lying
strictly within Ẑu.

1) Approximating the Collision Space Using Penetration
Depth : The 2D generalized penetration depth (GPD) p :
SE(2) → R between an object O(qi) in pose qi =
(xi, yi, θi) and obstacle G is defined as [51]:

p(qi) = min
qj∈SE(2)

{
d(qi,qj)

∣∣int (O(qj)) ∩ G = ∅
}
.

where d : SE(2)×SE(2)→ R is a distance metric between
poses. Following Zhang et. al [50], we use d(qi,qj) =√

(xi − xj)2 + (yi − yj)2 + min
m∈Z

ρ|θi − (θj + 2πm)| which
has the following important property:

Lemma 4.1: Let ri = r(qi) : SE(2)→ R be an approxi-
mate solution to the above equation such that ri 6 p(qi) for
all qi ∈ C and let Br(x) = {y ∈ R3 : ‖x − y‖ 6 r} be a
standard Euclidean ball of radius r centered at x ∈ R3. For

Fig. 5: Weighted α-shape construction and representation. (Top-left) The
α-shape A for α = 0 is constructed from a set of Euclidean balls centered
at points X with radii R = {r1, .., rN} (Bottom-left) A contains edges
and triangles between the pairs and triplets of with a common intersection,
respectively (bottom). (Top-right) As we increase the ball radius towards∞
the set of balls becomes the power diagram of the point set, a generalization
of the Voronoi diagram. (Bottom-right) The triangulation of the power
diagram is the weighted Delaunay triangulation D(X ,R) of the points,
which contains the convex hull.

any embedded pose q̂i, if π(q̂i) ∈ Z , then any embedded
pose q̂j ∈ Bri(q̂i) also satisfies π(q̂j) ∈ Z .

A detailed version of the proof is given in the supplemental
file at http://berkeleyautomation.github.io/
caging/, and a similar proof is given by Zhang et al. [50].
For our set of pose samples Q ⊂ SE(2) with an associated
lifting X ⊂ R3 and associated GPD values R = {ri,n =
r(qi) | qi ∈ Q, n ∈ {−R, ..., 0, ..., R}}, define

B(X ,R) =
⋃
X ,R

Bri,n(q̂i,n).

It follows from Lemma 4.1 is that π(B(X ,R)) ⊆ Z .
In order to satisfy ri 6 p(qi), we use an algorithm

by Zhang et. al [51] to lower bound the GPD between
any two objects. The algorithm assumes a given convex
decomposition of the two bodies [26], then computes the
exact GPD between all possible pairs of convex pieces and
takes the maximum over the GPD values between the pieces.
The GPD between two convex bodies can be determined
using the Gilbert-Johnson-Keerthi Expanding Polytope Al-
gorithm (GJK-EPA) developed by van den Bergen [44] and
implemented in libccd [16]. Each run of the GJK-EPA
algorithm is O(V ) but can be modified to be near constant-
time [6], where V = Vo + Vg is the total number of vertices
between O and G. There are up to O(V 2) convex bodies to
check, and thus the complexity of computing GPD is O(V 3).

2) Weighted α-Shapes: Weighted α-shapes [11], [12],
[13], illustrated in Fig. 5, represent a union of balls of
varying radii by means of a simplicial complex whose
vertices are given by the ball’s centers. We use weighted α-
shapes to decompose the configuration space into cells and
to determine which cells belong strictly to the lifted collision
space Ẑ and energy-bounded space Ê−1([u,∞)).

Weighted α-shapes are a type of simplicial complex [12],
a key data-structure to represent a large collection of geomet-
rically interesting spaces that generalize the notion of a graph
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and a triangulation. Let X = {x1, ...,xP } ⊂ R3 be a point
set and R = {r1, ..., rP } be positive scalars for each element
of X such that any subset of 4 points of X are affinely
independent. This is a weak condition since for uniformly
sampled points this occurs with probability one [13]. The
weighted Delaunay triangulation (WDT) of X and R is
D(X ,R) = {σ = {x0, . . . ,xk} | ∩ki=1Vxi

(X ,R) 6=
∅ and 0 6 k 6 3}, where Vxi(X ,R) = {y | ‖xi − y‖2 −
r2i 6 ‖xj − y‖2 − r2j ,∀j ∈ {1, . . . , P}} is the weighted
Voronoi region for xi. The union of all simplices in D(X ,R)
is the convex hull Conv(X ) and when ri = 0 for all i this
reduces to the standard Delaunay triangulation of X . The
weighted α-shape A = A(X ,R) at α = 0 is a particular
simplicial subcomplex of D(X ,R) with several important
properties:

Theorem 4.2 (Edelsbrunner et. al): Let B(X ,R) =⋃P
i=1 Bri(xi). Then A(X ,R) is homotopy equivalent to
B(X ,R) and any k-simplex σ = {xi,0, . . . ,xi,k} in A such
that 0 6 k 6 3 is completely contained in the union of balls⋃k
j=0 Bri,j (xi,j).

This implies that if we use the set of embeded poses X with
radii given by the penetration depths R, then the weighted
alpha shape A(X ,R) ⊂ Ẑ and can be used to verify cages
by Lemma 3.1 and Theorem 4.1.

3) Approximating the Potential Energy Superlevel Set: It
remains to find a subcomplex of D(X ,R) such that π(x) ∈
E−1([u,∞)) for any x in the subcomplex.

Lemma 4.2: For any k-simplex σ ∈ D(X ,R), let
E(σ) = min

x∈σ
E(π(x)). Furthermore, let Pu(X ,R) =

{σ ∈ D(X ,R) | E(σ) > u}. Then Pu(X ,R) is a subcom-
plex of D(X ,R) and Pu(X ,R) ⊆ E−1([u,∞)).

Proof: Fix a simplex σk ∈ Pu(X ,R). Any face σj of
σk is also a member of Pu(X ,R) by the minimum over the
energy function. Furthermore, by the convexity of E when
restriced to R2, any point y in Conv(σk) satisfies E(π(y)) >
E(σk) > u , and therefore y ∈ E−1([u,∞)).
A result of this Lemma and Theorem 4.2 is that the u-energy
forbidden subcomplex Vu satisfies:

Vu(X ,R) = A(X ,R) ∪ Pu(X ,R) ⊂ Ẑu.

C. Verifying Path Non-Existence

We can now verify u-energy-bounded cages by showing
that no path exists from the embedding of the object pose
q̂0 to ∂D(X ,R) in D(X ,R) \ Vu(X ,R) by Theorem 4.1.
We use Algorithm 1, a modified version of the algorithm by
McCarthy et al. [30], to verify that no escape paths exist. As
shown by McCarthy et al. [30], the worst-case runtime to
verify path non-existence is O(N2), where N is the number
of sampled points, and is dominated by the construction
of the weighted Delaunay triangulation D(X ,R). Given
D(X ,R), Algorithm 1 takes O(N) time in the worst case
because each simplex in D(X ,R) must be classified to
construct a disjoint set structure.

Theorem 4.3: If Vu is any subcomplex of D(X ,R) in R3

such that q̂0 ∈ Conv(X )\Vu and Algorithm 1 returns True,
then there exists no continuous path from q̂0 to ∂ Conv(X )
in D(X ,R) \ Vu.

The proof is a slight modification of the main Theorem
of [30] and is given in the supplemental file. Therefore,
if Algorithm 1 returns true when run with Vu as defined
in Section IV-B.3, then we are guaranteed that Vu forms a
u-energy bounded cage of q̂0.

1 Input: Lifted initial pose q̂0, weighted Delaunay triangulation
D(X ,R), u-Energy Forbidden Subcomplex Vu
Result: True if Vu cages O in pose π(x), False otherwise
// Init free subcomplex and boundary

2 U = {σi | σi ∈ D(X ,R) \ Vu, |σi| = 3, };
3 W = {σj | σj ∈ ∂D(X ,R) \ Vu, |σj | = 2};
// Compute connected components

4 Q =DisjointSetStructure(U ∪W);
5 for σi ∈ U ∪W do
6 for σj ∈Neighbors(σi, D(X ,R) \ Vu) do
7 if σi ∩ σj 6∈ Vu then
8 Q.UnionSets(σi, σj);
9 end

10 end
// Check connectivity

11 σ0 = Locate(q̂0, D(X,R));
12 for σi ∈ W do
13 if Q.SameSet(σ0, σi) then
14 return False;
15 end
16 return True;

Algorithm 1: Verifying u-Energy-Bounded Cages

D. Lower-Bounding the Minimum Escape Energy

We determine a lower bound to u∗ by searching over
values of u that form an energy-bounded cage. EBCA-2D,
our full algorithm for computing the a lower bound, is given
in Algorithm 2. EBCA-2D generates N samples of poses
in collision Q with penetration depths R over the collision
space using rejection sampling, embeds the poses in R3 using
to form a set X , constructs a weighted Delaunay triangula-
tion D(X ,R) and alpha shape A(X ,R) from the samples,
and finds and approximation û to u∗ using binary search,
where on each iteration we check for an energy-bounded
cage using Algorithm 1. The complexity of Algorithm 2 is
O(N2+N log(1/∆)+NV 3), where the O(N2) term is due
to constructing D(X ,R), the O(N log(1/∆)) term is due to
running Algorithm 1 for every iteration of binary search [30],
and the O(NV 3) term is due to the computation of the GPD
for N pose samples.

Theorem 4.4: Let u∗ denote the minimum escape energy
for object O and gripper configuration G. Let û be the result
of running Algorithm 2 with O and G. Then û 6 u∗.

Proof: By Lemma 3.1 and the subset properties of
A(X ,R) from Lemma 4.1 and Theorem 4.2 we are guaran-
teed that if our algorithm terminates when checking u =∞,
then the object is truly caged. It remains to show that for all
iterations of the binary search, the gripper configuration G is
a u`-energy-bounded cage. This is true for iteration 0, as the
initial value satisfies u` 6 E(q0). Furthermore, if the lower
bound is updated to u` = um then G is a um-energy-bounded
cage of O by Theorem 4.3, Lemma 4.1, and Lemma 4.2.
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1 Input: Polygonal robot gripper G, Polygonal object O,
Number of pose samples N , Number of rotations R for
SE(2) lifting, Binary search resolution ∆
Result: û, a lower bound on the minimum escape energy u∗

// Sample poses in collision
2 Q = ∅,R = ∅, ` = diam(G) + diam(O);
3 W = [−`, `]× [−`, `]× [0, 2π);
4 for i ∈ {1, ..., Ns} do
5 qi = RejectionSample(W);
6 ri = LowerBoundPenDepth(qi,O,G);
7 if ri > 0 then
8 Q = Q∪ {qi}, R = R∪ {ri};
9 end

10 X =
{
π−1
n (qi) | qi ∈ Q, n ∈ {−Nr, ..., Nr}

}
;

// Create alpha shape
11 D(X ,R) = WeightedDelaunayTriangulation(X ,R);
12 A(X ,R) = WeightedAlphaShape(D(X ,R), α = 0);

// Binary search for min escape energy
13 if EnergyBoundedCage(q0, D(X ,R),A(X ,R)) then
14 return ∞;
15 u` = min E(σk) such that σk ∈ D(X ,R);
16 uu = max E(σk) such that σk ∈ D(X ,R);
17 while |uu − u`| > ∆ do
18 um = 0.5 ∗ (u` + uu);
19 Vum = ForbiddenSubcomplex(D(X ,R),A(X ,R), um);
20 if EnergyBoundedCage(q0, D(X ,R),Vum) then
21 u` = um;
22 else
23 uu = um;
24 end
25 return u`;

Algorithm 2: Energy-Bounded-Cage-Analysis-2D

V. EXPERIMENTS

To test our methods, we implemented EBCA-2D in C++
and evaluated the performance on a set of polygonal objects
under a gravitational potential energy field. We used the
CGAL library [8] to compute triangulations and α-shapes.
For GPD computation we performed a convex decomposition
of polygons using the algorithm of Lien et al. [26] and
libccd [16] for the GJK-EPA algorithm. All experiments ran
on a desktop with an Intel Core i7-4770K 350 GHz processor
with 6 cores.

A. Energy-Bounded Cages Under Gravity

We ran our algorithm with N = 200, 000 pose samples
for varying obstacle configurations on a set of six polygonal
parts. The parts were created by projecting 3D models from
the YCB dataset [5] and 3DNet [49] onto a plane and
triangulating the projection. We assumed a uniform mass
density of 0.01kg/cm2 for each object, which we used
to compute the mass M for each object. Each run of the
algorithm took approximately 180 seconds to run, and more
details on runtime can be found in Section V-B.

Fig. 6 shows the estimated normalized minimum escape
energy ûn = û/(Mg) for three parallel-jaw gripper configu-
rations on each of three objects. To aid in visualization, we
used RRT* implemented in OMPL [40] to plan an escape
path to directly below the initial object pose, and we rendered
the object in the pose along the solution path with maximum
potential energy. The ranking of grasps by minimum escape

Fig. 6: Three example polygonal parts (blue) with three parallel-jaw config-
urations (black) for each object. Below each configuration is normalized
minimum escape energy ûn = û/Mg estimated by EBCA-2D with
N = 200, 000 pose samples under gravity, where M is the mass of the part.
To visualize the output of EBCA-2D, we render the object translucently at
the the highest point of an escape path found by an RRT* planner, with
an arrow to indicate direction. We see that ûn, which is the estimated
minimum height that must be reached to escape, ranks the configurations
for each object in the same order as the maximum height reached along the
RRT* escape path.

energy matches our intuition, and appears to also match the
ranking of grasps by the maximum energy reached along
the RRT* visualization path. To evaluate the lower bound
of Theorem 4.4, we also used RRT* to attempt to plan an
object escape path over the set of collision-free poses with
energy less than û. In every case, the RRT* planner was not
able to find an escape path with energy less than û within
120 seconds.

We also ran our algorithm on a set of configurations with
more than two nonconvex obstacles. Fig. 7 displays ûn for
four examples: capturing an object using a single rectangular
jaw and ramp, bowl-shaped jaws pinning an object against
a vertical wall, three rectangular jaws, and a robotic gripper
on a doorknob inspired by [10]. Our algorithm is able to
prove cages for configurations 3 and 4, and the ranking of
configurations 1 and 2 by ûn matches our intution. Again,
RRT* was not able to find an escape path within the set of
collision-free poses with energy less than û.

B. Sensitivity to Number of Pose Samples

We also studied the sensitivity of û and the total runtime
to the number of pose samples N used to approximate the
collision space. The left panel of Fig. 8 shows the ratio of û
at N = {6.25, 12.5, 25, 50, 100, 200, 400}×103 to û at N =
400, 000 for configuration 1 for each of the objects in Fig. 6.
Each ratio is averaged over 5 independent trials per value of
N to smooth the effects of random initializations. We see
that for less than about 25,000 samples the output tends to be
û ≈ 0 because the collision space is not well-approximated,
leading to “holes” in the algorithm’s representation of the
collision space for lower y-coordinates. However, as N
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Fig. 7: Four example configurations of polygonal parts (blue) and obstacle
configurations (black) with varying shape and number of components. Under
each configuration is the normalized minimum escape energy ûn estimated
by EBCA-2D with N = 200, 000. We see that EBCA-2D verifies that
configurations 3 and 4 are cages, both of which are challenging because of
the nonconvexity of the parts and the nonconvex obstacle in configuration
4.

Fig. 8: (Left) The ratio of the minimum escape energy û estimated
by EBCA-2D for N pose samples to û at N = 400, 000 for N =
{6.25, 12.5, 25, 50, 100, 200, 400} × 103. The values plotted are for con-
figuration 1 of each object in Fig. 6 and are averaged over 5 independent
trials per value of N . We see that the object B, the “fattest” object,
converges the fastest and object C, the object with the “thinnest” pieces,
converges the slowest. (Right) The runtime of EBCA-2D in seconds broken
down by component of the algorithm versus the number of pose samples
N = {6.25, 12.5, 25, 50, 100, 200, 400}×103. Each datapoint is averaged
over 5 independent trials per value of N and configuration 1 of the objects
in Fig. 6. The scaling of the average runtime is approximately linear in N ,
and the runtime becomes dominated by the time to generate pose samples
for large N .

becomes large, û converges towards a nonzero value. In-
terestingly, object B, which is the “fattest” [45] converges
the fastest, taking only about 50, 000 samples to converge to
within 90% of its value at N = 400, 000. On the other hand,
object C takes nearly 200, 000 to converge to within 90% of
its value at N = 400, 000, as u∗ depends on the very thin tips
of the object in this configuration. This is possibly because
u∗ for object C depends on a very thin part of the collision
space, which requires more samples to approximate.

The right panel of Fig. 8 shows the scaling of the runtime
in seconds versus the number of pose samples N averaged
over 5 independent trials for configuration 1 of the objects
in Fig. 6. The runtime is broken down by component of the
algorithm: pose sampling, approximating the configuration
space using α-shapes, and the binary search over potential
energies. We see that the total runtime for these shapes
and obstacles is approximately linear in the number of pose
samples N , with pose sampling taking the largest portion
of the runtime. However, the amount of time to sample
poses and the time to construct an approximation to the
configuration space both appear to be slightly superlinear
in N . These results suggest that runtime remains well below
the worst case N2 scaling with the number of samples in
practice.

VI. DISCUSSION AND FUTURE WORK

We defined energy-bounded caging configurations and
the minimum escape energy, or the minimum energy that
external perturbations must exert on an object for it to escape
a set of obstacles. We also developed Energy-Bounded-
Cage-Analysis-2D (EBCA-2D), an algorithm to compute
a lower bound on the minimum escape energy for 2D
polygonal objects and obstacles using weighted α-shapes.
Our experiments demonstrate that we are able to verify cages
and suggest that our algorithm returns an intuitive lower
bound for a set of nonconvex polygonal objects and gripper
configurations.

Future work will investigate extensions of our algorithm to
synthesize obstacle configurations that form energy-bounded
cages and to analyze 3D objects and obstacles. One barrier to
using our algorithm for synthesis is the runtime for analyzing
a single configuration, which is largely dominated by pose
sampling and GPD computation. To reduce runtime, future
work will study adaptive sampling procedures to approximate
the thin parts of the collision space with fewer samples,
such as Gaussian sampling from motion planning [4], parallel
implementations of sampling using Cloud-based implemen-
tations, and a dual approach to upper bound u∗ using optimal
motion planning or the connectivity of the free space. Fur-
thermore, we will study alternative approaches to synthesis,
such as searching over the full obstacle configuration space
to generate all obstacle placements that require at least a
given amount of energy for escape [37], [42].

While in principle the theory behind our approach can be
generalized to 3D, a challenge for synthesizing and analyzing
configurations in 3D is the increase in dimensionality of
the configuration space from 3D to 6D. This increases the
computational load to construct dense α-shapes [13] and may
also increase the number of samples needed to approximate
the configuration space. In future work, we will investigate
alternative representations of the forbidden space such as
Vietoris-Rips complexes [19], a sparser simplicial complex
representation of point samples, or precomputed simplicial
complexes that cover the configuration space [46]. Another
difficulty is that scaling to 3D would require an embedding
of SE(3) into R6, which is more challenging due to the
topology of SE(3) [7] and because no implementation of
higher dimensional weighted α-shapes exists in common
software such as CGAL [41]. Thus, we will also study Cloud-
based construction of α-shapes.
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