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ABSTRACT: Adaptive quantum mechanical (QM)/molec-
ular mechanical (MM) methods enable efficient molecular
simulations of chemistry in solution. Reactive subregions are
modeled with an accurate QM potential energy expression
while the rest of the system is described in a more approximate
manner (MM). As solvent molecules diffuse in and out of the
reactive region, they are gradually included into (and excluded
from) the QM expression. It would be desirable to model such
a system with a single adaptive Hamiltonian, but thus far this
has resulted in distorted structures at the boundary between
the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used
to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a
many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the
framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard
(nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system
defined by two different MM potentials (MM/MM′). For the long-range interactions a numerical scheme is used (particle mesh
Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both
energy conservation and the correct solvent structure everywhere in this system.

1. INTRODUCTION

Molecular dynamics (MD) simulations of chemical processes in
a complex environment can be significantly accelerated with a
dual-resolution approach, modeling the region of interest
(active or A-region, Figure 1) at high resolution (HR), while
the environment (E-region, Figure 1) is modeled at lower
resolution (LR).1−3 Conventional dual-resolution approaches4,5

define the active region as a preselected set of atoms. This
strategy works well if the molecular system is rigid, but in a
solute−solvent system HR solvent molecules readily diffuse
away from the active region, to be replaced by LR solvent
molecules. Adaptive resolution methods address this issue by
dynamically assigning molecules HR or LR character based on
their proximity to the active site.6−18 Generally, this procedure
involves a transition region that smoothly connects the active
and environment regions (T-region, Figure 1). The solvent
molecules in the T-region have partial HR and partial LR
character, and the description of each solvent molecule s
gradually changes from HR to LR (or vice versa) as it moves
across the region. The fraction of HR character changes with

the distance rs from a predefined HR center (Figure 1, blue
water molecule).
Adaptive resolution methods fall into two categories. The

first category combines complex many-body potential energy
expressions, of which the combination of quantum mechanics
(QM) and molecular mechanics (MM) is the most common
example (QM/MM).6−13 Other examples include QM/QM,
but also MM/MM, since some MM descriptions go beyond
two-body terms. A very typical example is particle mesh Ewald
(PME), which is often used to accelerate the computation of
interactions across periodic boundaries, and cannot be reduced
to a sum of pairwise interactions.19,32 The second category
combines potential energy expressions that can be reduced to a
simple sum over particle pairs, such as most MM and coarse
grained (CG) particle descriptions (MM/CG).14−18 While the
two problems are similar, MM/CG developments cannot
always straightforwardly be extended to QM/MM, because the
QM configurational potential in the HR region introduces
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further layers of complexity, stemming from its many-body
nature. Contrary to the MM and CG expressions, the QM
potential energy contains an integral over all electronic degrees
of freedom, and the multi-atom expansion of this integral
contains higher order terms.
Currently, there are only few examples of adaptive QM/MM

simulations based on a Hamiltonian formalism (energy
conserving).6,8 In all practical situations, the proposed methods
failed to provide reliable solvent structures, while alternative
non-Hamiltonian schemes performed much better in this
respect.8,20 Similar findings also directed MM/CG develop-
ments,21 until recently, when a Hamiltonian approach was
introduced (H-AdResS) that conserves both energy and solvent
structure.17 This approach relies on the MM/CG energy
expression consisting of pairwise interactions only, and can
therefore not be applied in combination with many-body
potentials (e.g., QM potentials). In this work we exploit the
concepts and formalism developed in the context Hamiltonian
adaptive MM/CG17 to develop a more general formulation that
is applicable to adaptive QM/MM.6,8,9 We first reformulate the
energy and force expressions for the current Hamiltonian
adaptive QM/MM approaches6,8,9 in terms that match the
simpler MM/CG expressions. We then derive a novel
Hamiltonian scheme that is very general, and can connect
any potential in an adaptive manner (e.g., QM/MM, QM/QM,
(many-body) MM/MM, or MM/CG). The novel approach is
an extension of current adaptive QM/MM formulations, and
can be combined with many of the available flavors.6,8 To
achieve the desired generality, the combined expressions are by
necessity different from the H-AdResS expressions, and even
when used in combination with pair potentials they do not
reduce to the H-AdResS expressions.
This paper is organized as follows: In section 2 we introduce

the theory behind adaptive dual-resolution simulations. We first
compare the latest adaptive MM/CG and QM/MM
expressions, and we discuss the H-AdResS MM/CG correction
to the Hamiltonian. We then rewrite the adaptive QM/MM
(many-body) expressions so that we can define the criteria for a
“per-particle” correction analogue to MM/CG. Finally, we
discuss a simple correction that has been applied in previous
works,7,8,22 and then introduce our novel Hamiltonian adaptive

many-body correction (HAMBC). In section 3, we describe the
model system we use to validate our Hamiltonian scheme, and
we provide the computational details. In section 4, we present
the results of two possible per-particle corrections to the
Hamiltonian, and show that the HAMBC correction results in
accurate solvent structures, while conserving the total energy.

2. THEORY
The Hamiltonian of any system consists of a global kinetic
energy function T(p) (of momentum vector p), and a potential
energy function V(r) (of coordinate vector r) describing all
particle−particle interactions in the system. In this section we
first compare the potential energy expressions V(r) currently
used in adaptive MM/CG and QM/MM simulations. Then we
explain why these uncorrected expressions produce inaccurate
forces on the particles, and we describe the per-particle H-
AdResS correction to the MM/CG Hamiltonian. We then
deduce the criteria for an analogue per-particle correction to
the many-body QM/MM Hamiltonian, and discuss a simple
correction that has been previously applied. In the final
subsection we derive our novel HAMBC correction from the
criteria presented before.

2.1. Adaptive Dual-Resolution Potential Energy
Expressions. The H-AdResS approach combines an MM
and a CG potential energy (VMM(r) and VCG(r)) into a global
VMM/CG(r). Since VMM(r) and VCG(r) can both be expressed as
a sum of pairwise interaction terms, the combined potential
energy can also be written as a sum over particle pairs,

∑
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where Vαβ = V(rα−rβ) is an interaction potential for the particle
pair αβ, and λα/β = λ(rα/β) is a simple continuous function of
the distance rα/β of particle α/β to the center of the A-region.
Together, λα and λβ determine the contribution (or weight) of
the MM potential Vαβ

MM, and each function the MM (HR)
character of the corresponding particle.17 The function λα/β has
a value 1 if particle α/β is in the A-region, a value of 0 in the E-
region, and a fractional number between 1 and 0 in the T-
region.
In contrast, a many-body interaction potential cannot be

decomposed into pair contributions, and the dual-resolution
potential energy must be expressed in many-body terms.
Conventional QM/MM methods partition the molecular
system into a set of fully QM solvent molecules and a set of
fully MM solvent molecules. Labeling a specific choice of QM/
MM partitioning p, with the set of QM molecules named p

and the complementary set of MM molecules ′p, the QM/
MM potential energy becomes,

= + +′E V V Vr r( ) ( )p
QM MM

intp p (2)

Here =V V r( )QM QM
p p

is the QM potential energy for the

subsystem of molecules belonging to the set p, and Vint(r) is
an interaction energy between the two types of molecules,
which can be defined in several different ways.23 Mechanical
embedding and electrostatic embedding are the most common
choices for this interaction energy, although many other
options are available. The expression in eq 2 is completely
general, covering all types of QM/MM embedding.

Figure 1. Schematic representation of an adaptive dual-resolution
description of water-in-water, partitioned into an A-region [orange], a
T-region [yellow], and an E-region [white], around a central blue
water molecule. Ball and stick water molecules are HR, and LR
molecules are depicted with thick lines. The HR character of a solvent
molecule s is determined by its distance rs from the HR center.
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An adaptive QM/MM simulation must account for the fact
that all solvent molecules in the T-region have different partial
QM character. This can be achieved by including contributions
from different partitions into the adaptive potential energy
expression.6

∑ σ=
∈

V Er r r( ) ( ) ( )
p

p p
QM/MM

(3)

Here is the set of all possible partitions p (2n partitions in
case of n solvent molecules). The function σp(r) denotes the
contribution (or weight) of partition p, and the sum over all
weights equals 1 ( σ∑ =∈ r( ) 1p p ). Each weight σp(r) is a

function of the coordinates of all atoms. The fractional QM
character ωs(r) of a solvent molecule with label s is then the
sum of weights of the contributing partitions that describe this
solvent molecule QM. It is the QM/MM analogue of λα/β in
MM/CG, and can be written as,

∑ω δ σ=
∈

r r( ) ( ) ( )s
p

s p p
(4)

where δ( )s p is the Dirac measure, which is 1 if ∈s p and 0 if

∈ ′s p. The concept of multiple partitions is schematically
visualized in Figure 2 for the simple case of only two solvent

molecules in the T-region. Partitions P1−P4 describe all solvent
molecules in the A-region as QM and all molecules in the E-
region as MM, and should therefore provide all important
contributions to VQM/MM(r). Partitions P5 and P6 describe a
molecule in the E-region as QM, or a molecule in the A-region
as MM, and should therefore not contribute. The general form
of the energy expression in eq 3 is used in many of the current
adaptive QM/MM methods.6,8,9 The expressions only differ in
the functional form of the weights σp (r).
The adaptive QM/MM methods that use the general

expression in eq 3 are Permuted Adaptive Partitioning
(PAP),6 Sorted Adaptive Partitioning (SAP),6 Difference-
based Adaptive Solvation (DAS),8 and Size-Consistent Multi-
Partitioning (SCMP).9 The PAP method defines nonzero
weight functions σp(r) for all QM/MM partitions that describe
the A-region molecules QM and the E-region molecules MM
(P1−P4, Figure 2). This results in exponential scaling of the
computational cost with the number of molecules in the T-
region (M). The DAS method reduces the computational cost
by assigning zero weight to a (much) larger number of
partitions. In principle only contributions from “ordered”

partitions (P1−P3, Figure 2) are nonzero, but to ensure
continuity of the forces extra partitions are included if two
solvent molecules are at a similar distance from the QM center.
As a result, DAS scales approximately linear with M provided
that the solvent structure in the T-region does not contain
regions of extremely high density. Like DAS, the SAP weight-
functions are only nonzero for ordered partitions. The SAP
computational costs scale linearly with M in all cases, but this is
achieved at the cost of the simplicity of the weight-functions.
The SAP potential energy surface is very steep in places, and
simulations require a small time-step for proper integration of
the equations of motion. Finally, the SCMP weight functions
are constructed in such a way that the number of contributing
partitions is conserved throughout the simulation, and all
contributing partitions have the same predetermined number of
QM (HR) molecules. These partitions can yield a continuous
energy as long as the total number of solvent molecules in the
system is sufficiently large. An SCMP simulation on a parallel
platform can exhibit nearly perfect linear scaling behavior.

2.2. Transition Forces. The forces derived from the
adaptive QM/MM potential energy in eq 3 have the form,
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where xi is a component of the vector r. This negative gradient
of the potential energy is a sum of two terms: an adaptive force
Fi
ad(r) and a transition force Fi

tr(r). The former term is a linear
combination of force terms derived from a conventional QM/
MM potential energy (eq 2), but the second term (the
transition force) contains the gradients of the weights, and
causes anomalies in the structure of the solvent.8,20

A pragmatic solution to the problem of the distorted
structures is to discard the Hamiltonian formalism and simply
neglect the offending term (e.g., use only Fi

ad(r) in eq 5 for
propagation). It has been demonstrated repeatedly that, while
such non-Hamiltonian simulations do not conserve energy (the
applied forces do not integrate to a consistent potential
energy21), they do provide reliable structures.8,20,22,24 None-
theless, giving up a Hamiltonian formalism has fundamental
and practical consequences.17 (1) Without a well-defined
energy a partition function cannot be defined, and it is difficult
to attach formal meaning to average values obtained from a
simulation. In practice this disadvantage is somewhat
diminished by the empirical observation that molecular
structures obtained from these simulations are reliable. (2)
The MD simulations require local thermostats with strong
coupling to prevent heating, and the reliability of dynamical
quantities (diffusion coefficients, time correlation functions) is
severely compromised.22 In practice, the primary added value of
a Hamiltonian scheme lies in the possibility for the reliable
acquisition of dynamical quantities.
A more rigorous solution is to adjust the Hamiltonian with

an extra term in the potential energy expression of eq 3. The
gradient of this term should then effectively cancel Fi

tr(r). The
H-AdResS approach pursues the MM/CG equivalent of this
strategy. The MM/CG forces derived from eq 1 have the form,

Figure 2. Six possible QM/MM partitions, with QM molecules
depicted as ball and stick and MM molecules as thick lines. Partitions
P1−P4 may all contribute to the adaptive QM/MM energy expression,
while by construction P5 and P6 do not.
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where the last term, containing the gradient of the MM/CG
weight function λα, is the equivalent of Fi

tr(r) in eq 5, and has
similar catastrophic effects on the structure of the system.
Unlike the QM/MM force expression in eq 5, the simpler
MM/CG force expression in eq 6 clearly shows that the
transition force scales linearly with the difference between the
two types of interaction energy (MM and CG) of particle α
with the rest of the system. This energy difference is the
potential energy released or absorbed when particle α is
converted from CG to MM at fixed conformation of the
system,17 or the vertical difference between two potential
energy surfaces at a specific point r. The transition force
Fαi
QM/MM(r) is a force driving the particle to become either QM

or MM. For each particle α the H-AdResS approach applies a
correction term to the potential energy expression in eq 1. This
term is constructed such that its gradient effectively cancels the
vertical energy release for particle α.
2.3. Per-Molecule Correction to a Many-Body Hamil-

tonian. In this work we show that we can arrive at a similar
per-particle correction for the QM/MM potential energy
expression in eq 3. The first step is to rewrite eq 5 into a
form comparable to eq 6. We define an empty set of QM
molecules 0 associated with the QM/MM potential energy
E0(r) that describes the system fully MM. In eq 3 the sum of
the weights σp(r) equals 1 ( σ∑ =∈ r( ) 1p p ), so that

∑σ σ= −
∈
≠

r r( ) 1 ( )
p
p

p0

0

We can therefore rewrite eq 3 as
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and the transition force defined in eq 5 as
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Equation 8 shows that the transition force Fi
tr(r) is linearly

dependent on the difference between the partition energies
Ep(r) and the fully MM potential energy E0(r). This can be
seen as the energy release when all the QM solvent molecules
in a set p are converted to MM. Analogously to the MM/CG
expressions we can simply divide this term into per-molecule
contributions, representing the energy released when the
specific solvent molecule is converted from QM to MM,

∑Δ = − = Δϵ
∈

E E Er r r r( ) ( ) ( ) ( )p p
s

s
p

0

p (9)

Note that ΔEp(r) is different for each global geometry r and for
each partition p, and that eq 9 assumes nothing about the
definition of Δϵsp(r). In fact, there is no unique way to

subdivide ΔEp(r) into molecular contributions, since these
depend on the order in which the molecules are converted to
MM.
The intuitive solution is to assume equal contributions from

all molecules s in eq 9. Earlier attempts at a Hamiltonian
expression went one step further,6,8 and also assumed similar
contributions for each partition p and geometry r, attempting to
cancel each Δϵsp(r) with the same constant C. An appealingly
simple choice for C is the difference in QM and MM energies
for a single (gas phase) molecule at the geometries rs

QM and rs
MM

optimized with the respective methods (C = VQM(rs
QM) −

VMM(rs
MM)). A corrected potential energy expression of the

form,
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has the desired corrected gradient,
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Substituting eq 8 in eq 11, and knowing that for partition p = 0
no correction term applies as 0 is an empty set, we can write

∑ ∑σ
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If C is indeed a good representation of Δϵsp(r) for each
geometry r, QM/MM partition p, and solvent molecule s, then
each Ep(r) is corrected to be similar to E0(r), and the transition
force becomes approximately zero. However, it has previously
been shown that such a simple correction results in equilibrium
solvent structures with a depletion of solvent molecules across
the T-region.7,8,22

The depletion in the transition region can be explained using
insights presented in the H-AdResS paper.17 The authors
suggested that the energy release upon conversion of a particle
α from MM to CG (∑β[Vαβ

MM − Vαβ
CG]) depends strongly on the

fractional MM (HR) character of α(λα), which is reflected in its
geometry. In our QM/MM simulations the analogue of λα is
ωs(r). For a molecule in the A-region with ωs(r) = 1 and energy
Ex, the geometry resembles the equilibrium QM geometry.
Therefore, the MM potential energy of the molecule in this
configuration will be higher than Ex and the energy increase
upon converting molecule s from MM to QM will be negative
(⟨Δϵsp(r)⟩ωs = 1 < 0, Figure 3, black versus red line). The reverse

Figure 3. Schematic representation of QM, MM, and adaptive QM/
MM potential energies after correction according to eq 10.
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argument holds for the energy of a molecule in the E-region, for
which ⟨Δϵsp(r)⟩ωs = 0 > 0 (Figure 3, black versus blue line). This
already explains why a simple correction using a constant C
cannot be sufficient. In the T-region, the molecule has neither
the equilibrium QM geometry, nor the equilibrium MM
geometry. Because of these nonequilibrium geometries both the
QM and the MM energies will have a value higher than Ex. Any
combination of a QM and an MM description will therefore
raise the energy above Ex, which is reflected in the higher
energies of particles in the T-region (Figure 3), and leads to a
local depletion of the water density in this region.
2.4. The HAMBC Correction. The above argument implies

a trend in the error of the water densities that depends on the
distance of the water molecules to the QM center. This
distance is directly related to the QM-character of the water
molecules (1 at short distances, 0 at large distances). Such a
trend complies with insights put forward in ref 17, stating that
the energy release upon conversion of a particle α from MM to
CG (∑β[Vαβ

MM − Vαβ
CG], eq 6) depends strongly on its fractional

MM character as reflected in its geometry. Similar to ref 17 the
final step toward a working Hamiltonian approach is to
approximate ∑ Δϵ∈ r( )s s

p
p

with an expression that depends on

the QM character ωs(r) of each molecule s. The chosen per-
molecule correction term is an (ensemble) average over all
coordinates r, partitions p, and solvent molecules s with QM
character ωs: ⟨Δϵsp(r)⟩ωs

. In the following, we will show that
correcting the per-molecule energy release Δϵsp(r) with this
average is equivalent to correcting the potential energy
expression VQM/MM(r) with a function Hc(ωs) for each

molecule s, as long as ω
ωd

dH ( )c
s

s
equals ⟨Δϵsp(r)⟩ωs

. For a system

of n solvent molecules,
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The forces derived from this expression have the form,
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Since ωs(r) is a sum over σp (r) values for those partitions that
describe molecule s QM (eq 4), we can express its gradient to xi
as follows,
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Inserting eq 15 into eq 14 we obtain,
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If ω
ωd

dH ( )c
s

s
is a good estimate for the Δϵsp(r) value of a solvent

molecule s with QM character ωs(r) at any geometry r accessed
during the simulation, then Ep(r) is corrected toward the MM
potential energy E0(r), and the transition force Fi

tr(r) becomes
approximately zero.
Since we know that the NVT ensemble of structures is well-

reproduced by a non-Hamiltonian simulation using the force
expression Fi

ad(r) in eq 5,24 the ensemble average

= ⟨Δϵ ⟩ω
ω ωr( )H

s
pd ( )

d
s

s s

c

can be extracted from such a non-

Hamiltonian simulation. The energy differences (Δϵsp(r)) that
are obtained from the non-Hamiltonian simulation are the
differences in energy between two QM/MM partitions that
differ only in the description of one solvent molecule. For
example, in Figure 2 the value of Δϵ2P1(r) for solvent molecule 2
and partition P1 is defined as the difference between EP1(r) and
EP2(r). The correction term in the energy Hc(ωs) (eq 15) can
be obtained by thermodynamic integration25 of this average
over ωs,

∫ω ω= ⟨Δϵ ⟩ ′
ω

ω′H r( ) ( ) ds s
p

s
c

0

s

s (17)

The above integral is by definition zero for solvent molecules
that are purely MM (ωs = 0).

3. COMPUTATIONAL DETAILS
We demonstrate the performance of our approach on a test
system of water in water, using the adaptive QM/MM weight-
functions σp(r) as formulated in the SAP method.6 The SAP
method has been selected in this work for practical reasons.
The number of contributing partitions to the SAP energy
expression always equals M+1, while the DAS method,8 due to
the construction of the weight functions, includes more
partitions when the solvent structure is extremely distorted in
the T-region (e.g., Hamiltonian simulations with a simple
correction). Note that for simulations with a homogeneous
solvent structure the SAP and DAS methods compute an equal
number of energy terms Ep(r) (eq 3). All simulations are
performed with FlexMD, a python library that serves as a
wrapper around several molecular program packages, each
providing the required QM or MM energies and forces.
FlexMD itself is distributed with the ADF program pack-
age,26,27 and uses the atomistic simulation environment
(ASE)28 for MD propagation. Our model system is a 30.025
Å periodic simulation box containing 915 water molecules. The
two selected potentials for our test simulations are both MM
potentials, where we chose the SPC/Fw force-field to describe
the central A-region (Figure 1),29 while the E-region is
described with the TIP3P/Fs force-field.29,30 SPC/Fw and
TIP3P/Fs energies and forces are both computed with the
NAMD program,31 and the many-body character of both
descriptions is introduced in the computation of the long-range
electrostatics, for which PME is used.32 For the ‘QM’/MM
interaction Vint(r) (eq 2) we use two different approaches. The
first is the IMOMM approach, which equates simple
mechanical embedding,33,34 and effectively means that Vint(r)
consists only of TIP3P/Fs interaction terms. The second
approach is electrostatic embedding, which differs from the
IMOMM approach in the Coulombic component of Vint(r) in
eq 2. This expression now consists of pairwise interaction terms
between SPC/Fw charges for the p molecules, and TIP3P/Fs

charges for the ′p molecules. In both cases the active region
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(A-region) is a 5.5 Å sphere around a central water molecule,
while the transition region (T-region) is a 0.9 Å thick layer
around the A-region. We performed an additional set of
IMOMM simulations with a smaller A-region of 4.0 Å, and a T-
region of 0.9 Å thickness.
The IMOMM system with the large A-region was first

equilibrated for 10 ps (for 5 seeds) using the non-Hamiltonian
approach (eq 5) at a water density of 1.01 g/mL in the
canonical ensemble (NVT). A Langevin thermostat was used
with a friction of 82.7 ps−1. The equilibrated structures were
used as starting geometries for five non-Hamiltonian
simulations of 10 ps each. These simulations also use a
Langevin thermostat with a friction of 82.7 ps−1. All five
simulations have varying starting velocities, which were
randomly generated. The results from these five simulations
were combined to obtain the HAMBC correction term Hc(ωs) .
At each time step the QM character of each water molecule in
the transition region was determined, and based on this it was
assigned to a bin of width 0.1 in ωs. Subsequently, the (two)
partitions were selected that differed only in the description of
this water molecule. The energy difference between the two
partitions was then extracted, and the value was stored in the
bin. When all 50 ps of data was collected, the values in each bin
were averaged, and Hc(ωs) was computed by numeric
integration (eq 17), followed by spline fitting to interpolate
the points. The g(r) from the non-Hamiltonian simulations was
used as the reference for all other results. The equilibrated
structures were also used as starting geometries for 5 ps NVE
simulations (0.1 fs time-step) using the Hamiltonian

expressions ̃V r( )QM/MM
(eq 10) and ̂V r( )

QM/MM
(eq 13).

Finally, five 20 ps Hamiltonian NVT simulations were
performed (of which the first 10 ps is the equilibration) with
the simple correction term (eq 10), using random starting
velocities and a 0.5 fs time-step. The same procedure was
repeated with the HAMBC correction of eq 13. For all NVT
simulations a time-step of 0.5 fs was used, and it was verified
that this yielded the same equilibrated structures as the NVE
simulations with a smaller time-step.
The entire above procedure was repeated using a smaller A-

region (4.0 Å) The only simulations omitted were the

simulations using ̃V r( )QM/MM
(eq 10) and the NVE

simulations. The same was done with an electrostatic
embedding setup for the interactions between the two sets of
molecules in the partitions.

4. RESULTS

4.1. Mechanical Embedding (IMOMM). As demonstrated
previously,8,20,22,24 the non-Hamiltonian simulations (using
only Fi

ad(r) to propagate the trajectory) result in a radial
distribution (g(r)) of water-oxygens around the central oxygen
atom O* that is very similar to the O−O radial distribution of
the reference (in this case SPC-Fw and TIP3P-fs29,30). The
non-Hamiltonian IMOMM simulation with a large A-region
produces a first sharp peak at 2.8 Å from the central oxygen
atom, and two much shallower peaks at 4.4 and 6.7 Å,
respectively (Figure 4, solid red line). We use this result as a
reference for the performance of the Hamiltonian simulations.

The corrected Hamiltonian approach using ̃V r( )QM/MM
(eq

10) results in an O*−O radial distribution (Figure 4, dotted
green line) that deviates strongly from the reference. The main
difference is a depletion of the water density in the T-region,

which is balanced by an increased density at the edges of the A-
and E-regions. The water densities on either side of the T-
region are similar, indicating that there is no significant
chemical potential difference between a “QM” water molecule
in the A-region and an MM water molecule in the E-region.
The correct density balance between the A- and E-regions is the
result of the correction C, which proves to be a good
approximation for the chemical potential difference between a
QM and an MM water molecule at their respective equilibrium
geometries.
The HAMBC energy correction Hc(ωs) obtained from the 50

ps of non-Hamiltonian simulation is depicted in Figure S1 of
the Supporting Information. The correction energy converged
to within 0.002 kcal/mol in approximately 40 ps (Figure S2,
Supporting Information). The blue line in Figure 4 is the O*−
O g(r) resulting from a simulation using this energy correction.
We extracted the values of the correction force and the
transition force for 17 water molecules over a short segment of
the simulation (450 fs). We found that the instantaneous value
of the transition force oscillates strongly around the (negative
of the) correction force, with an average root-mean-square
deviation of 3.7 kcal/mol. The average of the transition force
over a short time interval of 50 fs deviates very little from the
negative correction force with a root-mean-square error of only
0.8 kcal/mol. The resulting g(r) clearly indicates that the
average compensation is enough to cancel the effect of the
transition forces Fi

tr(r) such that the correct solvent structure is
obtained everywhere in the solution. In the Supporting
Information we plotted the behavior of the transition and
correction forces in Figure S3, and the trajectory of the “QM”
character of a few selected water molecules in Figure S4.
The merit of our novel Hamiltonian approach is further

confirmed with microcanonical (NVE) simulations that reveal
no significant drift in total energy (no more than 0.005 kcal
mol−1 ps−1), which can be seen in Figure 5. This is in stark
contrast to the total energy drift in the non-Hamiltonian
simulations of 10 kcal mol−1 ps−1.
The HAMBC simulation with the smaller A-region yielded

very similar structures, which agreed well with the correspond-
ing non-Hamiltonian reference (Figure S5 of the Supporting
Information).

4.2. Electrostatic Embedding. In an electrostatic
embedding simulation the conversion of a molecule from one
description to another involves not only a changing interaction

Figure 4. Radial distribution of oxygen around the central “QM” water
oxygen atom O* for three different simulations: Non-Hamiltonian
[red], Hamiltonian using a simple constant correction [green, dotted],
and HAMBC [blue, dashed]. All three simulations use the IMOMM
scheme to describe the interactions between the two types of
molecules.
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with the molecules in p (like IMOMM), but also with the

molecules in ′p. We therefore expected these simulations to

produce slightly larger values for ⟨Δϵsp(r) ⟩ωs
than the IMOMM

simulations. Instead, we observe that the “QM” description is
slightly destabilized with respect to the MM description
compared to the IMOMM result with an average value of
0.16 (±0.02) kcal/mol. We attribute this destabilization to the
Coulombic interaction of the water molecules in p with a large

reservoir of ′p water molecules with charges that are not
optimal for this force field. The destabilization is independent
of the value ωs of water molecule s, indicating that the water
molecules in the A-region have very little possibility to
accommodate the new interactions by adjusting their geometry.
The increase in the energies of the individual MM molecules
( ′p) is smaller, because they only experience an unfavorable

interaction with a small number of p molecules. In complete
analogy with IMOMM simulations the HAMBC correction
forces nicely compensate the transition forces, resulting in a
g(r) that matches the non-Hamiltonian reference (Figure S7,
Supporting Information).

5. CONCLUSIONS
In summary, we propose a new Hamiltonian adaptive dual-
resolution approach that combines two many-body potentials
and is able to correctly describe the structure of a molecular
solution while simultaneously conserving the total energy. The
forces from an uncorrected adaptive Hamiltonian consist of two
terms, Fi

ad(r) and Fi
tr(r). The former term by itself provides the

correct equilibrium solvent structures, but the latter term causes
artifacts. A crucial step in our derivation is the separation of the
transition force Fi

tr(r) into characteristic contributions from
each solvent molecule. We then introduce a per−molecule
correction term that is a function of the high-resolution
character of the molecule and that cancels the undesirable
transition force. When we extract the HAMBC correction term
from a non-Hamiltonian adaptive multiscale simulation, the
resulting Hamiltonian can be used in simulations that conserve
energy and preserve the solvent structure throughout the
molecular system. The new approach thus enables micro-
canonical simulations that provide meaningful fluctuations and
response functions, and can be used to obtain vibrational
spectra and other dynamical properties.
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