
Comparison of Ultrafine Particle and Black Carbon Concentration
Predictions from a Mobile and Short-Term Stationary Land-Use
Regression Model
Jules Kerckhoffs,*,† Gerard Hoek,† Kyle P. Messier,‡,§ Bert Brunekreef,†,∥ Kees Meliefste,†

Jochem O. Klompmaker,†,⊥ and Roel Vermeulen†

†Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht 3584 CK, The
Netherlands
‡Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas 78712, United States
§Environmental Defense Fund, Austin, Texas 78701, United States
∥Julius Center for Health Sciences and Primary Care, University Medical Center, University of Utrecht, Utrecht, 3584 CK, The
Netherlands
⊥National Institute for Public health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands

*S Supporting Information

ABSTRACT: Mobile and short-term monitoring campaigns
are increasingly used to develop land-use regression (LUR)
models for ultrafine particles (UFP) and black carbon (BC). It
is not yet established whether LUR models based on mobile or
short-term stationary measurements result in comparable
models and concentration predictions. The goal of this paper
is to compare LUR models based on stationary (30 min) and
mobile UFP and BC measurements from a single campaign.
An electric car collected both repeated stationary and mobile
measurements in Amsterdam and Rotterdam, The Nether-
lands. A total of 2964 road segments and 161 stationary sites
were sampled over two seasons. Our main comparison was
based on predicted concentrations of the mobile and stationary monitoring LUR models at 12 682 residential addresses in
Amsterdam. Predictor variables in the mobile and stationary LUR model were comparable, resulting in highly correlated
predictions at external residential addresses (R2 of 0.89 for UFP and 0.88 for BC). Mobile model predictions were, on average,
1.41 and 1.91 times higher than stationary model predictions for UFP and BC, respectively. LUR models based upon mobile and
stationary monitoring predicted highly correlated UFP and BC concentration surfaces, but predicted concentrations based on
mobile measurements were systematically higher.

1. INTRODUCTION

Multiple studies have shown negative relationships between
outdoor particulate matter air pollution and health.1 Both
animal and human studies provide evidence for respiratory and
cardiovascular effects associated with exposure to outdoor air
pollution, with the ultrafine particle (UFP) fraction2,3 and black
carbon (BC)4 as valuable indicators of pollution mixtures
produced by local combustion sources.
Assessing spatial variation of UFP and BC can be challenging

because these concentrations are highly variable in space and
time, especially in urban environments.5 Land-use regression
(LUR) modeling has proven to be a useful tool to predict
(long-term) intraurban spatial variation of outdoor air
pollution.6 LUR models for components such as nitrogen
dioxide (NO2), particles smaller than 2.5 μm (PM2.5), and BC
are usually based on 20−100 locations measured repeatedly
over 1 or 2 week time periods.6 For UFP, long-term sampling is

complicated because instruments need frequent quality control
and maintenance and are expensive compared to measurement
instruments for NO2 and PM2.5.

7 Although long-term LUR
models exist for UFP,8 most monitoring campaigns are based
on short-term measurements ranging from 15 min to 1 h per
site9−12 or true mobile monitoring with measurements obtained
from a platform moving in traffic, often measuring 1 s to 1 min
in interval.13−17

Short-term stationary and mobile monitoring reduces total
measurement time significantly, allowing the measurement of a
larger number of sites. However, they present challenges in
separating spatial and temporal variability compared to study
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designs with long-term fixed sites measured simultaneously. In
mobile monitoring, this is complicated further by the even
shorter time per location (typically road segments) compared
to short-term monitoring. On-road monitoring may further not
be representative for the modeling of residential exposures
because dwellings can, depending on the urban topography, be
several meters away from the roadside.
Previous studies have used either short-term stationary or

mobile monitoring but not both in one study area. Short-term
stationary monitoring campaigns for UFP and BC have been
conducted in Vancouver, Canada;10 Girona, Spain;11 Am-
sterdam and Rotterdam, The Netherlands;9 and New Delhi,
India.12 Typically, models explained a moderate amount of
variation in measured concentrations (R2: 30−50%). The
moderate R2 has been attributed to the large variability of short-
term stationary measurements compared to campaigns using
repeated 1−2 week measurement periods.9 True mobile
monitoring for UFP has been performed in Toronto and
Montreal, Canada;15−17 Somerville, MA;14 and Minneapolis,
MO.7 Model R2 was between 40 and 70%. Model R2 can,
however, not be easily compared between studies as some are
spatial and some are spatiotemporal models, and sampling
campaigns differ in duration and number of sites.
To date, there is no systematic comparison between LUR

models of UFP and BC based on mobile and short-term
stationary monitoring in the same study. We performed a
measurement campaign in which we collected short-term
stationary measurements (30 min) and measured in a mobile
fashion in between the short-term stationary measurements
using an electrical car. We previously showed that LUR models
can be developed based on short-term stationary measurements
in this region.9,18 In this paper, we extend this work by
developing LUR models based on mobile measurements and
compare both methods in their ability to predict UFP and BC
concentration surfaces of residences in the study area.

2. MATERIALS AND METHODS

2.1. Study Design. The monitoring campaign and site
selection has been described previously.18 Briefly, ultrafine
particles were measured each second using a CPC 3007 (TSI
Inc.). Black carbon was measured each minute using the micro
Aethalometer (Aethlabs). Instruments were installed in the
back of an electric vehicle (REVA, Mahindra Reva Electric
Vehicles Pvt. Ltd., Bangalore, India), connected to inlets on the
outside of the car. A Garmin eTrex Vista (Garmin Ltd. Kansas
City, KS) global positioning system (GPS) measured the
location of the electric vehicle in space and time. Sites were
selected with a wide range of spatial contrast in traffic
characteristics and land use.9,18 Specifically, we selected traffic
sites (>10 000 vehicles per day), urban background sites, sites
near urban green, rural sites (outside the city), and sites near
waterways.
Complete measurements of both air pollution and GPS were

collected for 42 days in two seasons: winter and spring. A total
of 2964 unique road segments were monitored between
January 16th and May 22nd of 2013, taken by driving from one
stationary measurement to the next. Measurements were
performed between 9:15 AM and 16:00 PM to increase
comparability between sites (avoiding rush hour). Of those
2964 road segments 745 (514) road segments had measure-
ments of UFP and BC in both winter and spring. The abstract
art shows a typical trajectory of the electric car.

2.2. Data Aggregation. Following previous mobile
monitoring studies,15,16 we averaged air pollution per road
segment, defined as a part of a road between two consecutive
intersections. Because all measurements were performed on the
road, GPS points were snapped to the nearest road segment
along the predetermined route to correct for small positional
errors of the GPS. Road segments in tunnels or on bridges were
deleted from the data set (n = 30) because they are not
representative for residential streets. Road segments were on
average 130 m long and comprised, on average, 12 s of UFP
data. BC concentrations were based on 1 min values assigned to
every road segment the car was on in that minute. On average,
this means that three road segments were assigned the same BC
measurement. A cutoff point of 10 000 vehicles per day was
used to distinguish traffic and urban background road segments,
following the definition for stationary sites.9 Approximately
40% of road segments were considered as traffic and 60% as
urban background road segments.

2.3. Air Pollution Data Processing. UFP data was
removed if the concentration was below 500 particles per
cm3 and if the UFP concentration decreased or increased
within a second by a factor 10, following the procedures of
Klompmaker et al.18 These criteria resulted in less than 1% of
observations for short-term and mobile sites being removed.
Concentrations lower than 500 particles per cm3 were mostly 0,
reflecting instrument malfunctioning.
For mobile monitoring, it is considered important to identify

sampling events close to high-emission vehicles,19 as these
events can influence LUR model development. We defined
samples influenced by local exhaust plumes if an UFP
concentration was three standard deviations above the previous
measurement second, determined based on the concentrations
distribution for that day. Observations remained flagged until
they dropped beneath the day average plus one standard
deviation. This method is based on the method used by
Drewnick et al.20 For the main analyses, we used all
measurements, including road segments with local exhaust
plumes. For sensitivity analysis, we excluded them.
Our BC instrument generates minute averages, but this still

can be a too short time period to produce reliable
concentration levels because of a too-small change in
attenuation (ATN). Data with a too-small ATN or negative
ATN were corrected using the algorithm proposed by Hagler et
al.21 BC concentrations were only assigned when a threshold of
0.05 ATN change was fulfilled. Minute values with less than
0.05 ATN change were averaged over time until the criteria was
met. The algorithm leads to significant noise reduction in our
instrument while preserving high-resolution temporal variation.
A total of 92% of the data has a 3 min time resolution or less.
Only 20% of the data had a 1 min time resolution. Local
exhaust plumes for BC were based on road segments for which
UFP had a local exhaust plume, as 1 min BC measurements are
too long to detect local concentration peaks.

2.4. Temporal Variation. A reference site with the same
equipment as the electric vehicle was set up in Utrecht (about
30 km from Amsterdam and 50 km from Rotterdam), The
Netherlands, to correct for temporal variation. We used the
difference method for correcting the spatial data, following
previous work in the stationary campaign.18 First, the overall
mean concentration of the entire campaign at the reference site
was calculated. Next, for each minute at the reference site, an
average of 30 min around time x was calculated that was
subtracted from the overall mean concentration at the reference
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site. The difference is then used to adjust the original
concentration measured at the sampling locations.
2.5. Model Development. The midpoint of each road

segment was identified and used as a coordinate for obtaining
GIS predictors for LUR modeling. The average concentration
adjusted for temporal variation of both pollutants per road
segment was used as dependent variables in a linear regression
analysis with multiple GIS variables as independent variables.
We used the original concentration scale to predict arithmetic
averages for epidemiological studies. We used data from all road
segments, even when only one measurement was available. We
observed similar standard errors of regression coefficients with
this LUR modeling approach compared to using only the 745
(of 2964) road segments with at least two observations. GIS
predictor variables were described previously9 and summarized
in Table S1. Briefly, a range of traffic variables was defined,
including traffic intensity and road length variables (in 25 m to
1000 m buffers). Inverse distance to major roads was also used
in the stationary model development but not in the mobile
monitoring model, as this variable cannot be computed for
major roads (distance zero for major road segments).
Additionally, land use (e.g., port, industry, and urban green
land) and population and household density in buffers from
100 to 5000 m were potential predictor variables. We
additionally included airports as potential variable as recent
studies found a 3- to 4-fold increase in UFP concentrations
near airports.22,23 These studies found elevated UFP concen-
trations up to 10 km from the airport, so for this variable we
included a 5 and 10 km buffer as potential variable. The GIS
variables were selected using a supervised stepwise selection
procedure following our previous study.9 The direction of the
effect for the variables was determined a priori (Table S1), and
the variable with the highest adjusted R2 was entered in the
model. Model building stopped when new variables were not
able to improve the adjusted R2. The variables in the resulting
models were checked for p value (removed when p >0.10),
collinearity (variance inflation factor >3 were removed), and
influential observations (if Cook’s D > 1, the model was further
examined). We accounted for autocorrelation using a first order
autoregressive (AR-1) term in the ARIMA procedure in SAS.
Based upon the partial autocorrelation function, we determined

that an AR-1 term was sufficient to characterize autocorrelation
of the residuals. This correlation structure was also found to be
most suitable in a mobile monitoring study by Farrell et al.24 If
after adding an AR-1 term to the identified model, variables
were no longer significant (p > 0.10), they were removed from
the model. We did not use universal Kriging to account for the
autocorrelation of the data because in this method, the actual
measured concentrations at the monitoring sites unduly
influence model predictions. Measured concentrations are not
precise due to the short duration of the measurements. The
strength of mobile measurements is not the precision of
individual observations but the amount of them.
For sensitivity analyses, we also developed models excluding

observations flagged as influenced by local exhaust plumes. To
test the impact of accounting for autocorrelation, we compared
models with and without additional modeling of autocorrela-
tion.
Because stationary models in the previous paper were based

on three seasons and the true mobile monitoring models on
two seasons, stationary LUR models were redeveloped with the
same method as above, based on values in winter and spring
and only used if both measurements were available. Montagne
et al.9 did not consider airports as potential variable, so we
included the area of airports in a 5 and 10 km buffer in the new
short-term stationary model.

2.6. Comparison between Short-Term Stationary and
Mobile Monitoring. To compare stationary and mobile
monitoring, four different analyses were performed: (1)
stationary and mobile measurements were compared by
identifying road segments adjacent to stationary sites. Measure-
ment averages on these pseudo co-locations were compared
using Pearson and Spearman correlation coefficients. For BC,
this analysis was not performed because of the 1 min time
resolution of the instrument. (2) Mobile LUR model
predictions at the stationary measurement sites were compared
with measured concentrations at these sites. (3) the stationary
LUR model predictions were compared with concentrations
measured at the mobile road segments. To perform this
analysis, road segment coordinates with a value of zero for
distance to nearest major road (mobile observations on a major
road) were assigned a value of 10 m because inverse distance

Figure 1. Distribution of average stationary (30 min) and road segment UFP and BC concentrations. Each box shows the median and the 25th and
75th percentiles. The diamond shape represents the group mean. Axes were truncated. There were 26 and 18 UFP observations higher than 100 000
p/cm3 at traffic and background locations with a maximum of 221 243 p/cm3. There were 57 and 32 BC observations higher than 10 μg/m3 at traffic
and background locations with a maximum of 43 μg/m3.
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variables (predictor in the stationary models) could not be
calculated otherwise. To check whether this number unduly
affected the results, other distances (between 4 and 15m) were
considered. (4) Both LUR models were used to predict
concentration levels at residences using an external data set.
GIS variables were used from a cohort study in Amsterdam,
consisting of 12 682 residential addresses spread over the city,
including urban background and traffic addresses with different
land-use characteristics. We only used address information, and
further details of this cohort can be found elsewhere.25 The
range of predictor variables was truncated to the range observed
at the monitoring locations. Because application of the LUR
models in epidemiological studies was the main goal of model
development, this comparison was considered the central
comparison between mobile and stationary monitoring models.

3. RESULTS
Figure 1 and Table 1 illustrate the variability of average UFP
and BC concentrations from mobile and stationary monitoring,
stratified by traffic and urban background (UB) sites. Mobile
measurements were on average 1.7 times higher than stationary
measurements for UFP (21 167 and 12 630 particles per cm3

for mobile and stationary measurements, respectively). Black
carbon concentrations collected on road were on average 2.1
times higher as stationary measurements, 2.83 and 1.35 μg/m3,
respectively. In particular, the higher percentiles of mobile
measurements were about 3 times higher than the stationary
measurements (2.8 for UFP and 3.1 for BC for the 95th
percentile), likely related to the shorter averaging time of the
mobile measurements. Mobile measurements were higher than
the stationary measurements both for traffic and for urban
background locations.
3.1. Mobile and Short-Term Stationary Monitoring

LUR Models. The LUR models based upon mobile monitoring
for UFP and BC are shown in Table 2. The model included
predictor variables describing traffic (in small and large buffers)
and population density for both pollutants. For UFP, airports
and ports were also included in the model. Because models
were developed including an AR-1 term, we cannot report
standard R2 values of our main models. Instead, the reported R2

value is calculated by regressing the predicted concentration
based on the parameter estimates of the mobile AR-1 model
without the AR-1 term. R2 values were low (0.13 and 0.12 for
UFP and BC, respectively), reflecting the large temporal
variability of the short duration measured concentrations.
Models developed on road segments with at least two repeats
(n = 745), increased the R2 to 0.18 for UFP and 0.30 for BC
(Table S2). Because the explained variance remains low, all
further analyses are based on all road segments. Standard errors
of the regression slopes were similar while losing about 75% of
the data. We previously argued that a model with a low model
R2 can provide robust spatial models.9,17

When models were developed using only road segments
without local exhaust plumes (n = 2907), models were very

similar to the models including all road segments (Tables S3
and S5) with the exception that some small-scale traffic
variables that were dropped from the UFP and BC models
(traffic intensity on the nearest road). Not accounting for
spatial autocorrelation changed the model only modestly
(Tables S3 and S5). UFP and BC predictions based on the
mobile models with and without AR-1 term and with and
without local exhaust plumes were very highly correlated at the
12 682 addresses of the external data set (Tables S4 and S6),
suggesting that these modeling choices do not affect the model
predictions substantially.
The stationary models developed based on two seasons

(Table S7) were very similar to the models previously
published based on three seasons9 (Table S8). The stationary
models contained fewer but similar predictor variables than the
mobile monitoring models.

3.2. Comparison between Short-Term Stationary and
Mobile Measurements. UFP measurements of both data sets
were compared by creating a pseudo co-location of the
stationary measurement. Of the possible 322 (161 × 2)
stationary measurements, 184 also had a valid mobile
measurement on the same road segment. Comparisons for
UFP concentrations are given in Table 3 and Figure S1,
showing a moderately high correlation between mobile and
stationary measurements (Rp = 0.48). Correlations were higher
for urban background than for traffic sites (Rp = 0.67 versus
0.39). Spearman correlations were higher than Pearson
correlation values, indicating a nonlinear relation between
stationary and mobile measurements. Mobile measurements at
the pseudo co-location were on average 1.12 times higher than

Table 1. Comparison between Average UFP and BC Concentrations of All Mobile and Short-Term Stationary Measurements

method no. of observations mean 5th percentile median 95th percentile

stationary averagea UFP (in particles/cm3) 128 12 630 5089 11 474 21 362
BC (in μg/m3) 141 1.35 0.56 1.13 2.67

mobile averageb UFP (in particles/cm3) 2964 21 167 4391 15 057 59 628
BC (in μg/m3) 2336 2.83 0.48 1.79 8.41

aStationary average consists of 2 × 30 min. bMobile average consists, on average, of 18 s.

Table 2. Land-Use Regression Models Based upon Mobile
Measurements for UFP and BC

variables in LUR model
UFP (in particles/

cm3)a
BC (in μg/

m3)

intercept 5656 (2675) 0.48 (0.60)
population density in a 5000 m buffer 8064 (1947) 1.15 (0.48)
airport area in a 5000 m buffer 4669 (1185)
port area in a 1000 m buffer 2499 (1248)
nature area in 5000 m buffer −2557 (1357)
major road length in a 50 m buffer 6868 (1071) 0.61 (0.15)
traffic intensity on the nearest road 0.30 (0.14)
traffic load on major roads in a 100 m
buffer

1928 (1095)

traffic load in a 500 m buffer 2917 (1514)
traffic load in a 1000 m buffer 0.88 (0.36)
R2 of model 0.13b 0.12
no. of road segments used for model
development

2964 2336

aRegression slopes and standard error (between parentheses),
multiplied by the difference between 10th and 90th percentile for all
predictors to allow comparison of the effect of predictors with different
units and distribution on measured concentrations. bR2 of AR-1 model
without AR-1 term.
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stationary measurements, consistent with the comparison of all
stationary sites and road segments (Table 1). However, the
difference for the pseudo colocations is much lower than the
overall difference. Mobile measurements were thus not only

higher because of the distance to the road but also are related to
the car using relatively busy roads to travel between stationary
sites. As seen in Figure S1, the measurements were similar at
the lower end of the concentration distributions and the
difference increased at sites with high mobile measurements
(hence, the higher Spearman correlation compared to the
Pearson correlation).

3.3. Comparison between Mobile LUR Model Pre-
dictions and Short-Term Stationary Measurements.
Predictions of the mobile LUR models were compared to the
stationary measurements (Figure 2a). The mobile UFP model
explained 26% of the spatial variability, two times more than
the R2 of the mobile model itself (Table 2). The mobile model
explained the smaller variation of stationary measurements than
the stationary model (Table S6) itself: 36%. For BC, the

Table 3. Correlation between Mobile and Stationary UFP
Measurements Sampled at the Same Road Segment

site type
number of
observations

Pearson
(Spearman)

median difference
(particles/cm3) and ratio

total 184 0.48 (0.70) 1674a (1.12)
traffic sites 100 0.39 (0.56) 2010 (1.12)
urban
background
sites

84 0.67 (0.81) 1450 (1.11)

aDifference is mobile minus stationary measurement.

Figure 2. Comparison between stationary and mobile measurements and predictions for UFP and BC. (a) Predicted concentrations at stationary
sites based on mobile model compared with stationary measurements. (b) Predicted concentrations at road segments based on the stationary model
compared with mobile measurements. (c) Mobile vs stationary predicted UFP and BC concentrations at residences from an ongoing cohort study in
Amsterdam consisting of 12 682 residential addresses.
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explained variance of stationary measurements was 20% for the
mobile model (compared to 12% for the mobile BC model in
Table 2) and 28% for stationary predictions, respectively. In
this comparison, it should be noted that the stationary models
were developed on the stationary measurement data. Both
mobile models predicted higher concentrations than the
measured concentrations at the short-term stationary sites.
The mean difference was 4805 particles/cm3 (95% CI: 3,336;
6,251) for UFP and 1.11 μg/m3 (95% CI: 0.93; 1.28) for BC.
Regressing the predicted UFP concentration based on the
mobile measurements to the stationary measurements shows a
slope of 0.70 (95% CI: 0.49; 0.91). For BC, the slope was 0.49
(95% CI: 0.32; 0.67).
3.4. Comparison between Mobile Measurements and

Short-Term Stationary LUR Model Predictions. We also
compared the stationary LUR model predictions to the mobile
road segment average measurements, which resulted in a
similar explained variance as for the mobile LUR models itself
(R2 0.13 versus 0.13 and 0.11 versus 0.12 for UFP and BC,
respectively). Results are shown in Figure 2b. This comparison
is somewhat hampered as an inverse distance is included in the
stationary LUR model, and all mobile measurements were
taken on road. We therefore set a minimum distance of 10 m to
a major road and explored if varying this distance (4 to 15 m)
resulted in marked differences. The results of these sensitivity
analyses were essentially similar to the model assuming a
minimum distance of 10 m.
3.5. Comparison between Mobile and Short-Term

Stationary LUR Model Predictions on External Data Set.
The developed stationary and mobile LUR models were used
to predict concentration levels at residences from an ongoing
cohort study in Amsterdam, consisting of 12 682 residential
addresses. Predictions at these addresses were very highly
correlated for both sets of LUR models (Figure 2c; R2 of 0.89
for UFP and 0.88 for BC). Mobile models did, however, predict
higher concentrations than stationary models, especially at
higher concentrations. This difference is larger for BC (factor
1.91) than for UFP (factor 1.41) and reflective of the overall
difference observed in measured concentrations in the
stationary and mobile data sets (factor 2.1 and 1.7,
respectively). Mean absolute difference was 4163 particles/
cm3 (95% CI: 4027; 4299) for UFP and 1.08 μg/m3 (95% CI:
1.07; 1.10) for BC.

4. DISCUSSION
We developed LUR models based on mobile and short-term
stationary measurements and compared both models in their
ability to predict UFP and BC concentration levels at the
stationary measurement locations and at the external data set
with over 12 000 addresses in and around Amsterdam. Mobile
monitoring LUR models included similar predictor variables
compared to the short-term stationary models. Predictions of
the mobile and stationary LUR models at residential addresses
of the cohort study were very highly correlated (R2 > 0.88), but
predictions based on the mobile model were on average 1.41
(UFP) and 1.91 (BC) times higher than predictions of the
stationary model.
4.1. Mobile versus Short-Term Stationary LUR

Models. The variables in the mobile and stationary models
were comparable. Both UFP models include the population
density in a 5000 m buffer and port area, while the inverse
distance to a major road variable in the stationary model is
replaced by major road length in a 50 m buffer in the mobile

model. Traffic intensity in a 100 m buffer is also very similar to
the intensity of traffic on the nearest street, used in the mobile
model. The mobile UFP model also included traffic load in a
500 m buffer and the area of airports in a 5000 m buffer. The
presence of an airport in a 5 km buffer in the UFP model is
consistent with recent studies evaluating the impact of airports
on air pollutants.22,23 These studies found elevated UFP (but
not BC) concentrations up to 10 km downwind of airports. In
agreement with these previous studies, our LUR model for BC
did not include airports. Due to the similar structure of both
models, the predicted UFP concentrations at over 12 000
addresses were highly correlated with an R2 value of 0.89.
The mobile BC model predictions were also highly

correlated with the stationary model predictions on the external
data set (R2 of 0.88). Variables in the BC mobile model were
again similar to the stationary model variables. Here, population
density and traffic intensity on the nearest road were present in
both models, and the variable describing the inverse distance to
major road in the stationary model was replaced by major road
length in a 50 m buffer in the mobile model, as in the UFP
model. These results indicate that both measurement
approaches result in very similar model structures and highly
correlated outdoor UFP and BC concentration estimates on a
population level.
Explained variances of the mobile models were low and even

lower than for the stationary models in this and our previous
paper.9 In a previous analysis, it was documented that the short
stationary monitoring duration resulted in much higher within
(temporal) to between (spatial) sites concentration variance
ratios compared to monitoring campaigns with 1 or 2 week
average samples.9,18 Mobile monitoring involves even shorter
monitoring per road segment and, hence, an even-less-favorable
ratio between the ratio of concentration variance within to that
between sites, resulting in low explained variances with the use
of spatial predictor variables only. Consistently, the mobile
UFP and BC models explained a larger percentage of the
variation of the short-term stationary measurements than of the
variability of the mobile measurements on which they were
developed. We previously documented that, despite the low R2,
robust spatial models can be developed as the large number of
sites in short-term stationary measurement campaigns
compensates the low precision of the averages for each site.9

The explanation offered was that measurement error in a
continuous outcome variable in linear regression does not lead
to biased regression slopes but does lead to lower R2 values. In
the present analyses, we extend this observation to mobile
monitoring, showing that the mobile LUR models, on a
population level, result in a similar rank-order of estimated
outdoor concentrations, despite the fact that the mobile models
systematically overestimated concentrations at residential
addresses.
Consistent with the above reasoning and despite the low

mobile model R2 values, variables in the model were able to
predict differences of up to 6997 particles/cm3 for UFP and
1.15 μg/m3 for BC between the 10th and 90th percentile of
predictor variables. These are substantial contrasts, given the
average urban background values of about 10 000 particles/cm3

and 1.00 μg/m3 for UFP and BC, respectively.
Some mobile and short-term monitoring studies reported

higher model R2 values than we report here. In a bicycle-based
mobile monitoring study in Minneapolis, models explained
about 50% of the particle number concentration (PNC) and
30−40% of the measured BC variability.7 Averages consisted of
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12 to 30 runs on the same road segment, which is far more than
our study in which most of the road segments were only
sampled once. In studies by Weichenthal et al.16,17 the average
road segment consisted of 10 min of UFP data or consisted of
at least 200 data points per segment, resulting in explained
variances of 67% and 62%. Sabaliauskas et al.15 only reported
their R2 of the mobile model compared with measurements at
seven fixed sites to validate their model (R2 of 0.68). Here,
averaging time of UFP measurements was also between 5 and
10 min. Other differences between studies may be related to
the overall variability of the measured concentrations, related to
proximity to and magnitude of sources and the complexity of
the study area.
4.2. Overestimation of Mobile Models. An average of

1.41 (UFP) and 1.91 (BC) times higher predicted values for
mobile models compared to stationary models was found on
residential addresses of the external data set. The over-
estimation is likely caused by the fact that mobile measure-
ments are on-road, and the stationary measurements were
taken at the sidewalks as close as possible to the facade of
buildings. Although monitoring studies have documented large
gradients of UFP and BC within meters of major roads,3 our
models contained buffer variables for traffic with radii of 50 to
1000 m, and these were unable to sufficiently explain
differences between concentrations from on-road to residential
addresses, typically located 5−20 m from the side of the road.
We excluded inverse distance to major roads from modeling, as
this variable cannot be calculated for on-road monitoring on
major roads (distance zero). Assigning small distances to the
road for on-road measurements was not an option, as the
distance chosen is arbitrary and, if a small one is chosen,
essentially results in a dummy variable for major roads versus
nonmajor roads. In addition, it is unlikely that distance variables
would be able to provide the needed scaling, given the limited
precision of GIS calculated distances in compact urban areas.8

The higher overestimation for BC compared to UFP can
possibly be ascribed to the coarser time resolution of the BC
instrument (1 min versus 1 s for UFP) and the used data
aggregation method. BC measurements were averaged over
multiple minutes when the attenuation change was too low,
while road segments with high concentration levels are more
likely to remain on a 1 min resolution. Road segments with
expected low concentrations are therefore assigned relative
higher concentration levels. This method produces higher
parameter estimates when modeling BC concentrations
opposed to UFP. When UFP values were averaged with the
same approach as the BC measurements (based on ATN values
of the BC instrument), the absolute difference increased to 1.67
(Figure S2). Due to the precision of the instrument and data
aggregation method, it seems that mobile monitoring while
driving a car limits the application of our BC device. For mobile
monitoring campaigns at lower driving speeds based, for
example, upon cycling and upon walking in particular, the 1
min resolution may be appropriate. In study areas with higher
concentrations than those observed in our study, the
instrument will support shorter-duration measurements.
4.3. Mobile versus Stationary Monitoring. The

advantage of mobile monitoring is that many locations can be
measured in a relatively short amount of time with a limited
number of monitoring devices. These locations include more-
complex but realistic locations, such as near intersections.9 An
additional advantage is that little preparation is needed for site
selection because the mobile platform does not need to be

stationed anywhere for 30 min. However, selecting monitoring
routes to cover relevant spatial settings and avoiding bias due to
temporal variation remains important. We tried to minimize
temporal bias by restricting to measurements outside the rush
hours and by having a background reference site with identical
equipment. Other approaches that could be taken is by smart-
driving patterns in which several locations are revisited during
the day or by having more than one platform driving at the
same time.
Mobile monitoring may be affected by wind and vehicle

speed effects, although the impact may be limited for
submicrometer particles.26 Figure S1 suggests this has not
been a main issue in our study, as stationary and nearby mobile
measurements did not differ substantially. Furthermore, we did
not find a correlation between driving speed and measured
concentrations in our data set.
One of the methodological challenges when using mobile

data is to account for the inherent autocorrelation structure in
the data. We used a first-order autoregressive model for the
residuals, which assumes regular space and time intervals and
that autocorrelation remains constant over time. However, as
our measurements were not taken with the same lag-time in
between road segments this method is unlikely to be optimal.
We therefore performed sensitivity analyses in which we did
not account for the autocorrelation. This indicated that the
correlations on a population level between the models
accounting or not accounting for autocorrelation are high:
0.99 for UFP and 0.97 for BC (Tables S4 and S6).
We aggregated the monitoring data to road segments and

used the midpoint to obtain GIS predictor variables. This adds
some uncertainty to the analysis, but in a study in Minneapolis,
Hankey and co-workers found no difference in model
performance for aggregation at 50, 100, or 200 m spatial
resolution.7

The exclusion of road segments with local exhaust plumes for
model development did not affect LUR models much in our
study. An argument against removing local exhaust plumes of
high-emitting vehicles is that busy road segments have a higher
frequency of local exhaust plumes. In our modeling approach,
we checked for the influence of potential outliers using Cook’s
D statistic. The large number of road segments in the data set
probably prevented that the highest values influenced the
developed model. Figure 1 illustrates that we measured few
extreme concentrations. Consistently, only about 2% of our
observations were flagged as local exhaust plume by our
algorithm. In other study areas, this may be different.
An interesting option for model development is the

combination of mobile and short-term stationary monitoring.
This hybrid approach needs further work, likely involving
definition of weights to take into account, the number of sites,
and the time at each site and allowing for heterogeneity in
variance structure. A further possible development is to build
spatiotemporal models incorporating meteorology.
We focused our paper on the use of mobile and short-term

stationary monitoring LUR models to characterize residential
exposures for cohort studies. Mobile on-road monitoring
models may also provide useful information with which to
characterize commuter exposures. When coupled with time
activity information, e.g., tracking by smartphone, individual
exposure can be calculated by incorporating both residential
and commuter exposures.27

4.4. Implications for Epidemiology. The spatial models
that we developed may be useful for long-term exposure
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studies. On a population level, the predictions of the mobile
and short-term model were highly correlated, implying that
significant associations with health observed with one model
would be detected with the other model as well. The
overestimation of mobile models does not necessarily induce
biased risk estimates in epidemiological studies if there is a
systematic overestimation of the concentration predictions.
Figure 2c, however, suggests that the relationship between the
two model predictions is better described with a ratio than with
a constant difference. Contrasts in exposure are higher for the
mobile than for stationary-monitoring models, possibly leading
to lower effect estimates per unit of exposure in epidemiological
studies for the mobile models.
In addition, the overestimation of the mobile models was

only modest: 30% for UFP and 50% for BC. Such differences
can also be produced by measuring in one season only,
excluding or including rush-hour traffic and measuring with
different sampling devices. As such, the overestimation
observed here is not likely to be an important factor. Our
study thus suggests that mobile models can be used to predict
exposures in epidemiological studies, taking into account that
predictions on an absolute level may not reflect residential
exposures fully.
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