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Abstract The treatment for central nervous system

metastases of solid tumors and gliomas is limited as the

blood–brain barrier (BBB) is an obstacle to systemic

therapy. Here, we review the physiochemical properties of

the BBB and both current and new drug strategies to

penetrate brain tumors. We focus on targeting receptor- or

carrier-mediated transport mechanisms over the BBB used

by drug conjugates, nanoparticles, polymer-based

nanocarriers, siRNA, and antibodies.
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Introduction

The options for treatment of brain tumors, such as glioma

and central nervous system (CNS) metastases of solid

tumors, are limited. Unfortunately, drug development in

this area brought only modest improvements in the last

decades [1–3].

The treatment of newly diagnosed glioblastoma (GBM),

the most malignant type of glioma, consists of surgical

debulking, radiotherapy, and chemoradiation with temo-

zolomide. The median overall survival of patients with a

GBM is only 12–15 months [4]. For recurrent GBM,

median overall survival decreases to 7 months. Objective

response rates for second-line chemotherapy in GBM do

not exceed 11 % and several new therapeutic agents

appeared not to be effective [5–7].

Besides primary brain tumors, 20–40 % of patients with

metastasized solid tumors (mostly lung cancer, breast

cancer and melanoma) develop CNS metastases [8, 9].

Current treatment for brain metastases (BM) consists of

surgical resection in case of a single BM, stereotactic

radiotherapy for 1–3 BM, and whole brain radiotherapy for

[3 BM and/or systemic chemo- or targeted therapy.

Median survival of patients with BM from solid tumors

ranges from 2.8 to 25.3 months depending on Karnofsky

performance status, age, primary tumor type, presence of

extracranial metastases, and number of BM [10].

Patients with leptomeningeal metastases (LM) of solid

tumors have a median survival of only 4–6 weeks, if left

untreated. Survival can be prolonged with several months

by treatment of symptomatic sites with radiotherapy,

sometimes followed by systemic treatment with

chemotherapy or targeted therapy [11–14].

More effective treatment for both malignant gliomas and

CNS metastases (brain and LM) from solid tumors are
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urgently needed. Unfortunately, promising concepts from

preclinical experiments often do not translate into effective

treatment modalities in the clinic [15–17]. An important

reason for this is the use of preclinical brain tumor models,

which poorly recapitulate the complexity of human pri-

mary brain tumors and/or CNS metastases of solid tumors,

including properties of the relevant blood–brain barrier

(BBB), blood–CSF barrier (BCSFB), and blood–brain

tumor barrier (BTB), causing inadequate exposure of tumor

cells to systemically administered drugs.

Furthermore, phase I/II clinical studies often suffer from

biased patient selection, as patients with a favorable

prognosis are usually being included in these studies,

leading to a longer progression-free survival (PFS), which

is not being confirmed in phase III studies. Moreover, drugs

need to be safely administered to the patient and be

effective in a specific tumor type. This implies that in case

of molecular therapy, the drug needs to be specifically

targeted to the brain tumor’s mutation/expression status or

multiple targets simultaneously without causing (neuro-)

toxicity.

In conclusion, the aim of drug development for brain

tumors is to achieve sufficient concentrations of an effec-

tive drug in the brain with no or limited neurotoxicity.

Within this difficult trajectory of brain tumor drug devel-

opment, we focus in this review on current and new

strategies to transport drugs for tumors in the brain and

leptomeninges across the BBB and/or the BCSFB.

Methods

The heading search terms for this review in the PubMed/

Medline and ClinicalTrials.gov databases were: BBB,

glioma, GBM, BM, brain tumors, blood–brain or BCSFB,

LM or carcinomatosis, targeted therapies, new strategies,

nanocarriers, and siRNA. Articles published in English

from 2000 till 2015 were included.

Blood–brain barrier (BBB) and drug characteristics

requirements

The presence of the BBB is the reason why only few

systemically administered drugs can reach the brain,

despite the fact that the brain is one of the best-perfused

organs [18].

In brain tumors, the BBB can be partly disrupted,

although the extent of disruption is considered to be dif-

ferent in BM, high-grade and low-grade glioma. While BM

and high-grade glioma show an intensive breakdown of

BBB, associated with both disruption of endothelial cell

tight junctions and astrocyte–endothelial cell relationships,

low-grade glioma has a relatively intact BBB [19].

Furthermore, high-grade glioma shows a heterogeneous

BBB disruption, with non-contrast-enhancing parts of the

tumor on MRI having a largely intact BBB and contrast-

enhancing parts showing an intensive BBB breakdown

[20]. Although the BBB in brain tumors is partly disturbed,

this is often not sufficient for effective brain tumor treat-

ment [20, 21]. Therefore, successful treatment strategies

need to cross an intact or partly disturbed BBB.

The BBB is formed by brain endothelial cells, which are

closely connected by tight junctions and limit the para-

cellular entry of (hydrophilic) molecules (Fig. 1). Paucity

of endocytosis and the presence of specific efflux pump

proteins in the endothelial cells further contribute to the

barrier function of the cerebral vessels. The endothelial

cells are covered by a basement membrane, pericytes, and

astrocytic endfeet [22, 23].

Small lipophilic molecules can penetrate the BBB in a

transcellular way via passive lipid-mediated diffusion.

Alkylating agents such as temozolomide (194 Da), nitro-

soureas, e.g., CCNU (lomustine, 233 Da), and procar-

bazine (221 Da) are small lipophilic drugs that are

currently being used in glioma treatment [24] (Table 1).

Larger lipophilic drugs or hydrophilic molecules of any

size cannot passively cross the BBB. Thus, an alternative

way should be found to open the BBB for these types of

drugs (Table 2).

Chemical, biological, and physical ways to open/cross

the BBB

The BBB can be opened by chemical, biological, or

physical stimuli [25–31].

A transient chemical disruption of the BBB can be

achieved by intra-arterial (IA) administration of mannitol,

an osmotic diuretic, which can lead to endothelial cell

shrinkage and reversible loosening of the tight junctions for

2–3 h [32, 33]. The use of an osmotic agent is estimated to

increase drug delivery in the brain with a factor of 10–100

times. Following mannitol disruption of the BBB, IA

infusion of bevacizumab, cetuximab, and temozolomide

has been tested in GBM patients, but no randomized trials

have been performed yet [34]. Currently, hyperosmotic

BBB disruption is not part of clinical practice due to an

increased risk of epilepsy and stroke, unselective passage

of substances to the brain, and the necessity of generalized

anesthesia and repeated hospitalizations [33].

Examples of biological stimuli that can increase BBB

permeability are bradykinin agonists. These vaso-acting

agents can open the BBB by downregulating claudin-5, a

tight junction protein at the BBB via calcium-induced

calcium release [31, 35]. Preclinical experiments in

malignant glioma bearing rats showed that carboplatin was

delivered more effectively to the glioma and its
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surrounding tissue after co-administration with two potent

bradykinin agonists (B1R and B2R) compared to single-

agent carboplatin. Moreover, co-administration with these

agents was associated with increased survival [28]. In a

randomized, double-blind, placebo-controlled phase II

study in recurrent malignant glioma, treatment with RMP-

7, a bradykinin analog in combination with carboplatin IV

did not improve efficacy of carboplatin [36]. Other bio-

logical stimuli that can disrupt the BBB are chemo- and

cytokines, such as interleukin-1b, tumor necrosis factor-a,

and interferon-c [27]. Bacteria and bacterial toxins

(Escherichia coli, Citrobacter freundii, Streptococcus

pneumoniae, cholera toxin, pertussin toxin), viruses and

virus components (HIV-1, Measles virus), parasites, and

fungal pathogens cannot only penetrate but also damage

the BBB [27].

Representatives of physical stimuli that can open BBB

are ultrasound, laser, and electric fields [37–39].

Focused ultrasound (FUS) is a noninvasive technique of

low-frequency ultrasound waves that can be delivered

transcranially. FUS can thermally ablate (tumor) tissue

[37]. Addition of microbubbles to FUS can further enhance

heating in the area of interest. At low exposure it can also be

used for local and reversible BBB disruption [44, 45].

carrier mediated
transport e.g. glucose,

amino acids

tight junction endothelial cells

capillary lumen

BBB disruption by
chemical, biological
or physical stimuli

TRANSCELLULAR  REIRRACRALULLECARAP
MEDIATED

RECEPTOR 
MEDIATED

EFFLUX
TRANSPORTERS

small
lipophilic
molecules

P-gp or BCRP
efflux pumps

receptor mediated
transcytosis

eg. transferrin- and
insulinreceptor

blood-brain barrier

small 
hydrophilic
molecules

large
hydro- and
lipophilic

molecules

BBB DISRUPTION 

astrocytic endfeet

brain

Fig. 1 Blood–brain barrier (BBB)

Table 1 BBB penetrating small liphohilic, cytotoxic drugs

Name Indication Route Mechanism Results References

Temozolomide Newly diagnosed

GBM

Oral Small

lipophilic

alkylating

agent

RT with TMZ during 6 weeks ? 6 adjuvant

TMZ cycles: newly diagnosed GBM: 2-years

OS 26 versus 10 % in radiotherapy only

Stupp et al. [4]

Nitrosourea (CCNU;

lomustin) and

procarbazin in PCV

chemotherapy

Anaplastic

oligodendroglioma

with 1p19q loss

Oral Small

lipophilic

alkylatic

agent

Significant increase OS and PFS in combined

PCV and RT versus RT

EORTC 26951: median OS not reached versus

113 months

RTOG 9402: median OS 14.7 versus 7.3 years

van den Bent

et al. [112],

Cairncross et al.

[113]

Nitrosourea (CCNU;

lomustin) and

procarbazin in PCV

chemotherapy

Recurrent GBM Oral Small

lipophilic

alkylating

agent

Median PFS: 17.1 weeks

6-months PFS: 38.4 %

Schmidt [114]

Nitrosurea (CCNU;

lomustin) and

procarbazin in PCV

chemotherapy

Low-grade glioma Oral Small

lipophilic

alkylating

agent

RTOG 9802: RT followed by PCV versus RT:

median PFS 10.4 versus 4.0 years; median OS

13.3 versus 7.8 years

Shaw et al. [115],

Buckner et al.

[116]

GBM glioblastoma, RT radiotherapy, TMZ temozolomide, PFS progression free survival, OS overall survival, PCV procarbazin, CCNU and

vincristin [4, 112–116]
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Disruption of the BBB occurs by transient opening of the

endothelial cell tight junctions by (microbubbles-) FUS-

induced mechanical forces [40]. In rat glioma models,

survival was increased by combining chemotherapeutic

agents and FUS [41, 42]. Clinical studies on transcranial

MR-guided FUS surgery in GBM patients are ongoing [43].

Laser interstitial thermotherapy (LITT) is a novel tech-

nique to ablate a tumor by laser-generated heat using an

optical fiber. In a prospective trial on the use of LITT in

recurrent GBM, there was a trend toward improved sur-

vival in patients treated with higher doses [39]. Ther-

motherapy can induce cell membrane destruction in

endothelial cells, leading to BBB disruption and an area of

contrast enhancement on MRI around the thermal ablation

zone [44, 45]. No studies have been performed on the

change of chemotherapeutic delivery during the time

interval of BBB opening following LITT.

Finally, there has been a recent focus on the use of non-

thermal irreversible electroporation (NTIRE) to cause

BBB disruption. NTIRE uses a pulsed electric current to

cause defects in the cell membrane leading to membrane

rupture and increased BBB permeability [46]. In the brain,

NTIRE-applied voltage correlates with the volume of tis-

sue damage and BBB disruption, which can last several

days post-treatment [47, 48]. NTIRE has not been used in

glioma patients yet, nor has it been combined with

chemotherapy.

Transcellular transport mechanisms over the BBB

Nutrients and some drugs/toxins are using active, energy-

dependent, transcellular transport mechanisms over an

intact BBB, in contrast to passive diffusion of molecules

(Fig. 1). Most nutrients utilize facilitated diffusion using

carrier-mediated transport (CMT). Glucose can cross the

BBB using CMT via a glucose carrier (GLUT1). Enhanced

brain penetration of drugs employing CMT requires a close

structural analogy to endogenous carrier substrates [49,

50]. Brain-targeted drugs that are currently in (clinical) use

and utilize CMT are levodopa for Parkinson disease,

donepezil and tacrine for Alzheimer disease and gaba-

pentin, pregabalin, valproate for epilepsy, and baclofen for

multiple sclerosis [51].

The BBB transport of larger molecules, such as peptides

and proteins can occur by using receptor-mediated tran-

scytosis (RMT). Examples of RMT are transport of insulin

and transferrin via insulin- or transferrin receptors [51, 52].

Once the protein is bound to its specific receptor on the BBB,

the internalization of the protein into a vesicle starts. The

vesicle crosses the endothelial cell and fuses with the

membrane on the brain-parenchymal side, after which the

protein can be released in the brain, a process called tran-

scytosis [51]. Most likely, RMT is used by liposomes and

other nanotechnology-based systems to cross the BBB.

Using RMT, a toxic anti-cancer drug packed inside a lipo-

some, being coupled to a molecule that is recognized by a

receptor present on the BBB, can be shuttled across the

BBB. This is called the molecular Trojan horse method [53].

Drugs currently used in drug development programs that

can cross the BBB via RMT employ the following recep-

tors: glutathione receptor, low-density lipoproteins (LDL),

insulin receptor, transferrin receptor, insulin-like growth

factor receptor, or diphtheria toxin receptor [18, 54–57].

Another mechanism used in drug development to target

the brain is the adsorptive-mediated transport (AMT)

mechanism. Molecules that originally cannot cross BBB-

proteins, can be cationizated during a chemical process in

which the superficial carboxyl groups on a protein are

converted into extended primary amino groups. These

cationized macromolecules increase the interaction with

normally present anionic sites at the luminal plasma

membrane of the brain endothelium. Next, the formed

complexes cross the BBB via vesicle formation and enter

the brain. Examples of AMT over the BBB are the uptake

of cell penetrating peptides, chemically conjugated siRNA,

paclitaxel, or several antibodies [58].

Table 2 Different transport

mechanisms across the BBB
Transport mechanism across the BBB Drug examples

Passive lipid-mediated diffusion Small lipophilic molecules

Chemical, biological, or physical stimuli

opening the BBB for drugs

Mannitol, bradykinin agonists, chemokines and cytokines,

bacterial, viral components, ultrasound and

electromagnetic fields

Facilitated diffusion using CMT Levodopa, donezepil, gabapentin, baclofen

RMT—molecular Trojan horse approach Larger (liposomal) molecules (peptides and proteins) using

receptors such as LDL-receptor, glutathione receptor,

insulin receptor; transferrin receptor, insulin-like growth

factor receptor, or diphtheria toxin receptor

AMT mechanism Cationic molecules

Co-administration of therapeutic agents

with dual P-gp and BCRP inhibitor

Elacridar
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AMT is not as specific as RMT and CMT as cationic

molecules can have a high adsorptive potential toward

anionic molecules not only on the BBB but also on cell

surfaces in other tissues in the body. Therefore, it can be

difficult for a drug to specifically target he brain by AMT,

in particular when the protein is administered intravenously

[58]. Furthermore, AMT has a risk of BBB disruption and

consequently neurotoxicity [58]. Another limitation of the

AMT strategy is the risk of complement activation, pos-

sibly caused by the conjugation of drugs with cationized

molecules, which often originate from non-human proteins,

increasing the risk of immunogenicity. Therefore human

proteins, recombinant humanized proteins or conjugates of

cationic proteins to polyethylene glycol (PEG) are cur-

rently being used [51, 58].

Blood–CSF barrier (BCSFB)

Another important barrier of the CNS, especially for sys-

temic treatment of LM, is the BCSFB [59, 60] (Fig. 2). The

BCSFB separates the CSF from the blood in the choroid

plexus and the leptomeningeal blood vessels. Transport of

solutes from blood (Na?, Cl-, HCO3
-) into the CSF,

necessary for CNS homeostasis, occurs in the fenestrated

blood capillaries of the choroid plexus of the ventricles. In

blood capillaries of the leptomeninges (arachnoidea and to

a lesser extent the pia mater), the BCSFB is being formed

by epithelial cells that are connected by tight junctions

[61–63]. The main function of the CSF is to remove brain

metabolites and toxins from the brain, as the brain itself

lacks lymphatic vessels [64, 65].

Similar transport mechanisms exist on the BCSFB as on

the BBB (Fig. 2). However, there are a few differences:

glutamate- and some Na?-dependent transporters are only

being expressed at the BCSFB and bicarbonate transporters

have an increased expression on the BCSFB, as compared

to the BBB. In contrast, heme-, glucose efflux- and several

amino-acid transporters have a lower expression on the

BCSFB as compared to the BBB [66]. (www.biopar

adigms.org).

There is no barrier between the CSF and the brain

interstitial brain fluid (ISF) allowing a dynamic exchange

of nutrients and water between these two compartments

[64]. However, the depth of diffusion of nutrients and drugs

into the brain parenchyma is limited. In case of insulin-like

growth factor (IGF-1) the penetration from the ventricular

CSF was less than 1.25 mm into brain tissue [67].

Drug efflux transporters on the blood–brain

and blood–CSF barrier

Besides the fact that the physical and chemical properties

(size, lipophilicity, charge) determine the drugs’ BBB

permeability, entrance of drugs into the brain is also lim-

ited by drug efflux transporters [68]. ATP-binding cassette

(ABC) drug efflux transporters, such as P-glycoprotein (P-

gp; ABCB1) and breast cancer resistance protein (BCRP;

ABCG2) are expressed at the luminal side of brain

endothelial cells, thus limiting the penetration of their

substrates across the BBB [69–71]. Furthermore, blood

vessels in mouse and human arachnoid tissue express drug

efflux transporters. For example, expression of P-gp at the

luminal side of the BCSFB reduces entrance of neurotoxins

into the CSF [63]. In contrast, at the BCSFB of the choroid

plexus, P-gp and BCRP are located on the apical mem-

brane of the choroid plexus epithelium, thus directing their

substrates toward the CSF [72–74].

Inhibition of drug efflux transporters at the BBB can be

used to increase drug accumulation in the brain, but only

potent inhibitors can cause a meaningful enhancement of

drug transport [75, 76]. Moreover, many drugs are sub-

strates for both P-gp and BCRP [76, 77]. Consequently,

brain penetration of these drugs can only be enhanced

using a dual P-gp or BCRP inhibitor such as elacridar [76,

78].

Damaged barriers in brain tumors as a potential

entrance for systemic drugs

The presence of tumor cells in the brain can cause a dis-

ruption of the BBB [27]. The damage to the BBB can be

demonstrated by extravasation of gadolinium (gdDTPA,

550 Da) in the brain on gdDTPA-enhanced MRI T1 scans

[79]. The extent of the disruption of the BBB in high-grade

glioma is not uniform. As demonstrated by gdDTPA-en-

hanced T1 MRI, contrast enhancement is mainly observed

in the tumor area where vascular proliferation is evident,

the so-called leading/growing edge of the tumor [80, 81].

However, in the infiltrative areas of the tumor visualized on

T2 or fluid-attenuated inversion recovery (FLAIR) MRI,

contrast enhancement is much less prominent, indicating a

more intact BBB function or leakage that could not be

assessed by gdDTPA-enhanced T1-MRI. In case of low-

grade glioma, contrast enhancement is absent or very dis-

crete, angiogenesis is not intensively present and perme-

ability of BBB is low [82]. Nduom et al. [19] showed that

low-grade and non-enhancing regions of high-grade glio-

mas maintain the normal astrocyte–endothelial cell rela-

tionship, such as in an intact BBB.

Furthermore, in case of BM, the tumor type may

determine the extent of BBB disruption. For example,

patients’ tumor samples of BM from triple negative and

basal-type breast cancers showed different BBB leakage

patterns as compared to HER2-positive breast cancer [83].

Furthermore, it is known that macroscopic BM

([2–3 mm) develop new tumor vessels that resemble the
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vessels of the primary tumor and lack BBB characteristics.

Lockman et al. [20] analyzed 2000 experimental BM in

mice and demonstrated that blood–tumor barrier (BTB)

permeability was increased in over 89 % of BM. However,

brain uptake of 14C-paclitaxel and 14C-doxorubicin,

although generally greater than in normal brain, only

reached cytotoxic concentrations in about 10 % of BM

[20]. This study concludes that the BTB remains a signif-

icant impediment to drug delivery and stresses the need in

developing new permeable drugs for brain tumors.

Strategies to cross the BBB and target brain tumors

Several strategies have been developed to increase drug

brain concentrations.

Brain-targeting receptor- or carrier-mediated transport

strategies (Tables 3, 4)

Drug conjugates ANG1005 (or GRN1005) is a pacli-

taxel-Angiopep-2 conjugate that is shuttled over the BBB

by RMT via the low-density lipoprotein receptor-related

protein-1 (LRP-1). LRP-1 mediates transcytosis of physi-

ological ligands across the BBB, such as thyroglobulin,

lactoferrin, tissue-type plasminogen activator, and a-2

macroglobulin and is highly expressed on the BBB [84]. In

mice studies, GRN1005 showed a broad distribution

throughout the brain parenchyma while avoiding P-gp

efflux transporters, in contrast with conventional paclitaxel.

Furthermore, GRN1005 demonstrated anti-tumor activity

in mice with GBM or BM of lung cancer [85, 86].

capillary
lumen

CSF

tight junction

choroid plexus 
epithelium

fenestrated
endothelium

expression of P-gp or BCRP 
efflux pumps at the luminal side 
of the BCSFB is very low.
P-gp, MRP-4 and MRP-1 at the 
abluminal (CSF) side direct their 
substrates towards the CSF***

increased expression of Na+ 
dependent and bicarbonate 
transporters, necessary for 
CSF production and 
secretion 

BCSFB lacks heme-, sugar- and 
several amino-acid transporters

cilia

PgP, BCRP 
efflux pumps  

PgP, MRP-4,MRP-1
efflux pumps  

glutathione
receptor*

transferrin
receptor**

K+

Cl-

HCO3-

Cl-

Na+

Na+

HCO3-

HCO3-

H2O

Fig. 2 BCSFB in the choroid plexus restricts and regulates para- and

transcellular transport. P-gp P-glycoprotein, BCRP breast cancer

resistance protein, MRP multidrug resistance protein. Glutathione

receptor*—Otieno et al. [117], transferrin receptor**—Takeda et al.

[118], efflux pump expression at abluminal side***—Roberts et al.

[119]. Per author’s permission, the figure was adapted from Redzic

et al. [120]
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In a phase I trial, GRN1005 treatment showed one

complete response (CR) and two partial responses (PR) in

recurrent malignant glioma patients (n = 63) and 5

intracranial PR in patients with BM (n = 41) [87, 88].

In a sub-study of nine patients with recurrent malignant

glioma, GRN1005 ([200 mg/m [2] iv) was administered

3.5–6 h before intracranial resection. In resected glioma

tissue, cytotoxic levels of paclitaxel ([0.3 lmol/L) were

found in all nine patients. However, in a subsequent phase

II study, the GRN1005 dose needed to be reduced from

650 mg/m [2] to 550 mg/m [2] because of hematological

toxicity [89]. At this lower dose-level no intracranial

responses in thirty enrolled patients with breast cancer and

BM were seen and the study was stopped. Currently, the

biotech company, Geron Corporation (California, USA)

has stepped down as partner in development of GRN1005,

but three clinical trials with GRN1005 treatment are

ongoing: one in recurrent high-grade glioma patients with

650 mg/m [2] every 3 weeks (NCT01967810) and two in

BM from breast cancer with 550 mg/m [2] every 3 weeks

(NCT02048059 and NCT01480583)) all being sponsored

by Angiochem Inc, Montreal, Canada.

Nanoparticles Nanoparticles are small molecules with a

size of 1–100 nm and are being used as a carrier for an

active pharmaceutical ingredient (API) to be eventually

released at the target organ [90]. Nanoparticles can be

applied as oral, topical, inhaled, or parenteral formulation

Table 3 Agents that can cross the BBB via carrier-mediated or receptor-mediated transport in (pre) clinical studies

Name Current

phase

Route Mechanism Results References

2B3-101 Phase

I/II

iv Doxorubicin in glutathione PEGylated

liposomes binding glutathione

receptors on BBB

GBM in mice: fivefold higher

doxorubicin brain concentration

compared to Caelyx�; improved anti-

tumor activity and survival in mice

phase I/II studies: moderate safety

profile, preliminary anti-tumor activity

in patients with recurrent GBM and

BM from solid tumors

Gaillard et al. [97],

Milojkovic-

Kerklaan et al.[98],

Brandsma et al.

[121]

GRN1005 Phase

I/II

iv Paclitaxel-Angiopep-2 conjugate via

low-density lipoprotein receptor-

related protein-1 (LRP-1) transcytosis

Intracranial responses in recurrent

malignant glioma and BM from solid

tumors Phase II studies ongoing

Demeule et al. [71],

Regina et al. [122]

Tf-PO-DOX In vivo iv Biodegradable polymersomes (PO)

loaded with doxorubicin, transport via

transferrin RMT

Brain tumors in rats: 70 % longer median

OS compared to standard doxorubicin

Pang et al. [123]

Paclitaxel

poliglumex

Phase

I/II

iv Paclitaxel conjugated with poly-L-

glutamic acid, crossing BBB presumed

by endocytosis due to increase in

vascular leakiness by EPR effect

Phase I study in newly diagnosed HGG

patients in combination with TMZ and

RT: median PFS 13.5 months,

OS[ 22 months

Jeyapalan et al. [124]

K16ApoE In vivo iv Synthetic peptide carrier of non-

covalently binded cisplatin and

methotrexate via transient BBB

permeability between cells that express

low-density lipoprotein receptor (LDL-

R)

K16ApoE: 34–50-fold and 54–92-fold

higher brain uptake than cisplatin and

methotrexate single agent, respectively

Sarkar et al. [125]

CPP-Dox/

NGR-TSL

In vivo iv Thermosensitive liposome containing

cell penetrating peptide as the targeting

moiety-doxorubicin conjugate

Specific targeting in tumor cell lines,

tumor growth inhibition in nude mice

Yang et al. [126]

GPNMB

conjugated

Pac-MNPs

In vivo iv Paclitaxel loaded magnetic nanoparticles

(Pac-MNPs) manipulated by magnetic

field cross BBB targeting receptor,

glycoprotein non-metastatic melanoma

protein B (GPNMB) overexpressed by

glioblastoma cells

Prolonged blood circulation in vivo,

significant accumulation of drug in rat

brain tissues as compared to native

paclitaxel

Dilnawaz et al. [127]

CRM197 In vivo iv Non-toxin mutant of diphtheria toxin

(DT) receptor-specific carrier protein as

carrier protein for therapeutic agents

Increased BBB permeability, pinocytotic

vesicles number and redistribution of

tight junction-associated proteins in

brain microvessels

Wang et al. [128]

BBB blood–brain barrier, RD recommended dose, HGG high-grade glioma, PR partial response, SD stable disease, BM brain metastases, GBM

glioblastoma, EPR enhanced permeability, and retention effect [1, 97, 98, 121–128]
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and are being divided into two groups: nanovectors,

including liposomes and nanoparticulate drug carriers and

polymer-based nanocarriers, including dendrimers and

polymeric micelles [51]. In case of nanoparticles, RMT is

facilitating drug delivery across the BBB. There are 250

nanoparticle products in various stages of clinical trials and

just few of them are used for brain targeting [91]. In neuro-

oncology, liposomes are the nanoparticle formulations that

are in the most advanced stage of development. Liposomes

are spherical phospholipid bilayer vesicles consisting of

(semi)natural, biodegradable lipids with a hydrophilic inner

space that contains the API. Liposomes can be protected by

nonionic hydrophilic polymers, for example PEG, with the

aim to avoid recognition and clearance by the mononuclear

phagocyte system [90, 92]. These so-called stealthed lipo-

somes can show long circulation times in the blood, with the

drug being trapped inside the liposome and only upon

release, the drug will be available at the target organ. It is

being hypothesized that once liposomes reach the tumor

area, they can extravasate via the leaky tumor vasculature

and accumulate in the tumor by a mechanism called

enhanced permeability and retention (EPR) effect [93].

Thus far, only a few liposomal drugs have been approved

for CNS indications. One is liposomal amphotericin B (iv

administration) for cryptococcal meningitis and another is

liposomal cytarabine (Depocyte�; intrathecal administra-

tion) for LM. Liposomal amphotericin B showed signifi-

cantly higher brain tissue concentrations, longer terminal

half-time (t1/2) and decreased fungal burden in the brain as

compared to non-liposomal amphotericin formulations [94].

Doxil/Caelyx� (PEGylated liposomal doxorubicin) is

the oldest example of a liposomal encapsulated drug that is

used in oncology and is registered for metastatic breast

cancer, advanced ovarian cancer, and AIDS-related

Kaposi’s sarcoma since 1996. Overall it has similar anti-

tumor efficacy as free doxorubicin, but displays reduced

cardiotoxicity [95].

Recently, 2B3-101 was developed in order to more

specifically use liposomes for drug delivery to brain

tumors. Like Doxil/Caelyx�, 2B3-101 is a glutathione

PEGylated liposomal formulation of doxorubicin. How-

ever, in this formulation, glutathione (GSH) is attached to

the PEG chains on the surface of the liposome, which

targets the liposome to the active GSH transporters on the

BBB (Table 3) [54]. In mice, a fivefold enhanced delivery

of doxorubicin to the brain was seen after intravenous

treatment with 2B3-101 as compared to Doxil/Caelyx�

[96]. Furthermore, survival of mice with GBM improved

after intravenous treatment with 2B3-101 as compared to

Doxil/Caelyx� [97].

A phase I clinical study on 2B3-101 in 37 patients with

recurrent high-grade glioma and patients with BM from

solid tumors showed a moderate safety profile (i.e.,

hematological and mucocutaneous toxicity and infusion

reactions) with preliminary anti-tumor activity.

In eight of 13 patients with recurrent malignant glioma,

stable disease was seen as best response during

6–18 months. In patients with solid tumors and BM two

intracranial and two extracranial partial responses were

seen [98].

Table 4 Nanocarrier siRNA therapy

Name Current

phase

Mechanism Results/conclusion References

Dendrimer-conjugated

magnetofluorescent nanoparticle

(nanoworm)

In vivo Internalization of the siRNA against

EGFR of glioma cells

70–80 % reduction of EGFR

protein levels in intracranial

glioma cells

Agrawal

et al.

[107]

Rabies virus glycoprotein (RVG)—tagged

amphiphilic cyclodextrins (CD) for

siRNA delivery

In vitro PEGylated CD-based nanoparticle tagged

with a CNS-targeting peptide derived

from the RVG

Potential nanocomplex for

systemic delivery of siRNA

targeting brain tumors

Gooding

et al.

[129]

Nanoparticle-based siRNA delivery

vehicle for knocking down Ape-1

expression and sensitizing pediatric

brain tumor cells to radiotherapy

In vitro Nanoparticle comprising a

superparamagnetic iron oxide core

coated with a biocompatible,

biodegradable coating of chitosan,

PEG, and polyethyleneimine (PEI),

able to bind and protect siRNA from

degradation and deliver siRNA to the

perinuclear region of target cells

Carries purinic endonuclease 1 (Ape1),

an enzyme in the base excision repair

pathway, implicated in radiation

resistance of tumor cells

Reduction of Ape-1 expression

in 75 % in pediatric brain

tumors (meduloblastoma and

ependymoma)

Kievit

et al.

[130]

iv intravenous, siRNA short interfering RNA [107, 129, 130]
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Other examples of liposomal brain-targeting drugs that

are currently being studied (pre-) clinically are shown in

Table 3.

Polymer-based nanocarriers A carrier that consists of

single structure unit with multiple repetitions is called a

polymer-based nanocarrier. They can be divided into

dendrimers and micelles. Dendrimers are repetitively

branched molecules, usually highly symmetric and spher-

ical that can both attach drugs and other molecules.

Micelles are spherical aggregates with a hydrophilic

‘‘head’’ region that is in contact with a surrounding solvent

with a possible insoluble drug in its core [51, 99]. A fourth

generation of PEGylated doxorubicin dendrimer carrier

(G4-DOX-PEG-Tf-TAM) is designed for dual targeting of

the BBB using transferrin (Tf) and tamoxifen (TAM). The

conjugation with transferrin facilitates the transport of

doxorubicin across the BBB and glioma cells, while the

coupling with tamoxifen inhibits drug efflux transporters,

such as P-gp, BCRP, and MDR4 [99].

In in vitro experiments, accumulation of doxorubicin

was seen in C6 glioma cells only and not in in vitro murine

BMVEC (brain microvascular endothelial cells) after

incubation with G4-DOX-PEG-Tf-TAM. Besides coupling

to liposomes, GSH has also been used to target brain

delivery of doxorubicin or docetaxel-loaded

polyethyleneglycol-poly lactic-co-glycolic acid (PEG-

PLGA) nanoparticles [100, 101].

The polymeric micelle Pluronic P105, that uses dual

targeting of glucose via CMT and folic acid receptors via

RMT, is another brain-targeting polymer-based nanocarrier

that delivers doxorubicin across the BBB. Internalization of

doxorubicin into C6 glioma cells was seen in an in vitro

BBB model after incubation with Pluronic P105 [102].

Mice could be treated safely with intravenous Pluronic

P105 and showed significant intracranial C6 glioma cell

growth suppression [102]. However, it is unclear how two

different mechanisms CMT (using glucose) and RMT

(using folic acid receptors) can transfer one drug i.e.,

doxorubicin across the BBB.

Nanocarrier siRNA delivery strategies RNA interference

(RNAi) is a natural process of controlling the expression of

genes. This post-transcriptional gene expression silencing

can be triggered by synthetic short interfering RNA

(siRNA) [103]. Because of its instability, large size, and its

negative charge, siRNA needs to be delivered to a target

organ by liposomes [104] (Table 4). The well-known O-6-

methylguanine-DNA methyltransferase MGMT gene in

gliomas is responsible for repair of DNA lesions that are

either spontaneously present gliomas or being drug-in-

duced (e.g., by temozolomide). In 45 % of patients with

GBM, MGMT status is methylated (inactive) which is

associated with a better prognosis and better response to

temozolomide therapy [105]. The response to temozolo-

mide in glioma patients with non-methylated MGMT may

be improved when MGMT could be silenced or suppressed

by sIRNA. A preclinical study with siRNA silencing

MGMT in a locally applied cationic liposomal formulation

was however disappointing, as insufficient distribution of

cationic liposomes in rat and porcine brain tissue was

achieved [106]. Better in vivo results in an epidermal

growth factor (EGFR)-driven mice model of GBM were

achieved after treatment with siRNA against the EGFR

using a different nanocarrier, viz the dendrimer-conjugated

magnetofluorescent nanoparticle (nanoworm). Using

nanoworm internalization of the siRNA against EGFR in

intracranial glioma cells in mice was shown with a

70–80 % reduction of EGFR protein levels [107].

Finally, a strategy with promising in vivo results is

achieved in mice by inhibiting tumor growth in a syner-

gistic manner by using docetaxel and LDL-1 receptor tar-

geting liposomal formulation of siRNA that silences the

vascular endothelial growth factor receptor (VEGFR)

(Angiopep 2) [108]. Two other sIRNA strategies for brain

targeting tested in vitro are presented in Table 4.

Strategies to deliver antibodies therapy across the BBB

Antibodies cannot cross an intact BBB or BCSFB because

of their size, but can have (limited) activity on intracranial

tumors when the BBB and/or BCSFB are partly disrupted.

The monoclonal antibody trastuzumab targeting human

epidermal growth receptor-2 (HER2), overexpressed in

HER2? breast cancer inhibits tumor cell growth via

receptor inhibition. Trastuzumab can affect BM of breast

cancer because of a partly disrupted BBB in BM [109].

However, transport of antibodies over (an only partly dis-

rupted) BBB could be improved by forming drug conju-

gates and using RMT for BBB transport. Recently, a new

class of nanocarriers loaded with MRI tracer and combined

with antibodies targeting HER-2 and EGFR receptors on

the BM was developed [110]. They cross the BBB via

RMT via the transferrin receptor. Another example of an

antibody-drug conjugate currently tested in in vivo exper-

iments a conjugate of Angiopep-2 (An2) and anti-HER2

monoclonal antibody, named ANG4043 [111]. ANG4043

binds to LRP1 receptor and crosses BBB also via RMT.

Conclusion

For future effective therapies for brain tumors, sustained

drug brain concentrations of potentially active drugs

(chemotherapy, targeted agents or siRNA) are being nee-

ded. This review gives a concise overview of the
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therapeutic strategies to transfer drugs over the BBB and/or

BCSFB. The majority of drugs are currently tested in

preclinical studies, while several already show promising

clinical (phase I/II) results. Further research on drug

strategies to efficiently cross the BBB is warranted, as

effective treatment strategies are needed in the treatment of

brain tumors.
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