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Abstract. Decentralized monitors can be subject to robustness and
security risks. Robustness risks include attacks on the monitor’s
infrastructure in order to disable parts of its functionality. Security risks
include attacks that try to extract information from the monitor and
thereby possibly leak sensitive information. Formal methods to analyze
the design of a monitor with respect to these issues can help to create
more secure designs and/or identify critical parts. In this paper we spec-
ify a model for analyzing robustness and security risks for collaborative
monitors constructed from a network of local monitors.
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1 Introduction

Normative systems help to make sure that agents behave according to preset
guidelines/norms in multi-agent systems [5]. One approach is provided by exoge-
nous normative systems where norms are explicit. The normative aspect of the
multi-agent system is captured by an exogenous—to the agents—organization
or institution. With this approach it must be verified whether any norm viola-
tion occurs in the multi-agent system’s execution. Monitoring large distributed
multi-agent systems such as traffic, smart grids and economic markets requires
decentralized approaches. Monolithic centralized monitors can impose a bottle-
neck due to the distributed nature of multi-agent systems and a single point of
failure in case of break downs.

A major concern of many decentralized verification applications is their
robustness and security. The data that is gathered from a multi-agent system
can severely compromise the agents’ privacy if leaked. Adversaries can also try
to take down parts of the network to impede its functioning. Formal models of
decentralized monitors allow for the analysis of critical parts in monitors in terms
of robustness and security. Such an analysis allows the developers of decentral-
ized monitors to invest more resources in critical parts. In this paper we present
a formal model for decentralized monitors that supports their formal analysis
to face the aspects of robustness and security when designing a monitor. As an
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Fig. 1. Example scenario. Black dots indicate locations, arrows indicate traffic flow
and double lines indicate roads.

example we shall use an abstract traffic monitoring scenario (Example 1). Traf-
fic monitoring faces many challenges, including physical attacks on the monitor
infrastructure and the privacy of individuals (cf. [7]).

In our approach we assume that monitors observe the execution trace of a
system in order to detect specific properties of its behavior. These properties are
expressed in linear-time temporal logic (LTL) [14]. Temporal logics have been
used in the past to analyze normative systems (e.g. [1,2]). For the structure
of decentralized monitors we draw inspiration from existing popular decentral-
ized monitoring techniques such as wireless sensor networks (WSNs). The struc-
ture of a WSN is that a collection of information gathering nodes route sensor
data towards a sink, which acts as the central data gathering point. Interme-
diate data aggregation is often used to increase security and save energy. In
our decentralized framework a network of local monitors collaborates to verify
properties. We call such a network a collaborative monitor. Each local monitor
is assumed to make observations on its own and can in addition to that query
other local monitors with respect to their (aggregated) observations. This allows
to enhance privacy as monitors only obtain an aggregated value. This is similar
to the frameworks proposed in [3,17]. However, different from those two frame-
works we assume that information flows through the network without temporal
delay. Also, instead of sharing observations as in [17] or progressed formulas as
in [3], local monitors in our framework combine their input into a single evalua-
tion (true, false, or ‘yet unknown’) and share that with other neighboring local
monitors.

The contribution of this paper is a formal framework for specifying collabo-
rative monitors. The model allows to analyze how critical specific local monitors
are with respect to the security and robustness of the collaborative monitor.
We believe that the presented design methodology is not only beneficial for the
design and development of decentralized monitors using LTL, but can also pro-
vide insights into design-time and/or runtime analysis of robustness and security
risks for other decentralized verification technologies. We leave a study of tech-
nical properties for future work.

Example 1 (Smart Infrastructure Scenario). Throughout this paper we give
examples using a simple smart infrastructure scenario. We assume that there
are various traffic streams that at some point merge together, as shown in Fig. 1.
The aim of the smart infrastructure is to maximize throughput by minimizing
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traffic jams at locations 2 and 3. To this end there is a road side unit (RSU)
at location 1 which informs passing vehicles whether location 2 or location 3 is
jammed. Which, if this is the case, will hopefully cause vehicles to choose the
non-jammed route. A local monitor at location 1 monitors whether vehicles that
pass location 1 will end up in a traffic jam at either location 2 or 3. Each location
has a local monitor with-short range communication capabilities that observes
the vehicles which pass by, except for the monitor at location 4 which observes
nothing, but can relay long distance messages. The monitors at locations 2 and
3 can, in addition to observing individual vehicles, also determine whether their
location is jammed. The local monitor at location 1 should be able to verify
whether a vehicle that passes location 1 does not end up in a traffic jam.

The rest of the paper is structured as follows. In Sect. 2 we summarize related
work and background literature that influenced this paper. In Sect. 3 we present
the model for collaborative monitors that we use to describe robustness in Sect. 4
and security in Sect. 5. In Sect. 6 we discuss possible changes in the framework’s
assumptions and future work.

2 Related Work and Background

The field of wireless sensor networks (WSNs) contains a vast amount of identi-
fied robustness and security risks as well as countermeasures (cf. [11,12]). Exam-
ple risks include the malfunctioning of hardware and software and attempts by
an adversary to eavesdrop on communication. Countermeasures include various
techniques such as routing protocols and encryption. The aim of countermeasures
is to keep the monitoring service online if local monitors malfunction and prevent
sensitive information from being obtained by an adversary. The requirements
of WSNs are commonly organized by: (1) data confidentiality (only intended
receivers can see sensitive data), (2) data integrity and freshness (data is correct
and new), (3) protection against Sybil attacks (the imitation of monitors) and
(4) availability (continued operation of monitors).

Protection against confidentiality and availability attacks will be the main
focus of this paper. Data integrity and freshness is assumed. I.e., we assume that
monitors either work correctly or they are unavailable, but cannot for instance
send false information. Different kinds of attacks can be categorized between
attacks that change the network topology (e.g. physically compromising a node
or communication line, or a wormhole attack that connects two nodes) and
those that extract information from the network (capture and/or imitation of
nodes). We shall address the case that a local monitor can malfunction. This
encapsulates both aggressive and non-aggressive failures of local monitors. We
shall also discuss the case that an attacker can query a local monitor without
proper authorization. This encapsulates Sybil attacks.

WSNs also suffer from hardware constraints. Sensors tend to have limited
power and communication capabilities. A common practice to limit energy usage
is to use intermediate aggregation of data between the source of data and the
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sink. Data aggregation also helps to optimize any other monitoring system by
reducing the amount of required communication. There are many works dedi-
cated to security in data aggregation systems [10]. We note that the concept of
privacy in data aggregation literature is generally interpreted as privacy of sen-
sors. For instance, if a sensor computes the average velocity of all vehicles, then
it may receive from other sensors the average velocities of partitions of the set
of vehicles. Privacy in related literature would mean that it is not known which
sensors provided what data to compute the total average velocity. In this paper
we consider only privacy in the form of the privacy of agents. For instance, in our
example scenario the location of a specific vehicle can be seen as privacy sensi-
tive information. Therefore, instead of a monitor sharing separately the velocity
of the vehicle and whether location 2 is jammed, it may share the evaluation of
the conjunction of these two facts. If a receiver obtains this evaluation and it is
false, then the receiver cannot derive whether the vehicle was not at location 2
or whether there was a traffic jam. Note that if the evaluation is true, then it is
known that the vehicle was at location 2.

Security related papers on wireless networks for monitoring tend to focus
on how to prevent security risks by using cryptography (e.g. [13]) and/or spe-
cial routing protocols (e.g. [8]). Our approach is complementary to this. We do
not look at runtime implementation techniques for preventing risks, but address
design time questions and analysis to see where potential robustness and secu-
rity risks lie. We believe design based analysis can help in further improving
decentralized monitors. Depending on the practical limitations of an application
it might not be possible to always make a perfect design. But our work can
help in determining which parts of a network require more advanced/expensive
hardware to increase safety.

WSNs usually concern sensor readings of continuous parameters. However,
we take a logical approach with discrete values as this fits better with the declara-
tive nature of normative systems theory. Many normative systems express norms
as conditional obligations/prohibitions with deadlines (cf. [2]). Such construc-
tions can often be expressed as properties about a system’s behavior over time.
This has led us to opting for linear temporal logic. Monitors that perform run-
time verification of properties that are expressed in LTL can be modeled with
automata [4] or progression systems [6]. For our framework it is not important
which one is used. As for decentralized LTL verification there are the proposals
from [3,17]. However the framework in [3] is built on assumptions that do not
support our intended scenarios. For one, in their framework all monitors are
connected to each other whereas we want to investigate specific topologies. The
framework from [17] does allow different topologies but data is not aggregated
by local monitors. Also we have no notion of information delay, which both
frameworks have.

As in [3,17] we assume that the monitors work synchronously. This means
that at any moment all monitors are (partially) observing the same behav-
ior of the multi-agent system. In various decentralized monitoring communi-
cation protocols synchronization is introduced in order to have data freshness
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(e.g. SNEP [13]). We assume that the monitors are connected in an acyclic man-
ner and that the aggregation operation of local monitors is taking a combination
of the input, as explained in the next section.

3 Monitor Model

The task of a monitor is to verify whether the monitored system’s behavior
satisfies a property. The behavior of the system is a trace of states, and properties
are expressed as LTL formulas. We first introduce preliminaries. Then, we explain
the architecture of collaborative monitors and how views of local monitors and
their in-between connections give rise to their locally verifiable properties. The
basic idea of our verification model has been published as an extended abstract
in [16].

3.1 Formal Setting

Let Π be a set of propositional symbols. A transition system (over Π) is given
by a tuple T = (S,R, V ) where S is a state space, R ⊆ S2 a serial transition
relation, and V : S → 2Π an evaluation function which returns the propositions
that hold at a given state. We assume that Π, S, V a are fixed throughout this
article if not said otherwise.

An infinite trace is defined as an infinite sequence σ = s0s1 . . . of states
interconnected by R, i.e. (si, si+1) ∈ R for all i ∈ N0. Similarly, a finite trace is
given by s0 . . . sk. The set of infinite and finite traces over T is denoted by TriT
and TrfT , respectively. The set of all traces is denoted by TrT = TriT ∪ TrfT . The
length of a trace, i.e. the number of states on it, is denoted by |σ|; in particular,
if σ ∈ TriT then |σ| = ∞. We use σ[i] to refer to state i on σ where 0 ≤ i < |σ|.
We shall often take traces as first-class citizen if it is not important to highlight
the transition system which generated them; in that case, we omit mentioning
T as subscript and whenever it is clear from context. Given a finite trace σ we
write σTri to refer to all infinite traces in Tri that extend σ, i.e. which have σ
as initial prefix. Similarly, we assume that Tr refers to a set of traces (over T ) in
the remainder of this paper.

We use linear-time temporal logic LTL [14] for specifying properties. Formulas
of LTL are defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ψ | ©ϕ | ϕUψ

where p ∈ Π is a propositional symbol. As usual, we use ♦ϕ as macro for 
Uϕ
(sometime in the future ϕ holds) and �ϕ (always ϕ) for ¬♦¬ϕ.

Definition 1 (Infinite LTL Semantics). Let T = (S,R, V ) be a transition
system, σ ∈ Tri be an infinite trace and i ∈ N0 an index. The infinite trace
semantics for LTL is defined by relation |= as follows:
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T, σ, i |= p ⇔ p ∈ V (σ[i])
T, σ, i |= ¬ϕ ⇔ T, σ, i �|= ϕ
T, σ, i |= ϕ ∨ ψ ⇔ T, σ, i |= ϕ or T, σ, i |= ψ
T, σ, i |= ©ϕ ⇔ T, σ, i + 1 |= ϕ
T, σ, i |= ϕUψ ⇔ ∃j ∈ [i,∞] : T, σ, j |= ψ and

∀k ∈ [i, j − 1] : T, σ, k |= ϕ

The finite trace semantics for LTL of [4] evaluates a formula to t (true), f
(false) or ? (unknown). The intuitive reading for t is that the property holds for
a given finite trace, therefore also for all finite and infinite extensions of that
trace. Analogously, f means that the property does not hold independent of the
future behavior of the system. Finally, ? means that the current finite trace can
be extended such that the property holds or does not hold; the satisfaction of
the formula is still open.

Definition 2 (Finite LTL Semantics). Let T = (S,R, V ) be a transition
system, σ ∈ Trf be a finite trace and j ∈ [0, |σ| − 1] an index. The finite trace
semantics for LTL is defined by relation [·]Tσ,j as follows:

[ϕ]Tσ,j =

⎧
⎨

⎩

t if ∀σ′ ∈ σTri : T, σ′, j |= ϕ

f if ∀σ′ ∈ σTri : T, σ′, j �|= ϕ
? otherwise

We write [ϕ]Tσ for [ϕ]Tσ,0. Moreover, we use T, σ, j |=3 ϕ to refer to [ϕ]Tσ,j = t,
and Trf |=3 ϕ if for all finite traces σ ∈ Trf we have that T, σ, 0 |=3 ϕ.

3.2 Local and Collaborative Monitors

Before we define local monitors, we first discuss their capability of aggregating
(ternary) evaluations of formulae into a single evaluation. Ultimately, we will use
this aggregation to obtain the evaluation of an LTL property on a finite trace.
A monitor aggregates evaluations using propositional formula α which we eval-
uate using Kleene’s ternary semantics [9].

Definition 3 (Aggregation Formula). An aggregation formula with k vari-
ables is a propositional formula α with k propositional symbols x1, . . . , xk which
can take on the values in {t, f, ?}. Aggregation formulae are evaluated using
Kleene’s ternary semantics shown in Fig. 2. Given truth values v1, . . . , vk ∈
{t, f, ?} we write α(v1, . . . vk) to refer to the evaluation of α if truth value vi

is assigned to variable xi.

Each local monitor has its own sensing capabilities which allow the local monitor
to verify an LTL formula on any finite execution trace. The basic idea of an
observation formula ϕ is that the monitor can distinguish all infinite traces
where ϕ holds from those where ϕ does not hold. This is from a specification
perspective. However, we are especially interested how the monitor makes a
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Fig. 2. Truth definition of Kleene logic.

decision at run-time. For example, if the monitor is assumed to be able to observe
♦p, it does not mean that at run-time the monitor can always decide after a finite
number of steps whether the current trace is a ♦p trace or not. In addition to
the monitor’s observation formula we allow it to use inputs of other monitors
according to a given aggregation formula.

Definition 4 (Local Monitor). A local monitor is a tuple m = (α,ϕ), where
α is an aggregation formula over k + 1 variables for some k ≥ 0, and ϕ is an
LTL formula, called m’s observation formula.

For any aggregation formula α with k + 1 variables we assume that the vari-
ables are named o, x1, . . . , xk and are ordered. Moreover, we shall also write
α(o, x1, . . . , xk) if we want to make the variable names explicit. Note the dif-
ference to α(v0, . . . , vk) for truth values vi, i = 0, . . . , k. The intuition of
α(o, x1, . . . , xk) is that the monitor aggregates its current observation, encoded
in o, with the input evaluations x1, . . . , xk of its neighboring local monitors
according to α. By convention we reserve the first variable for the evaluation of
the monitor’s observation formula.

Example 2 (Local Monitor). For simplicity we talk about a specific vehicle in
our examples. Local monitors m1, m2 and m3 can observe the location of the
vehicle (li stands for “the vehicle is at location i”). m2 and m3 can also observe
traffic jams at their location (ji means “location i is jammed”). We assume a
transition system T = (S,R, V ) as a model of our scenario. The state space is
S = {s0, ..., s5}. The transition relation consists of all pairs (s0, si) and (si, s5)
with i ∈ {1, ..., 4} and (s5, s5). The valuation function is given by V (s0) =
{l1}, V (s1) = {l2}, V (s2) = {l2, j2}, V (s3) = {l3}, V (s4) = {l3, j3} and finally
V (s5) = ∅. Hence, for each infinite trace in Tr that starts at s0 there is a moment
where either l2 or l3 is visited by the vehicle, and in that state either the vehicle is
in a jam or not. As an example monitor we consider the monitor m1 = (α1, ϕ1),
where α1 = o ∧ x1 is a formula with two variables. For instance given that o is
the valuation of ϕ1 and x1 is an input valuation then if o’s valuation is true (t)
and x1 =? then α(t, ?) is evaluated to ? by Kleene’s semantics. Monitor 1 can
observe whether l1 holds for a given state. This allows m1 to monitor a formula
ϕ1 = ♦l1 (the vehicle is at location 1 at some moment).

A collaborative monitor is modeled by a directed acyclic graph of local mon-
itors. The main reason for acyclicity is to avoid unnecessary complexities for
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the formulation of collaborative LTL verification. The connections between local
monitors is referred to as the query relation. This relation is given by a function
that given a local monitor m returns the connected local monitors in the order
of their input for the aggregation formula of m. In the following definition we
use Mk for the set of monitor tuples of length k.

Definition 5 (Collaborative Monitor Specification). A collaborative mon-
itor C is specified by (M, qry), where M is a non-empty set of local monitors,
qry : M → {ε} ∪ ⋃|M |

k=1 Mk is a query relation with qry(m) = (m1, . . . ,mj) for
j = 1, . . . , |M | iff m = (α,ϕ) where α is an aggregation formula over j + 1 vari-
ables. Moreover, qry is assumed to be acyclic1. The empty sequence is denoted
by ε.

In the case that qry(m) = ε (the empty sequence) the monitor cannot query
other monitors.

Example 3 (Collaborative Monitor Specification). Figure 3 shows a representation
of the example collaborative monitor. Monitors m2 and m3 are assumed to be able
to see whether the vehicle is at their location, and whether there is a jam at their
location. This allows monitor m2 to distinguish traces where �(¬j2 ∨ ¬l2) either
holds or not. The formula is read as “The vehicle is never at location 2 whilst there
is a jam at location 2”. We use this formula as the observation formula of m2. m3

has the same observation formula, but with respect to location 3. Both m2 and m3

do not receive any input. m4 has no observation capabilities. We set its observation
formula to 
2. The monitor aggregates inputs from m2 and m3 which will repre-
sent the statement “the vehicle has been in a traffic jam”. Finally, as discussed in
the previous example, m1 can observe ♦l1 and aggregates, using input from m4,
whether the vehicle at some point has passed through location 1 and whether the
vehicle has been in a traffic jam.Formally the collaborativemonitor from the exam-
ple scenario is specified by (M, qry) where:

– M = {m1,m2,m3,m4}.
– qry(m1) = (m4), qry(m2) = qry(m3) = ε (no input), qry(m4) = (m2,m3).

For a local monitor, let o be the observation formula’s evaluation variable, and
x and y be input evaluations variables. The local monitors are given by:

– m1 = (α1, ϕ1), α1(o, x) = o ∧ x, ϕ1 = ♦l1.
– m2 = (α2, ϕ2), α2(o) = o, ϕ2 = �(¬j2 ∨ ¬l2).
– m3 = (α3, ϕ3), α3(o) = o, ϕ3 = �(¬j3 ∨ ¬l3).
– m4 = (α4, ϕ4), α4(o, x, y) = o ∧ x ∧ y, ϕ4 = 
.

1 Firstly, let reachable be inductively defined as: m′ is reachable from m if m′ is among
qry(m) = (m1, . . . ,mk). Furthermore by transitivity if m′′ is reachable by m′ and
m′ is reachable from m, then m′′ is reachable by m. Acyclicity means that there is
no m ∈ M such that m is reachable from m.

2 We note that the choice of � for “no observation” only makes sense because of m4’s
aggregation formula o ∧ x ∧ y as defined below.
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( j3
∧ l3)¬¬( j2

∧ l2)¬ ¬

l1

Fig. 3. Example collaborative monitor. Nodes are local monitors with at the right their
name, arrows indicate the query relation, below monitors are the observation formulas.

For example, monitor m4 is assumed to be able to distinguish all traces satisfying
ϕ = �(¬j2 ∨ ¬l2) ∧ �(¬j3 ∨ ¬l3) ≡ �((¬j2 ∨ ¬l2) ∧ (¬j3 ∨ ¬l3)). This formula
is evaluated to false (f) if and only if at some point the vehicle is at a jammed
location. Monitor m1 is assumed to be able to distinguish all traces satisfying
ϕ′ ≡ ♦l1 ∧ ϕ. This formula is evaluated to false if and only if at some point the
vehicle passes location 1 and if at some point the vehicle is at a jammed location.
(Note that this follows from the way the model is constructed.)

Local monitors are models of runtime monitoring applications. In a runtime
system the monitor does not have access to the infinite trace that a monitored
system produces. Instead, the behavior of the system is revealed incrementally
as it develops at runtime. Therefore, it is up to a monitor to determine whether
some property is true, false or unknown given a finite trace. We shall therefore
analyze local and collaborative monitors by using finite traces of the monitored
system. Consider the local monitor m2 = (α2, ϕ2) from our example scenario
and an arbitrary trace σ ∈ Trf for an example model T of our scenario. The
input that m2 provides to m4 given σ is given by the application of α2 on the
valuation [ϕ2]Tσ . This also holds for m3 = (α3, ϕ3). The input that m4 = (α4, ϕ4)
provides to m1 given σ is hence α4([ϕ4]Tσ , α2([ϕ2]Tσ ), α3([ϕ3]Tσ )). The inputs of
an aggregation formula are ultimately the evaluation of LTL formulas on a given
trace. Hence, the input that for instance m4 provides to m1 given a trace σ
is equivalent to the evaluation of some Boolean combination ϕ of the formulas
ϕ4, ϕ2 and ϕ3. We call this Boolean combination the m4-aggregate. If a local
monitor m can query m′, then it means that m can query the evaluation of the
m′-aggregate. It is important to note, however, that only the evaluation of the
aggregate is communicated and not the truth values of its composed parts. This
is an important feature of our model to ensure privacy and security properties.
Because for each local monitor the aggregation formula is fixed, it means that
given a collaborative monitor all the aggregates can be determined at design-
time. Also note that due to acyclicity there are local monitors m = (α,ϕ) without
neighbors and hence for such local monitors their m-aggregate is equivalent to
a Boolean combination of the monitor’s observation formula ϕ, providing four
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alternatives: ϕ, ¬ϕ, ϕ ∧ ¬ϕ or ϕ ∨ ¬ϕ. To see this, observe that any 3-valued
function α on a single input necessarily maps ? to ? and any x �=? to α(x) �=?.
Hence only four possible different functions are possible given a single variable
aggregation formula.

Definition 6 (Aggregate, Aggm). Let T be a transition system and C =
(M, qry) be a collaborative monitor. A mapping Agg : M → LTL is called an
M -aggregation iff for all m = (α,ϕ) ∈ M and all σ ∈ Trf we have that

[Agg(m)]Tσ ≡ α([ϕ]Tσ , [Agg(m1)]Tσ , . . . , [Agg(mk)]Tσ ).

where qry(m) = (m1, . . . ,mk). We simply call Agg(m) the m-aggregate (wrt.
Agg) and denote it by Aggm.

The following proposition shows that an M -aggregation always exists and
also how it can be constructed. We also note that the result makes use of the
acyclicity of a collaborative monitor.

Proposition 1. Let T be a transition system and C = (M, qry) be a collabora-
tive monitor. Then, an M -aggregation exists. Moreover, an M -aggregation can
be effectively constructed such that for each m = (α,ϕ) ∈ M with qry(m) =
(m1, . . . ,mk) the m-aggregate Aggm is given by Aggm = α[ϕ/o,Aggm1

/x1, . . . ,
Aggmk

/xk] where α[ψ/x] denotes that variable x is replaced by formula ψ in α.

Proof (Sketch). Due to acyclicity there are local monitors m = (α,ϕ) ∈ M such
that qry(m) = ε returns no local monitors. For these local monitors α is an
aggregation formula with one variable o. We can construct the m-aggregate of
such a local monitor m = (α,ϕ) by syntactically replacing the variable o in α
by ϕ and maintaining the Boolean connectives. Now we can proceed inductively.
Let m′ = (α′(o′, x1, ..., xk), ϕ′) ∈ M be a monitor where qry(m′) = (m1, . . . ,mk)
and the aggregates or Aggmi

for i = 1, . . . , k are already constructed. We can
construct the m′-aggregate by syntactically replacing in α′ the first variable o′

by ϕ′, and each variable xi by the mi-aggregate for i ∈ 1, ..., k. Hence, proceeding
bottom-up, we can construct the M -aggregation Agg. ��
Example 4 (Aggregate). The m1-aggregate Aggm1

is equal to ♦l1 ∧ Aggm4
=

♦l1 ∧Aggm2
∧Aggm3

= ♦l1 ∧�(¬j2 ∨¬l2)∧�(¬j3 ∨¬l3). This corresponds with
the assumption from Example 3 that m1 should be able to distinguish between
traces where the vehicle passes through location one and a traffic jam, and those
where this does not happen.

3.3 Monitorability and Expressivity

For various robustness and security issues, and from a design perspective, it
is useful to determine what kind of formulas can be collaboratively verified by
local monitors. We first recall the notion of (non)monitorability, which is an
adaptation of the one from [4,15]. The difference is that we assume an underlying
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transition system. A formula ϕ is nonmonitorable after a finite trace σ if ϕ can
never be evaluated to a conclusive true or false after σ given the finite LTL
semantics. For ϕ to be monitorable it means that there is no finite trace such
that ϕ is nonmonitorable after that trace. We highlight that monitorable does
not mean that it will be possible to evaluate the truth of the formula, but only
that the possibility is not excluded. Consider for example the formula ♦p and a
transition system with two states q1 and q2 with R = {(q1, q1), (q1, q2), (q2, q2)}
and only q2 is labeled with a proposition p. Then, after each finite trace ♦p is
monitorable as each finite trace can be extended to evaluate the formula true or
false. However, after each finite trace q∗

1 no definite evaluation can be given.

Definition 7 ((Non)monitorable [4]). Let T be a transition system, σ ∈ Trf

be a finite trace, and ϕ be an arbitrary LTL-formula. We say that ϕ is Tr-
nonmonitorable after σ iff for all finite traces σ′ ∈ σTrf it holds that [ϕ]Tσ′ =?.
We say that ϕ is Tr-monitorable iff there is no finite trace σ ∈ Trf such that ϕ
is Tr-nonmonitorable after σ.

Note that a formula is defined to be nonmonitorable after a specific finite
trace, and monitorable if no such trace exists. Hence nonmonitorable is a different
concept than “not monitorable”. For a formula to be “not monitorable” it means
that there is a trace such that the formula becomes nonmonitorable after that
trace.

Remark 1 (Monitorability). The definition of (non)-monitorability requires a
transition system/set of traces. As a consequence, a formula can be not mon-
itorable for one transition system, but monitorable for another. Consider for
example the formula �♦p. Let T = (S,R, V ) be a transition system with
S = {s0, s1}, R = S × S and V (s0) = {p} and V (s1) = ∅. For all finite traces
σ ∈ Trf of T it holds that [�♦p]Tσ =?, hence �♦p is not Tr-monitorable. Let
T ′ = ({s0}, {(s0, s0)}, V ′), such that V ′(s0) = ∅. The set of traces Tr′ contains
only traces in which p never holds. Hence, [�♦p]T

′
σ = f for each σ ∈ Trf

′
, which

makes the formula Tr′-monitorable.

The next proposition captures the observation that monitorability is invariant
regarding equivalent formulae.

Proposition 2. Let T be a transition system and ϕ and ψ LTL-formulae. If
Trf |=3 ϕ ↔ ψ, then ϕ is Tr-monitorable iff ψ is Tr-monitorable.

Proof (Sketch). Because Trf |=3 ϕ ↔ ψ it means that ∀σ ∈ Trf : [ϕ]Tσ = [ψ]Tσ .
Hence, if ϕ is monitorable then for each trace σ ∈ Trf it holds that there must
be a σ′ ∈ σTrf such that [ϕ]Tσ′ �=? and by extension [ψ]Tσ′ �=?, hence ψ is then
also monitorable. The other way around is exactly the same if we switch ϕ
and ψ. ��

We are interested in whether a local monitor m can verify a specific LTL
formula ϕ for any trace. The m-aggregate is syntactically defined. If ϕ and Aggm
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give the same result on all traces of a transition system and ϕ is monitorable,
or alternatively if Aggm is monitorable (cf. Proposition 2) then the monitor can
detect all definite evaluations of ϕ.

Example 5 (Monitorability). The formula ψ = ♦l1 ∧�((¬j2 ∨¬l2)∧ (¬j3 ∨¬l3))
is equivalent to Aggm1

from Example 4. As we assumed that the vehicle will pass
maximally once through a location, and it will at some point go through either
location 2 or 3, we have that for any trace where the vehicle has not passed
location 2 or 3, there is an extension in which the vehicle passes these locations.
Then, when it passes a location, there is either a traffic jam or not. After the
vehicle passes location 2 or 3, all extensions of the trace will not contain another
state where the vehicle passes location 2 or 3. Therefore, any trace in which either
location is passed will evaluate ψ to t or f , which makes ψ Tr-monitorable.

We assume that each collaborative monitor has the purpose that one or more
local monitors can observe a specific formula. We call the specification of this
purpose the expressiveness constraint of the collaborative monitor which is a set
of local monitor/formula pairs (m,ϕ) where the local monitor m must be able
to observe formula ϕ.

Definition 8 (Expressiveness Constraint). An expressiveness constraint for
a collaborative monitor C = (M, qry) is a relation E ⊆ M × LTL consisting of
pairs of local monitors and formulae. The collaborative monitor C Tr-satisfies
the expressiveness constraint E iff for each (m,ϕ) ∈ E it holds that Tr |=3 ϕ ↔
Aggm.

Example 6 (Expressiveness Constraint). An expressiveness constraint for the
example scenario is E = {(m1, ϕ)} where ϕ = ♦l1 ∧ �(¬j2 ∨ ¬l2) ∧ �(¬j3 ∨ ¬l3)
is from Example 4. Because ϕ is equivalent to Aggm1

, it means that the example
collaborative monitor Tr-satisfies the expressiveness constraint E.

4 Robustness

Suppose we are given a collaborative monitor which satisfies some expressive-
ness constraint. For various reasons, such as physical sabotaging attacks, local
monitors and/or communication links between them can malfunction. From a
system designer’s perspective it can make sense to construct a monitor with
some redundancy such that the expressiveness constraint is still satisfied when
some components malfunction. In this section we analyze the robustness of mon-
itors; that is, to which degree local monitor failures affect the functioning of the
collaborative monitor.

4.1 Monitor Malfunctioning

Conceptually, one may imagine that a failing local monitor is removed from
the collaborative monitor. For another local monitor the malfunction may cause
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a situation where one of its inputs no longer exists, hence its aggregation for-
mula has to be updated. We update the aggregation formula by removing the
occurrences of the variable that corresponds to the failing monitor.

Definition 9 (Local Monitor Malfunctioning). Let C = (M, qry) be a col-
laborative monitor, and F ⊆ M be a set of malfunctioning monitors. We define
the collaborative monitor C|F = (M ′, qry′) as follows:

– M ′ = M \ F .
– for each m ∈ M it holds that qry′(m) equals qry(m) but with each local moni-

tors in F being removed from the tuple.
– M contains all m = (α,ϕ) ∈ M \ F where qry(m) = (m1, . . . ,mk) but each

α(o, x1, ..., xk) is replaced by α′ which is obtained by the following procedure
that is repeated until no variable xi for mi ∈ F remains:
1. If li ∈ {xi,¬xi,¬¬xi, . . .} occurs in a disjunctive subformula li ∨ ϕ or

conjunctive subformula li ∧ ϕ of α then this subformula is rewritten to ϕ.
2. If α equals li with li ∈ {xi,¬xi,¬¬xi, . . .}, then α′ = 
.

Intuitively, the definition expresses that input from malfunction monitors are
ignored in a sense that they can no longer help to classify traces.

Example 7 (Local Monitor Malfunctioning). If F = {m4} then monitor 4 is
removed. The resulting collaborative monitor is C|F = (M ′, qry′) where M ′ =
{m1,m2,m3} and qry′(mi) = qry(mi) for i = 2 and i = 3, and qry′(m1) = ε is
the empty sequence. The malfunction causes α1 = o∧x to be updated to α′

1 = o,
which means that Aggm1

becomes equivalent to ♦l1.

We limit ourselves to local monitor malfunctioning, but communication mal-
functioning can be straightforwardly defined as well. Instead of removing local
monitors, only the query relation is updated. For example, if communication
from m1 to m4 malfunctions then the new query relation removes m4 from m1’s
input sequence of local monitors. The aggregation formula is updated following
the same procedure proposed for local monitor malfunctioning. An extension of
malfunctioning where monitors send false information is also interesting and left
for future research.

4.2 Monitor Robustness

In a hostile environment local monitors can be damaged, but they can also
malfunction for other reasons (e.g. running out of energy). We aim at quantify-
ing robustness in terms of how much damage a collaborative monitor can take
before its expressiveness constraint is not satisfied any more. This damage can
be expressed as a set of potentially malfunctioning local monitors or a number
specifying the number of malfunctioning local monitors. We consider monitors
that do not occur in an expressiveness constraint to be supporting monitors.
k-robustness is a measurement of how many of such monitors may fail before
the expressiveness constraint is not satisfied.
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Definition 10 (Collaborative Monitor Robustness). Let C = (M, qry) be
a collaborative monitor Tr-satisfying the expressiveness constraint E, M ′ = {m |
m ∈ M, (m,ϕ) �∈ E} and F ⊆ M be a subset of local monitors. We say that C
is F-robust for E and Tr if C|F Tr-satisfies E. We say that C is k-robust for E
and Tr, k ∈ N0, if C is F ′-robust for E and Tr for any F ′ ⊆ M ′ with |F ′| ≤ k.

We note that given a collaborative monitor C, 0-robustness is equivalent to ∅-
robustness for some E and Tr which simply means that C Tr-satisfies E. If every
local monitor occurs in E with some ϕ then only 0-robustness can be obtained.

Example 8 (Collaborative Monitor Robustness). Let F = {m4} and E be as in
Example 6. The collaborative monitor is not F -robust for E. However, assume
we allow that m2 and m3 can potentially switch to more energy costly but
long range communication. This can be modeled by including m2 and m3 in
qry(m1). Also assume that in that case Aggm1

is equivalent to ϕ1 ∧ (Aggm4
∨

(Aggm2
∧ (Aggm3

))). In this scenario, if m4 fails then the new m1-aggregate
becomes ϕ1 ∧ (Aggm2

∧ Aggm3
). Hence, the monitor would be F -robust. Also,

given E the example collaborative monitor can only be 0-robust.

Aside from a specific attack we might wonder how much damage a monitor can
take in general before it fails. This is especially useful in scenarios with many
homogeneous local monitors such as botnets where attacks can be widespread
and targeting any point in the network. This notion is captured by k-robustness.
To determine the k of k-robustness, one has to consider the potential set of
monitors which might fail and then check for each set of monitors of size k
whether the collaborative monitor is robust with respect to those subsets and
its expressiveness constraints. We leave a detailed investigation for future studies.

4.3 Fail Tolerance

Recall from Sect. 2 that we aimed at providing basic metrics to determine critical
parts of a collaborative monitor, and that data availability is one of the topics
that we address. In wireless sensor networks data availability is a concept that
describes that data is available to monitor some property because enough sensors
are working properly. Hence, robustness is related to data availability as it deals
with scenarios where monitors fail. Intuitively we want to capture for a local
monitor how critical its functioning is for the collaborative monitor. We shall
use a fairly simple qualification called fail tolerance for determining how critical
a local monitor is. This can be used as a basis for more sophisticated metrics.
Recall that the presented analysis is for design purposes. In an implementation
one has to deploy a mechanism for detecting whether a monitor has failed.

For a collaborative monitor C, a local monitor m in C, and an expressive-
ness constraint E, we call monitor m k-fail tolerant if alongside m at least k − 1
other monitors must fail before C cannot satisfy E, and without m’s failure the
expressiveness constraint would be satisfied. In particular, m being 1-fail toler-
ant means that m’s correct functioning is absolutely critical for the collaborative
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monitor, because alongside m zero other monitors must fail before the expres-
siveness constraint is not satisfied. Similarly, m being k-fail tolerant and k > 1
indicates that there is some redundancy wrt. m. For instance if m is 2-fail toler-
ant then the expressiveness constraint is not violated if only m fails. Therefore,
there must be some other monitor that has some redundancy with m. Being
∞-fail tolerant would indicate that the collaborative monitor does not depend
on m’s functioning for satisfying its expressiveness constraints. That is, if the
collaborative monitor does not satisfy an expressiveness constraint E due to any
set of failing monitors, then it would still not satisfy E if m did not fail.

Definition 11 (Fail Tolerant). Let T be a transition system, C = (M, qry)
be a collaborative monitor and E be an expressiveness constraint. For a monitor
m ∈ M we say m is k-fail tolerant wrt. E and Tr, k < ∞ iff there is a F ⊆ M
of size k such that:

– (1) m ∈ F , C is not F -robust for E and Tr, and for each subset F ′ ⊆ F \{m}
C is F ′-robust for E and Tr, and

– (2) there is no F ′ ⊆ M such that (1) holds for F ′ and |F ′| < |F |.

If there does not exist a k < ∞ such that m is k-fail tolerant, then we say that
m is ∞-fail tolerant.

Example 9 (Fail Tolerance). All monitors in our example scenario are 1-fail tol-
erant, as each of them observes vital information for the goal aggregate in m1.
However, see Fig. 4 for an illustration of more robust collaborative monitors. In
the left monitor we assume only one expressiveness constraint such that m7 must
be able to aggregate p ∧ q ∧ r, hence m7 is 1-fail tolerant. m1 is 1-fail tolerant
as its failure will immediately let the whole monitor fail. m2 is 2-fail tolerant
as its failure together with m3 will let the whole monitor fail. Note that m1

together with m2 is not considered for m2’s fail tolerance as m1 was already
1-fail tolerant. Monitors m4 to m6 are 3-fail tolerant.

In the right collaborative monitor of Fig. 4 we assume that m5 must be able
to aggregate p∧ q and hence it is 1-fail tolerant. All the other monitors are 2-fail
tolerant, and the collaborative monitor as a whole is 1-robust.

p q r r rq

rr rqqp

m1 m2 m3 m4 m5 m6

m7

p q

p q

∧p q ∧p q

∧p q

m1 m2

m3 m4

m5

Fig. 4. Example collaborative monitors. Nodes are local monitors with on the top their
name, arrows indicate the query relation, below monitors are the observation formulas.
An arrow from a monitor mi to mj is labeled with the mj-aggregate.
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We note that if a monitor is k-robust, then the lowest i-fail tolerance that a
local monitor can have aside from 1 is (k + 1).

Given a monitor design we can now see how critical a local monitor is in terms
of its functioning. A straightforward expansion of this fail tolerance analysis is
to not only check for F -robustness, but also look at which expressiveness pairs
(m,ϕ) are not satisfied anymore in case the monitor is not F -robust. If not all
expressiveness constraints are equally important, then for tolerance analysis this
can be taken into account. Also looking at how many pairs are not satisfied is
an important ingredient should one want to specify graceful degradation for col-
laborative monitors. At runtime the collaborative monitor can benefit from fail
tolerance analysis by assigning higher reparation priorities to critical monitors,
if possible.

5 Security

When it comes to the security of a collaborative monitor, we focus on the pos-
sible information an attacker can extract from the monitor. We say an attacker
extracts an LTL property ϕ if the attacker can extract from the collaborative
monitor the evaluation of ϕ given an arbitrary finite trace.

5.1 Information Extraction

In practice there are various ways in which an attacker can extract informa-
tion. The attacker can intercept and interpret messages, query other monitors
by pretending to be authorized and capture a monitor. To analyze intercepted
messages it is required to know what messages are exactly exchanged, something
which is not covered in our model. Also our model is not suited for analyzing
how a monitor can be reprogrammed, given that we only have semantical repre-
sentations and no program specifications of monitors. Therefore we focus on the
situation where the attacker can ask a query by pretending to be authorized.
This can in practice occur, for example, if the attacker pretends to be a local
monitor from the network.

We assume that like monitors the attacker can aggregate extracted informa-
tion by using some aggregation formula. However, for the attacker this is not a
fixed formula. Hence, given the aggregates that it obtains from the collaborative
monitor it can combine them by standard Boolean connectives. In the follow-
ing PL(X) denotes all possible formulae that can obtained by applying Boolean
connectives to elements in X.

Definition 12 (Monitor Attack). Let C = (M, qry) be a collaborative moni-
tor. An attack att ⊆ M is a set of local monitors. The set of extracted properties
LC
att is PL({Aggm|m ∈ att}).

If the framework is extended and other forms of attacks, such as eavesdrop-
ping on communication, can also be analyzed then these will contribute to the
set of extracted properties. Note that if some ϕ is extracted from the monitor,



392 B. Testerink et al.

then the attacker may still not know whether the system’s behavior satisfies this
property given a finite trace, because the evaluation may be inconclusive.

Example 10 (Monitor Attack). If an attacker can imitate m4 then it will be able
to query m2 and m3. In that case att = {m2,m3} and the extracted properties
are PL({Aggm2

,Aggm3
}). For instance the attacker can determine given an arbi-

trary trace what the evaluation is of ¬�(¬j2 ∨¬l2)∨¬�(¬j3 ∨¬l3) (somewhere
in the future there was a jam at either location and/or the vehicle was at either
location).

5.2 Safety

For monitor safety we look at whether a specific attack can be used to observe
some given property from the collaborative monitor. We assume the attacker
knows what an aggregate represents. That is, if it obtains information on the eval-
uation of the m-aggregate for a monitor m, then it knows that the m-aggregate
is Aggm.

Definition 13 (Monitor Safety). Let T be transition system, C be a collab-
orative monitor, att be an attack and ϕ be an LTL formula. We say that C is
Tr-safe for ϕ and att iff there is no ψ ∈ LC

att such that Trf |=3 ϕ ↔ ψ.

Example 11 (Monitor Safety). Given att = {m1,m2,m3,m4} the example col-
laborative monitor is Tr-safe for ϕ = ♦(l1 ∧ ♦l2) and att. It is also Tr-safe for
ψ = ♦(l1 ∧ ♦l3) and att. This means that even if the attacker can obtain all
available aggregates, it still cannot determine for a trace whether the vehicle
used or may use in the future the route through locations 1 and 2 or through
locations 1 and 3, respectively.

The space of potential attacks is heavily restricted by practical details that
are not covered by our model. For instance if in a network some local monitor only
has wired connections to other local monitors in a safe environment, then it might
be impossible that local monitor is targeted for an attack. Therefore we focus
on analyzing security risks wrt. potentially attacked local monitors and with
the assumption that the attack is practically feasible. The security constraint
of a monitor consist of a set of monitors that can potentially be attacked and
a set of properties that represent sensitive information. The analysis of what
properties count as sensitive should be part of the system’s design methodology.
These will differ per practical real-world scenario. A monitor satisfies its security
constraint if none of the considered attacks allows the attacker to monitor a
sensitive property.

Definition 14 (Security Constraints). Let T be a transition system and C =
(M, qry) be a collaborative monitor. A security constraint for C is defined as
(A,P ) where A ⊆ M is a set of local monitors and P ⊆ LTL is a set of sensitive
properties. C Tr-satisfies its security constraint iff for each and ϕ ∈ P , C is
Tr-safe for ϕ and A.
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It should be noted that for some constraint (A,P ) a not monitorable property
ϕ ∈ P might still be reasonable to consider as sensitive information. There is
the possibility that given the behavior of the monitored system at runtime such
a formula will always be evaluated to ‘?’, but this is not guaranteed to be the
case, unless ϕ is nonmonitorable after the empty trace.

Example 12 (Security Constraint). Let M = {m1,m2,m3,m4}, ϕ and ψ be as in
Example 11 and (A,P ) = (M, {ϕ,ψ}) be the scenario’s security constraint. The
example collaborative monitor Tr-satisfies its security constraint (A,P ). This
means that no matter which local monitors are attacked, the route of the vehicle
remains private.

5.3 Attack Tolerance

For security we also want to know how critical an attack on a monitor can
be. That is, if a certain monitor’s aggregate can be obtained, how bad is that?
In contrast to robustness, this is only interesting if the collaborative monitor
does not satisfy its security constraint. Because that would indicate that there
are combinations of monitors such that the attack on those monitors would
reveal sensitive information. The attack tolerance of a local monitor m indicates
how many other monitors need to be attacked in addition to m before sensitive
information is leaked. A local monitor is maximally attack tolerant if it cannot
contribute to any security leakage at all.

Definition 15 (Attack Tolerant). Let C = (M, qry) be a collaborative mon-
itor and (A,P ) be its security constraint. For an attack att ⊆ A and a local
monitor m ∈ att we say that m is contributing to att iff P ∩ LC

att �= ∅ and
P ∩ LC

att′ ⊂ P ∩ LC
att, where and att′ = att \ {m}. For a monitor m ∈ M we

define:

– m is k-attack tolerant iff att ⊆ A is the smallest attack such that m is con-
tributing to att and k = |att|.

– m is ∞-attack tolerant iff there is no att ⊆ A such that m ∈ att and m is
contributing to att.

If C = (M, qry) Tr-satisfies a security constraint then all local monitors are
∞-attack tolerant. If a local monitor m is 1-attack tolerant then the m-aggregate
is equivalent to a sensitive property, or the aggregate’s negation is. The maximal
attack tolerance value for a local monitor aside from ∞ is |M |.
Example 13 (Attack Tolerant). In our example scenario the monitor Tr-satisfies
the example security constraint and hence all monitors are ∞-attack tolerant. If
in the right monitor of Fig. 4 the security constraint is ({m1, . . . ,m7}, {p ∧ q})
then m1 and m2 are 2-attack tolerant and the other local monitors are 1-attack
tolerant.
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Now we can determine how attack tolerant a local monitor is, which is an
indicator for how critical the local monitor is for the security of the collabora-
tive monitor. Based on this basic framework several extensions are possible. For
instance if a monitor is easier to attack than another (i.e. a simple sensor in a
WSN versus a sophisticated sink), then the tolerance of the easier target should
be decreased relatively to the harder target. In a runtime environment if attacks
are detected then new attack tolerance values can be computed with the knowl-
edge that some local monitors are already attacked. This could for instance be
countered with low attack tolerance local monitors switching to more secure,
albeit energy and/or more overhead cost expensive, communication protocols.

6 Discussion and Conclusion

In this paper we presented a formal framework for collaborative monitors, which
are networks of local monitors. We have drawn inspiration from the wireless sen-
sor network literature to specify the interaction between local monitors. The local
monitors in a collaborative monitor are models of monitors that aggregate local
and distributed observations. The model for monitoring is suitable for scenarios
where it is unfeasible to have a centralized monitor that can observe the entire
state of the system that is monitored. Also, aggregation is useful in scenarios
where communication is expensive, as it can reduce the cost of communica-
tion. Aggregation may also improve the security of a monitor. We discussed how
aspects related to robustness and safety can be investigated in the framework.
The model for robustness and safety allows a designer to detect the importance
of the correct functioning and safety of a local monitor. In an application that
implements the model this may help the designer to decide upon what counter
measures to take against potentially failing or attacked monitors.

The contribution of this paper is just a first step towards a formal frame-
work for modeling and analyzing collaborative monitor applications. At several
points we explained how the framework could be extended. The runtime analysis
of communication failures and the effects of different communication protocols
from related literature provide interesting directions for future research. Also,
the concepts of robustness and safety can be extended to model, e.g., graceful
degradation of a collaborative monitor’s functioning and safety. We also left the
investigation of formal properties of the framework, e.g. complexity and synthesis
results, for future work.
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