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The small molecular Kinase Inhibitor (smKI) drug class is very promising and rapidly expanding. All of these
drugs are administered orally. The clear relationship between structure and function has led to drugswith a gen-
eral low intrinsic solubility. The majority of the commercial pharmaceutical formulations of the smKIs are phys-
icalmixtures that are limited by the lowdrug solubility of a salt form. This class of drugs is therefore characterized
by an impaired and variable bioavailability rendering them costly and their therapies suboptimal. New formula-
tions are sparingly being reported in literature and patents. The presented data suggests that continued research
into formulation design can help to developmore efficient and cost-effective smKI formulation.Moreover, itmay
also be of help in the future design of the formulations of new smKIs.
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1. Introduction

Small molecular Kinase Inhibitors (smKIs) form a promising and
rapidly expanding class of drugs [1,2]. The drugs target specific
parts of Kinase receptor proteins that play an important part in the
intracellular growth signaling pathways in tumor and immune cells
[3–5]. After the first drug approval by the United States Food and
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Drug Administration (FDA) of Imatinib in 2001 [6,7], the number of
drugs approved by both the FDA and European Medicines Agency
(EMA) are now nearing 30, listed in Table 1. Many more smKIs are
being investigated in clinical trials and are expected to be approved
in the coming years. A range of small molecular inhibitors have prov-
en to be useful in the therapy of certain types of cancer. Additionally,
smKIs may be prescribed as alternatives when other therapeutic
options have failed or are deemed inappropriate [8]. A few com-
pounds are (also) applied in the therapy of immunomodulated
diseases [9–12] and may even have a future in the therapy of diseases
such as diabetes mellitus [13].

All of the smKIs are without exception administered orally. This has
great advantages in terms of patient convenience and cost reduction
[14–16]. It presents however serious difficulties for compounds with a
low solubility and/or permeability. These drugs are hindered by a
reduced and variable bioavailability. This may cause drug plasma con-
centrations to be ineffectively low or toxically high with all due conse-
quences [17]. Understanding and controlling the parameters of
solubility and permeability can therefore have a profound influence
on patient plasma drug levels.

The smKIs have been designed using high-throughput screening
and combinatorial chemistry from which the intricate structures and
inherent solubility issues originate [18]. These means are used in the
drug discovery of other drug classes as well, e.g. drugs acting on the
central nervous system that also experience a problematic solubility
[19].

Drug solubility and the dissolution process are affected by a pleth-
ora of factors with clinical implications. A number of these factors are
inherent to the smKI structure and function. It follows that, as drug
dissolution is most often the primary determinant for the smKI bio-
availability, there is an apparent link between the high specificity of
the smKIs and their impaired absorption into the systemic
circulation.

This article will first present the overall problematic biopharmaceu-
tical properties of the smKI drug group. Secondly, it will discuss the
characteristic structural elements that are responsible for the solubility
behavior of the smKIs. It will continue by reviewing the current com-
mercial formulations along with alternative investigational formula-
tions. This article aims to underline that although high specificity can,
inmany cases, place a challenging strain on drug solubility and bioavail-
ability, different and innovative formulation techniques may present
possible solutions to some of these issues. Literature offers several re-
views that address (pre)formulation challenges for poorly soluble
drugs in general [20–22]. This article focuses on smKIs in particular. To
the authors' knowledge, this review is the first to combine literature
and patent research on the solubility and formulation of smKI com-
pounds from a pharmaceutical perspective.
Table 1
Approved smKIs (registered trademarks) by the FDA on March 20th 2016. Appointed BCS-clas

Compound Tradename BCSa Bioavailability(%)

Imatinib Gleevec I 98 [23,24]
Gefitinib Iressa II 60 [27,28]
Erlotinib Tarceva II 60 [29,30]
Sorafenib Nexavar II/IV [33,34]
Dasatinib Sprycel II [37,38]
Sunitinib Sutent IV [41]
Nilotinib Tasigna IV 30b [44,45]
Lapatinib Tyverb II b25b [48,49]
Pazopanib Votrient II 14–39 [52,53]
Ruxolitinib Jakavi I N95 [9,10]
Crizotinib Xalkori IV 43 [58,59]
Vemurafenib Zelboraf IV [61,62]
Vandetanib Caprelsa II [65,66]
Ponatinib Iclusig II [69,70]
Cabozantinib Cometriq II [73,74]

a BCS, Biopharmaceutical Classification System.
b Estimated/Based on mass balance.
2. Bioavailability

In the process of reaching the therapeutic target, the first step after
oral administration and the disintegration of the dosage form is always
the dissolution of the drug substance [75]. The second step, absorption,
only takes place with the dissolved portion of the drug. Thus, poor drug
solubility can be one of themain causes for a low and variable uptake of
a drug into the systemic circulation, i.e. a low and variable bioavailabil-
ity. This is generally true for the smKIs, as listed in Table 1. This reflects
back in their BCS (the Biopharmaceutical Classification System)-classes
ofwhichmost are II (solubility hindered bioavailability) or IV (solubility
and permeability hindered bioavailability) [76,77].

Factors such as presystemic metabolism and mediated transport by
transporter proteins may also play a part in reducing a drug's bioavail-
ability. The combination of these factors is reviewed elsewhere [78,79].

3. Physicochemistry

3.1. Essential structures

In the past fewdecades the role of signal proteins in the homeostasis
of tumors became more and more apparent [80,81]. The advancement
of the diverse techniques and possibilities of molecular modelling
have led to a therapeutic target-based drug discovery regime [82,83].
With it, structure-activity relations for inhibitory molecules for these
proteins were assessed. Key in these relations is the binding of the
lead drug molecule to the receptor and the inhibitory action thereon
[84]. The latter can be viewed as a dependent of the first but does not
necessarily result from the samemolecular structure. The independence
is illustrated by lenvatinib and sunitinib; they inhibit VEGFR2by binding
to the ATP-binding site with their core structure. Additional binding
through a nearby structure in both compounds gives them their differ-
ence in residence time without influencing the inhibition itself [85].

The resulting collection of mainly lipophilic structures now forms
the backbone of the majority of the KIs. Some molecular structures
and scaffolds are found throughout the current marketed collection of
smKIs. Even though the drugs inhibit awide variety of proteins, the nec-
essary structures to do so are similar. Table 2 lists the molecular struc-
tures of the free base smKIs ordered by primary target. Bold print
indicates the proven binding moieties in the smKIs that are responsible
for the inhibitory effect.

The bold printed structures in Table 2 have been shown inmolecular
docking and in vitro crystallization studies to be critical in receptor bind-
ing and inhibition [22–53]. These include highly lipophilicmoieties such
as (substituted) phenyls, aromatic amines, biaryl constructs and hetero-
cyclic aromatics. Using these structures as scaffolds, a great number of
studies have designed new smKIs by adding different side groups
ses are taken from registration documents.

Compound Tradename BSCa Bioavailability(%)

Regorafenib Stivarga II [25,26]
Tofacitinib Xeljanz III 74 [11,12]
Bosutinib Bosulif IV [31,32]
Axitinib Inlyta II 58 [35,36]
Ibrutinib Imbruvica II 2.9 [39,40]
Afatinib Giotrif I/III [42,43]
Dabrafenib Tafinlar II 95 [46,47]
Trametinib Mekinist IV 72 [50,51]
Nintedanib Vargatef II/IV 5 [54,55]
Ceritinib Zykadia IV 25b [56,57]
Alectinib Alecensa II/IV 37 [60]
Cobimetinib Cotellic I/III 46 [63,64]
Osimertinib Tagrisso III [67,68]
Lenvatinib Lenvima II/IV [71,72]



Table 2
Effective moieties in molecular structures of smKI classes.

Primary target Molecular structure(s)
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Table 2 (continued)

Primary target Molecular structure(s)
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a BCR-Abl, Breakpoint Cluster Region- Abelson murine lukemiaviral oncogene.
b EGFR, Endothelial Growth Factor Receptor; VEGFR, Vascular Endothelial Growth Factor Receptor; PDGFR, Platelet Derived Grwoth Factor Receptor; B-raf, v-raf murine sarcoma viral

oncogene homolog B1; Jak, Janus Kinase; ALK, Anaplastic Lymphoma Kinase; MEK, Mitogen activated protein Kinase kinase.
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[117–119]. Combining scaffolds to create a new multi-kinase-targeting
smKI is also a commonly used strategy [120].

The lipophilic functional moieties and additional scaffold structures
make up the larger part of the smKI molecular structure. To improve
the overall aqueous solubility of a drug, drug development may include
the evaluation of the possible addition of hydrophilic moieties to the
core structure [121]. This addition of more hydrophilic structures may
not be feasible due to the presence of hydrophobic residues that are es-
sential for binding areas of the inhibitors however [122–125]. Adjust-
ments to the KI chemical structures to improve the biopharmaceutical
behavior can therefore only go so far. This has led to a continuous search
for a delicate balance between pharmaceutical and pharmacological
properties, most often resulting in the favor of the latter. As a conse-
quence, the aqueous solubility of the free base smKI remains generally
low. A recent study shows that this balance may not always lean to-
wards poor solubility and that a combination of high inhibitor activity
and hydrophilicity can be achieved for some KI structures [126].

Additionally, enhancing aqueous solubility can be achieved by con-
structing a pro-drug from the drug substance. Here, a solubility-improv-
ing side group is attached to the active drug, which is later removed by
some form of metabolism in vivo after absorption [127]. Although this
has not been used in themarketed smKIs, it is currently being examined
for smKIs [128].
3.2. Solubility

The aqueous solubility of the smKIs is strongly influenced by envi-
ronmental factors, as described in the following paragraphs. Additional-
ly, the time points of solubility measurements determine whether an
equilibrium or a dynamic value is assessed, which may differ signifi-
cantly [51]. A single value can therefore not be appointed to the aqueous
solubility. Reported values should be evaluated carefully, as the circum-
stances under which it wasmeasuredmay not be adequately described.
3.3. pH-dependent solubility

Themajority of the smKI scaffolds consists of nitrogen-based hetero-
cyclic systems. An important consequence of the nitrogen-containing
core inhibitory structures in combination with secondary amine moie-
ties is an overall pH-dependent aqueous solubility.

The majority of the pKa values of the ionizable nitrogen structures
are sufficiently low to qualify them as relatively weak bases [129,130].
Table 3 lists the currently known values. The higher pKa values com-
monly concern nitrogen groups that become neutral when protonated,
whilst the lower pKa values correspond to groups that attain a positive
charge by protonation. For most compounds this means a relative high
solubility in acidic media and a harshly reduced solubility in more alka-
line environments [131–133]. Vemurafenib, Regorafenib and
Trametinib are exceptions herein with an almost pH-independent solu-
bility. This is due to their pKa values that are either above or below the
physiological pH-range.
3.4. Salt and free base polymorphs

The presence of ionizable groups in most of the smKI drug structure
made the conversion to salts feasible [134]. The commercial formula-
tions of many smKIs contain a salt in a designated stable polymorph
form (Table 3). This led to a dramatic increase in solubility for some
compounds, e.g. Imatinib, Tofacitinib and Afatinib, of which the free
base forms are very poorly soluble (BCS II or IV). Their respective mes-
ylate, citrate and dimaleate salts upgraded them to BCS-I or III. For
most of the other drugs salt formation did not significantly increase sol-
ubility and they remain BCS II or IV. The reasons for using particular salt
or free base polymorphs in formulations are, however often not provid-
ed in registrations texts or patents. New salt and free base polymorphs
with higher solubilities are being patented and reported in literature be-
fore and after market authorization is obtained. It seems that, at least in
terms of solubility, better options were and are available. Comparisons
in dissolution behavior and bioavailability between various salt forms
are not yet accessible. The alternative salts may prove useful in future
formulation improvements however.

3.5. Solvates

Solvates are crystalline solids that contain stoichiometric or
nonstoichiometric proportions of a solvent within their crystal struc-
ture. When this solvent is water, the solvate is termed a hydrate.
When no solvent or water is present, a compound is termed an
anhydrate. Solvates, hydrates and solventless crystals can differ signifi-
cantly in solubility [135]. Most of the smKIs are formulated as
anhydrates. Data on dissolution performance of solvates and hydrates
are only rarely published. Dasatinib, Nilotinib, Lapatinib and Bosutinib
are present as monohydrate crystals in their respective formulations.
After the approval of Sprycel® in 2006, a way to produce Dasatinib
anhydratewas found and this formwas shown to be 2.4 timesmore sol-
uble than themonohydrate variant [136]. Trametinib is formulated as a
stoichiometric DMSO-solvate. In rats this increased the bioavailability of
Trametinib 30-fold compared to the unsolvated form. In aqueous envi-
ronment, the dissolved Trametinib.DMSO slowly precipitates as the
much less soluble unsolvated form [51].

4. Formulations

Partly as a consequence of the before-mentioned factors, the solubil-
ity of a drug salt polymorph can be described thermodynamically. The
following combined equation illustrates this [137]:

− logX ¼ ΔHf

2:303RT
T0−T
T0T

� �
þ VΦ
2:303RT

δ1−δ2ð Þ2 ð1Þ

X, dissolved molar fraction; ΔHf, latent heat of fusion (heat absorbed
during melting); R, gas constant; T, temperature; T0, melting point of
solute; V, molar volume of liquid solute; Φ, volume fraction of the sol-
vent; δ, solubility parameter (expression of cohesion between
molecules).



Table 3
Reported solubilities of smKIs as pure drug substance at given pH values and their types of commercial formulation.

Compound pKa pH Solubility (mg/mL) Dosage form Formulation composition

Imatinib mesylate X ≤5.5 N1.6m [24] T/C Patent expired
Gefitinib FBa 5.4; 7.2 [28] 1.0; 7.0 21m; b0.001 [28] T L, MC, CS, P, SLS, MS
Erlotinib hydrochloride 5.4 [155] 2.0 0.4m [155] T L, MC, SSG, SLS, MS
Sorafenib tosylate X 1.0; 4.5 0.034m; 0.013 [33] T MC, CS, H, SLS, MS
Dasatinib FB·H2O 3.1; 6.8; 10.8 [156] 2.6; 6.0 18.4m; 0.008 [37] T L, MC, CS, HPC, MS
Sunitinib malate 9.0 [41] 1.2–6.8 N25m [41] C MN, P, CS, MS
Nilotinib hydrochloride.H2O 2.1; 5.4 [157] 1.0; 4.5 0.28m; b0.1 [45] C L, CP, PX, SC, MS
Lapatinib ditosilate.H2O 5; 7.2 [158] 1.0; w 10−6; 0.007m [49,159] T MC, P, SSG, MS
Pazopanib hydrochloride 2.1; 6.4; 10.2 [160] 1.1 0.65m [160] T MC, P, SSG, MS
Ruxolitinib phosphate 4.3; 11.8 [161] w X (highly soluble) [161] T L, MC, SSG, MS, SC, HPC, P
Crizotinib FB 5.6; 9.4 [59] 1.6; 8.2 N10m; b0.1 [162] C MC, SC, CHP, SSG, MS
Vandetanib FB 5.2; 9.4 [147] 6.8; w 0.35m; 0.008 [65,147] T MC, DCP, CP, P, MS
Ponatinib hydrochloride 2.8; 7.8 [70] 1.7; 7.5 7.8m; 0.16 ∗ 10−3 [70] T L, MC, SSG, SC, MS
Cabozantinib malate X 2; N3 0.11m; x (very low) [163] C CS, SSG, SC, SA, MC
Tofacitinib citrate 5.1 [164] 1.0; w N28m; 2.9 [164] T MC, L, CS, MS
Bosutinib FB·H2O 7.9 [32] b5.0; N5.0 X (high); X (reduced) [32] T MC, CS, PX, P, MS
Axitinib FB 4.8 [36] 1.1; N6.0 1.841m; 0.2 ∗ 10−3 [36] T MC, L, CS, MS
Ibrutinib FB 3.8 [40] 1.2; 5.5 2m; 0.003 [40] C MC, CS, MS, SLS
Afatinib dimaleate 5.0; 8.2 [165] b6.0; N7.0 N50m; 0.04 [165,166] T L, MC, CP, SC, MS
Dabrafenib mesylate 1.5; 2.2; 6.6 [47] 1.0; 4–8 X (VSS); X (PI) [47] C MC, MS, SC
Trametinib FB.DMSO 0.3 [167] 1.2; 6.8 0.0004; 0.011m [51] T MC, MN, H, CS, MS, SLS, SC
Ceritinib FB 4.1; 9.7 [168] 1.0; 6.8 11m; 0.2 ∗ 10−3 [57] C MC, HPC, SSG, MS, SC
Alectinib hydrochloride 7.1 [169] 1.0; 6.8 0.0013; 0.0279m [60] C L, HPC, SLS, MS, CMC
Cobimetinib fumarate 8.9 [170] 1.0; 6.8 48.21m; 0.78 [64] T L, MC, CS, MS
Osimertinib mesylate 4.4; 9.5 [171] 1.2; 4.5 N3; N11m [68] T MN, H, SSF
Lenvatinib mesylate 5.1 [72] b3.0; 3–7 X (VSS); b 0.096 [71] C MN, MC, CC, H, TC
Vemurafenib MPBb 7.9; 11.1 [62] 1.0; 6.8 b0.3 ∗ 10−3; 0.5 ∗ 10-3m [62] T Solid solution
Regorafenib FB X X X T Solid dispersion
Nintedanib esilate 5.6; 9.4 [172] 1.0; ≥ 6.8 5m; 0.011 [55] C Lipophilic suspension

a FB = Free Base.
b MPB = MicroPrecipitated Bulk; M = reported maximum solubility; w = in water, pH not specified; x = value not reported; () = description given; VSS, Very slightly soluble; PI,

practically insoluble; T, Tablet; C, Capsule; L, lactose;MC;Microcrystalline cellulose; CS, Crosscarmellose sodium; P, Povidone; SLS, Sodium Lauryl Sulphate;MS,Magnesium stearate; SSG.
Sodium starch glycolate; H, Hypromellose; HPC, hydroxypropylcellulose; MN, Mannitol; CP, Crospovidone; PX, Poloxamer 188; SC, Silica colloidalis anhydrica; CHP, Calcium hydrogen
phosphate; DCP, Dibasic calcium phosphate; SA, Stearic acid; CMC, Carboxymethylcellulose calcium; SSF, Sodium stearyl fumarate; CC, calcium carbonate; TC, Talc.
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Eq. (1) clearly expresses the role of solid state crystallinity in a
compound's solubility through the heat of fusion and the melting
point of the drugs. The heat of fusion is the heat necessary to transform
a compound from its solid to its liquid state at itsmelting point. Both the
melting point and the heat of fusion are measures of the bond strength
in the drug crystal. Stronger bonds betweenmolecules in a crystal struc-
ture will increase both parameters and subsequently lower solubility
[138]. The solubility parameters in Eq. (1) denote the significance of
the molecular structure and the resulting intermolecular cohesive
forces in drug and solvent in the solubility end term. The parameters
are descriptors of the interaction between molecules of the drug and
the solvent. If such interactions are alike in the separate drug and sol-
vent, a drug is more likely to be soluble in that particular solvent
[139]. The last term in Eq. (1) is low in such a case and the resulting sol-
ubility is relatively high.

In a physiological environment, a pharmaceutical solution may be
regarded as dilute with a near-to-constant temperature [140,141]. In
that situation, themolar volume approaches unity and the volume frac-
tion may be disregarded [137]. This allows for the following simplifica-
tion to a qualitative equation:

− logX≈ΔHf
T0−T
T0T

� �
þ δ1−δ2ð Þ2 ð2Þ

Eq. (2) shows that a low heat of fusion and melting point are bene-
ficial to a compound's solubility [142,143]. Additionally, the solubility
of a drug can be further increased by creating more similarity between
the solubility parameters of the drug and the solvent [144,145].

4.1. 4.1. Commercial physical mixture formulations

The commercial immediate release formulations of the smKIs are al-
most all designed as physicalmixtures. They contain a crystal solid form.
Since crystallinity is a strong determinant of solubility, the heat of fusion
and themelting temperature of crystal polymorphs are closely correlat-
ed with it. Although not known for all compounds, the melting points
are relatively high [26,36,62,146,147]. Furthermore, the difference be-
tween the solubility parameters of the drugs and the physiological sol-
vent is expected to be, based on structure, relatively large [148–150].
The outcome is a very poor solubility, as is presented in Table 3. The ex-
cipients present in the physical mixtures, such as polymers and surfac-
tants, may have some influence on the composition of the physiological
solvent in the direct environment of the dissolving drug. Thismay lower
the difference in the last term of Eq. (2). In time this effect dissipates due
to diffusion of both compounds and the drug will recrystallize [151].
Table 3 lists the excipients present in the commercial formulations. As
far as could be assessed, most manufacturing processes entail dry or
wet mixing of the formulation ingredients and optimization of the
drug particle size [152]. The latter only increases dissolution speed as
it does not alter the resultant solubility through any terms in Eq. (2).
The accessibility of solubility data and dissolution curves is limited in lit-
erature and patents, so the effect of the formulation on the smKIs disso-
lution performance is largely unknown in the public domains. The
proposed dissolution methods by the FDA for bioequivalence testing
of smKI formulations offer clarification to some extent however [153].
The dissolution media are all more voluminous than the stomach. In
many cases the pH is adjusted to highly acidic conditions. And for
some drugs surfactants are added. Although these methods are de-
signed for quality control purposes, they provide further evidence of
poor drug solubility. The non-bioequivalent dissolution media are de-
signed to enable appropriate drug solubility (N85%) for the comparison
of individual drug product batches [153]. When acidification and addi-
tion of surfactants to themedia are needed to achieve this, drug solubil-
ity in bioequivalent media is likely to be significantly low. The
formulation of lenvatinib is an exceptional case because it was designed
with special focus on its stability. Lenvatinib has the tendency to gelate



123M. Herbrink et al. / Journal of Controlled Release 239 (2016) 118–127
and decompose under humid and heated storage conditions, unlike the
other smKIs. Calcium carbonate and mannitol were chosen as filler/
disintegrant and diluent to keep the overall hygroscopicity of the for-
mulation low. This combination of the carrier and the hypromellose
capsule make water uptake by the formulation unlikely and thus pre-
vents gelation and hydrolytic degradation, both of which are detrimen-
tal to the bioavailability [71,154]. This capsule, which is additionally
kept in a protective blister, can be stored at room temperature and hu-
midity [71].

4.2. Alternative formulations

Changing the solid state of the drugmay radically alter the first term
in Eq. (2).When amove ismade from the highly structured crystal form
to the less rigid amorphous form the solubility can increase. This is due
to the fact that amorphous materials have a melting range instead of a
melting point and lack a definite heat of fusion [173]. Amorphous
forms of drugs may be prepared in various ways by incorporating
them in a polymer matrix in order to retain their amorphous state
[174,175]. Such a system is termed a solid dispersion [176]. The com-
mercial formulations of Vemurafenib and Regorafenib (4.2.1. and
4.2.2.) are designed like this. Additional advantages of a solid dispersion
are particle size reduction, increased wettability, reduced aggregation
and agglomeration and a decrease in the difference in solubility param-
eters through the polymer changing the physiological solvent. All these
factors combined may increase the solubility long enough to improve
drug absorption.

During clinical studies of three smKIs it became apparent that a sim-
ple physical mixture did not suffice in creating an adequate plasma
level. These cases are discussed below.

4.2.1. Vemurafenib
Crystalline free base vemurafenib is known to exist in several poly-

morphs and solvates [61,62]. The most thermodynamically stable
form II is practically insoluble in water with pH-values ranging from
1.1 to 9. The first clinical study with Vemurafenib was performed with
themore soluble crystalline form I in a micronized capsule formulation.
Form I transformed to form II over time and the observed bioavailability
was low [61,62]. Shah et al. describes the development of the amor-
phous Vemurafenib formulation that is now used in the marketed
Zelboraf® [177]. The amorphous solid dispersionwas prepared by a sol-
vent-controlled coprecipitation process as a so-calledmicroprecipitated
bulk powder. The amorphous Vemurafenib is herein stabilized by a
hypromellose acetate succinate matrix to prevent crystallization [178].
Compared to the crystalline formulation, the solid dispersion demon-
strated a significantly improved solubility and a five-fold increase in
exposure.

4.2.2. Regorafenib
Regorafenib as a monohydrate salt is poorly soluble in water at

b0.1 mg/mL [179]. The possible consequences of the poor solubility
for the bioavailability were recognized early on in the formulation de-
velopment. Therefore, a series of physical mixtures and solid disper-
sions were tested. A solid dispersion of Regorafenib in PVP 25 with a
composition of 1:4 was chosen after in vitro dissolution screening and
the assessment of rat pharmacokinetics [180].

4.2.3. Nintedanib
The drug compound Nintedanib esilate is suspended in an oily base

in its commercial formulation. Nintedanib is suspended in a mixture of
medium-chain triglycerides (carrier) and hard fat (thickener) [181,
182]. A patent from 2009 describes the development of the formulation
[183]. It stated that hydrolytic degradation seems to be problematic for
the compound. In combination with the high drug load, a lipophilic car-
rier suspension in a hydrophilic capsule was deemed appropriate. The
formulation had a higher bioavailability than the tested hydrophilic
and lipophilic-surfactant systems in rats.

5. New formulations in literature and patents

Patents and exclusivities are still covering all of the smKIs, except for
Imatinib [184,185]. While registered and approved alternative formula-
tions are a long way off, there is a limited body of research published
and patented at the time of writing. This section will briefly discuss
the most frequently reported and patented oral formulation types.

5.1. Solid dispersions

Producing and characterizing the amorphous form of the smKIs is
described throughout the patent body. Using that amorphous form in
a pharmaceutical formulation is less frequently reported. This can be
due to a too unstable amorphous form, a non-superior solubility or sim-
ply because the terrain is still unexplored. Xspray microparticles is one
of the very few that give a description of the effect of amorphization
on the dissolution of some smKIs [186]. The inventors use supercritical
fluid precipitation to produce solid dispersions of Axitinib, Crizotinib,
Dasatinib, Erlotinib, Gefitinib, Lapatinib, Nilotinib, Pazopanib, Sorafenib
and Vemurafenib with different polymers. The patent presents a signif-
icant solubilization of the investigated compounds by the incorporation
into polymeric matrices. Godugu et al. describe a spray dried solid dis-
persion of Gefitinib that yields a 9-fold increase in rat AUC compared
to free base Gefitinib [187]. The group of Truong found that a spray
dried formulation of amorphous Sorafenib, a graft polymer and SLS in-
creased the AUC by 1.8-fold in rats [188]. Nanologica patented a
nanoporous formulation with loaded amorphous Dasatinib [189]. They
report no dissolution data, but state that more Dasatinib is released in
Simulated Intestinal Fluid from their formulation than form crystalline
drug. Song et al. prepared various solid dispersion of Lapatinib and
showed an increased solubility of the products in water with 0.2% SDS
[190]. Unsolvated Trametinib in a spray dried formulation had better
dissolution characteristics than the commercial formulation, as patent-
ed by Ratiopharm GmBH [191].

5.2. Crystalline stabilization

A small number of patents describe improved dissolution character-
istics for set of smKIs by using excipients that stabilize crystalline poly-
morphs as solids or as solutes. Stabilization of an unstable, more soluble
polymorph of Erlotinib hydrochloride with a hydrophilic polymer can
lead to better dissolution profiles. This was shown by Synthon BV
[192]. Liu et al. found that the solubility of Sorafenib can bemarkedly in-
creased by formulating it with Polyvinylpyrrolidone vinyl acetate copol-
ymer (PVP-VA). The drug-polymer interaction in solution provides a
supersaturated state that nearly doubles the AUC in beagle dogs [193].
The development of sustained release dosage forms of the relatively sol-
uble Tofacitinib citrate was carried out by Pfizer [194]. This maywell be
an example of the development route of smKIs once the solubility issues
are under control.

5.3. Cocrystals

A cocrystal is defined as a homogenous crystalline material that is
made up of two or more molecules in definite stoichiometric amounts
held together by non-covalent forces [195]. The physicochemistry of
the so-called non-covalent derivative may be very different from a
drug salt form that is held together by ionic forces [196]. A patent filed
in 2015 showed an increase in solubility of Gefitinib in cocrystalline
form with certain carboxylic acids [197]. Basf Se prepared several
cocrystals of Dasatinib and showed that especially the combination
with methyl gallate increased the aqueous solubility to 42 μg/mL from
0.36 μg/mL of the dasatinib free base monohydrate [198]. The same
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was done for Nilotinib, which showed that the cocrystal with maleic
acid had an almost 6-fold increase in solubility compared to the hydro-
chloride form [199]. Neither of the two are backed up with bioavailabil-
ity data. Cocrystalline forms also improve dissolution of Lapatinib.
Fabbrica Italiana Sintetici shows that a cocrystal of Lapatinibwith Adipic
acid has a higher solubility than Lapatinib ditosylate. In rats, however,
this did not lead to an improvement of the bioavailability [200].

6. Discussion

The currently approved smKIs have important places in clinical prac-
tice for registered indications. A large fraction of these compounds is
under investigation for additional indications. The new and upcoming
smKIs target many of the same kinases and are designed in a similar
fashion as the already marketed ones. Their general physicochemical
properties might not differ significantly from those of the older smKIs.
A low and variable bioavailability is an enormous problem and may
also lead to additional expenses in the patient treatment. High drug
loading may be necessary to reach certain plasma levels for drugs with
a low bioavailability with due consequences. The narrow therapeutic
window of the drugs reflect in serious side effects and reduced activity
above and below certain plasma concentration thresholds, respectively
[17,201]. A variable bioavailability therefore often requires plasma levels
to bemonitored over a given time as part of a therapeutic drugmonitor-
ing (TDM) regimen which in part takes the advantages of oral therapy
away. This is illustrated by the necessity of dose adjustments of smKIs
in 25% of the patients treated with these drugs in our own institute.

Poor solubilitymay also pose a problem for smKIs that do not bind to
the active site of the kinase that they inhibit. Such smKIs can bind to a
regulatory site of a kinase, e.g. Rebastinib. The molecular structure of
Rebastinib contains similar groups as the presented smKIs in Table 2,
which are necessary for binding [202]. Solubility data of this drug is
not yet available in the public domain. However, based on its structure,
rebastinib is expected to be poorly soluble.

Plain and relatively uncomplicated formulations may be trouble-
some and can have very costly consequences during early clinical devel-
opment. The first clinical trial with vemurafenib is exemplary. During
this trial, it was discovered that the formulated crystal polymorph ex-
hibited a low bioavailability. A new formulation with amorphous
vemurafenib was produced and the clinical trials had to be repeated
[61]. Although such a case is probably an exception, it is worth noticing
that this might have been prevented.

With the incidence of cancer on the rise and the value of smKI ther-
apy thoroughly established, the challenges of further improving the
therapy are gaining value [203]. With a disease that has such significant
consequences for patients, therapeutic uncertainties are all the more
undesired. Predicting and addressing these uncertainties, preferably in
an early stage of development, seems more than appropriate. Simple
and straightforward formulations are surely preferred in terms of cost
effectiveness of development and ease-of-production. The experience
with the smKI group teaches themost valued lesson that overall cost ef-
fectiveness and the ease-of-treatment may not at all be benefitted by
such choices however. Speed and efficiency are becoming characteris-
tics of drug development [204]. The future challenges will therefore lie
in the implementation of thorough screening of formulations and dos-
age forms into the overall drug development process. To ensure efficien-
cy, a useful translation from in vitro dissolution data to the in vivo setting
is needed. As in vitro-in vivo predictability from simple dissolution set-
ups is often troublesome, the adoption of methods such as the gastroin-
testinal model TIM may prove to be valuable [205].

The solubility-induced variable bioavailability and the accompany-
ing risks and costsmay largely benefit from formulationswith improved
performance.While most patents and exclusivities are still pending and
new or bioequivalent formulations are not yet eligible for approval, for-
mulation research increasingly highlights the opportunities for im-
proved drug forms of approved and to-be-approved smKIs.
7. Conclusions

Due to the very distinct targeting of the smKIs, biocompatible
physicochemistry is driven to the edge. This places a strain upon bio-
availability and presents challenges to formulation scientists.

‘Classical’ physical mixtures may work to achieve a relatively high
bioavailability for some compounds, namely Imatinib, Ruxolitinib and
Dabrafenib. This is certainly not the case for themajority of smKIs how-
ever. Bearing patents and exclusivities inmind, the past experiences can
lead to new and innovative formulations that may provide further im-
provement of the efficacy of anti cancer treatment.
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