
PHYSICAL REVIEW A 94, 053840 (2016)

Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide
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We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-
dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering
of photons. We show that the spectrum of the transmitted light undergoes normal-mode splitting even though
no external cavity resonance is employed. By considering densities much higher than those encountered in cold
atom experiments, we study the influence of the near-field dipole coupling and disorder on the resulting complex
super-radiant and subradiant polaritonic states. In particular, we provide evidence for the longitudinal localization
of light in a one-dimensional open system and provide a polaritonic phase diagram. Our results motivate a number
of experiments, where new coherent superposition states of light and matter can be realized in the solid state.
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I. INTRODUCTION

The quest for understanding the interaction of light and
matter has been central to the development of modern physics.
Having started with ensembles of material particles and
classical light more than a century ago, it is now possible
to study the interaction of single photons and atoms. Here,
the most prominent investigations have been performed in
the strong-coupling regime of cavity quantum electrody-
namics [1], where the spectrum of the atom-cavity system
displays mode splitting as matter and light degrees of freedom
hybridize. A well-known classical analogy to this effect is the
splitting of normal modes in coupled harmonic oscillators [2].

Soon after the first reports of strong coupling, it was
noted that normal-mode splitting can also be observed for a
collective system, consisting of a quantum well embedded in a
microcavity [3]. While this polaritonic mode splitting was ob-
served at cryogenic temperatures, where dephasing is largely
suppressed, collective strong coupling was also demonstrated
in large ensembles of organic molecules coupled at room
temperature despite substantial spectral broadenings [4–6].
Interestingly, similar mode splitting has even been reported
for an ensemble of molecules coupled to surface plasmons
and attributed to oscillator coupling [2,7,8]. In this work,
we theoretically show that a propagating light field can also
undergo spectral splitting when traversing a one-dimensional
collection of quantum emitters, which provide feedback even
in the absence of a cavity structure. Furthermore, we study
the effects of disorder, density, dephasing, and mode coupling
efficiency.

Recently, we pointed out that efficient coupling of a
propagating photon to a single atom could be achieved by
matching the latter’s dipolar radiation mode, e.g., via tight
focusing [9,10]. An alternative approach is to modify the
atomic emission pattern by using planar antennas [11,12] or
subwavelength waveguides (nanoguide) as cylindrical anten-
nas [13–15]. The nanoguide configuration has the decisive
advantage in that it is possible to realize simultaneous coupling
to a large number of emitters since it maintains the strongly
confined mode over its entire length. The high versatility
of the concept has been proven in several experiments that

coupled light to single quantum dots [16–18], atoms [19–21],
color centers [22], molecules [15,23], and superconducting
qubits [24,25].

In the following, we show that this simple system is
very rich in physics and focus on two key findings: First,
multiple scattering can result in cavity-free polaritonic mode
splitting in ensembles [2,7] (Sec. III). Second, it leads to the
persistence of state localization [26–31] despite photon loss
to the three-dimensional environment (Sec. IV). The new
phenomena discussed in our work appear at high emitter
densities, which are not easily accessible to cold atoms but
feasible for emitters immersed in solid-state environments.
We provide a polaritonic phase diagram to elaborate on the
richness of the system and to make a link to other related
works in the literature on one-dimensional ensembles.

II. FORMALISM

Our theoretical formalism is based on the investigation of
light propagation through a large number (N ) of pointlike
two-level quantum emitters placed in a dielectric nanoguide
(see Fig. 1). To facilitate the discussion, we assign one emitter
to each site n of a regular lattice with spacing L along the
waveguide axis. We account for a general disordered system by
introducing a displacement |ln| � l for each site. All emitters
have the same resonance frequency and radial dipole moment
orientation and are characterized by the polarizability

α(�) ≈ 1

� − i�/2
, (1)

where � = ωA − ωL represents the detuning between the
frequencies of the emitter’s resonance (ωA) and the driving
field (ωL). The natural linewidth � = 2Im[G(0)] includes the
radiation reaction [32] in the nanoguide through the exact
dyadic Green’s function G(z) [33] (see Appendix A for
details). Note that despite the linear arrangement of emitters,
the system is intrinsically three dimensional and photons can
be lost. The emitter-nanoguide coupling is characterized by the
parameter β = �ng/(�ng + �out), where �ng and �out denote
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FIG. 1. Propagation of light through an ensemble of quantum
emitters inside a nanoguide. The emitters can be displaced within a
region ±l (blue shading) around a regular lattice of spacing L (gray
dots).

the single-emitter emission rates into the nanoguide mode and
the outside world, respectively.

In the waveguide, a single dipole dn generates a field
E

dip
n (z) = G(z − zn)dn [33] so that the dipole moment at each

site induced by an external field Eext(z) and by other sites is
given by [26,27]

dn = αn

⎡
⎣Eext(zn) +

∑
m�=n

Edip
m (zn)

⎤
⎦ =

∑
m

AmnE
ext
m . (2)

Equation (2) fully describes the multiply scattering system. A
acts as a collective polarizability and is obtained by the explicit
inversion of the non-Hermitian matrix

A−1
mn = δmn/αn − G(zn − zm)(1 − δmn). (3)

The real and imaginary parts of the complex eigenvalues
(δ − iγ /2) give the shift of the collective resonance from that
of the single emitter and its linewidth, respectively. The N -
component mode functions 	 = (d1,d2, . . . ,dN )/

√∑
n |dn|2

describe normalized self-sustained dipole moment distribu-
tions along the chain. For each collective (polariton) mode
function, the participation number p = ∑N

n=1 |	n|4 counts the
number of emitters 1 � p � N that contribute significantly,
quantifying the extension of the state [29].

III. CAVITY-FREE POLARITONIC SPLITTING

We now show that for large enough densities, the collective
coherent interaction of the emitters with the single guided
mode of the waveguide leads to the hybridization between the
ensemble and the nanoguide mode.

To start our case studies, let us consider only two emitters
placed in a waveguide at a separation much larger than
λ. These form the mirrors of an optical resonator, where
reflection is replaced by the scattering from an emitter into
the waveguide mode, which, due to the good mode matching,
can be highly efficient [13–15]. Unlike in a usual Fabry-Pérot
cavity, however, these mirrors interact with each other via
the single mode of the one-dimensional nanoguide if they are
close enough compared to the photon coherence length of
about c/� [34,35]. Here, the delocalized collective states give
rise to the mode functions 	1,2 = (1,±1)/

√
2, the collective

resonances are shifted with respect to the original resonances
by δ1,2 = � ± Re[G(z1 − z2)] ∝ β�, and their linewidths are
modified to γ1,2 = � ± Im[G(z1 − z2)] due to subradiant and
super-radiant decay. If near-field coupling is absent, splitting
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FIG. 2. (a) Absorption spectrum of an ordered chain of N =
1,2,5,10 emitters (dark to light hues) placed at separations L =
2.75λ in a nanoguide with β = 0.99. The signal is normalized
to the absorption signal by N uncoupled resonant emitters. For
N = 10, narrow peaks near � ≈ 0 arise from subradiant modes.
(b) Same as in (a) but for β = 0.56. (c) Same as in (a) but
for chains of N = 10,20,50,100 emitters and with an additional
homogeneous broadening of �deph = 10�0. (d) Density-dependent
splitting: absorbed power as a function of the frequency detuning
of the driving field and the number N of emitters. The nanoguide
(β = 0.56,l = 0) is now filled to a constant length of NL = 7.7λ by
a varying number of emitters. Homogeneous broadening is taken to
be 10�0. The white dotted curve plots the near-field shift, while the
black dashed curves trace the absorption maxima. (e), (f) Dispersion
relations obtained by plotting the absorbed power as a function of the
wavenumber q of the driving field and its detuning for a dense ordered
chain with L = 0.04λ and �deph = 10�0 for N = 200 (e) and N = 10
emitters (f). In the former case hybridized excitations approach the
dispersion relation of the nanoguide (solid black curve) and agree
with a mean-field model (dashed white curve, cf. Appendix B).

is thus limited to one linewidth, cf. Fig. 2(a) (cf. Appendix C
for details).

If we now insert N emitters, multiple scattering and the
resulting collective modes yield a larger frequency splitting,
which increases with N . Figure 2(a) illustrates the frequency-
dependent absorption of the system (∝ ∑

m Im[dmEext∗(zm)])
for N = 1,2,5,10 emitters spaced at L = 2.75λ in a nanoguide
with β = 0.99. These curves clearly show that one can
achieve significant normal-mode splitting from an ensemble
of emitters even if they are not coupled to any external
resonant structure such as a cavity. As it turns out, multiple
scattering between the emitters actually generates several
resonances, whose interferences create additional weaker
Fano-like resonances.

We identify the fundamental underlying mechanism in the
observed phenomenon to be the efficient coupling of all emit-
ters to a single spatial mode and, thus, their coherent interaction
with each other. To this end, one can also recognize the main
role of a microcavity [3,7] or surface plasmon [2,36,37] to
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be to offer a mode with high β = F/(F + 1) for efficient
multiple scattering from many emitters, where F is the Purcell
factor [38]. In this point of view one would expect a clear
dependence on the degree of coherence of the emitters’
transition and on the coupling efficiency β, i.e., the effect of
spatial mode matching and the leakage out of the nanoguide
mode. In Fig. 2(b), we plot the calculated absorption as in
Fig. 2(a) but for a reduced value of β = 0.56. It is clear that the
normal-mode splitting is substantially weakened. Similarly,
the smaller resonances are reduced to a background.

Another source of coherence loss is dephasing in the
condensed phase, which is particularly significant at room
temperature. As a basic model for dephasing, we allow
for additional homogeneous broadening beyond the natural
linewidth �0 = 2Im[G(0)], by introducing an additional rate
�deph = 10�0 in the polarizability. As displayed in Fig. 2(c),
the splitting is indeed washed out for N = 10. However, we see
that the loss of coherence can be compensated by increasing
the number of emitters. Here, it should be borne in mind
that due to the finite coherence length c/� of the emitted
photons, not only the total number N but also the density is
an important measure. Figure 2(d) shows that large frequency
splittings occur in the absorption spectrum of a nanoguide
when the density is increased over a fixed total length of 7.7λ.
The white dotted curve in this figure points out a general
shift ≈ − Re[G(L)] that accompanies the mode splitting and is
caused by near-field interactions among neighboring emitters.

A decisive indicator of the collective hybridization with
the nanoguide mode is a repulsive splitting in the disper-
sion relation [2]. Figure 2(e) shows the absorption of a
nanoguide containing N = 200 emitters driven by a field
Eext(z) = E0e

iqz as a function of the frequency detuning �

and wave number q. Experimentally this is feasible, e.g., in
a Kretschmann configuration. Although we have assumed a
sizable dephasing of �deph = 10�0, one clearly observes a
splitting of the absorption maximum into two branches along
the dispersion curve k(�) of the empty waveguide. We note in
passing that the frequency dependence of the latter is negligible
since ωA/�0 ≈ 106. To illustrate the importance of the density,
in Fig. 2(f), we show the same calculation for N = 10. In
this case, there is no clear avoided crossing, but several weak
maxima arise at various q values.

In our approach, splitting arises from a microscopic de-
scription of scattering in the medium. When cavity-free mode
splitting was reported for an ensemble of molecules coupled to
surface plasmons [8], the collection of emitters was modeled
with an effective polarizability [2]. The two approaches can be
reconciled when multiple scattering is not prevalent and can
be described as a mean-field effect (Appendix B). This and all
results of this section remain qualitatively valid in moderately
disordered samples as the relatively high value of �deph reduces
the impact of multiple coherent scattering.

IV. COLLECTIVE STATES, MULTIPLE SCATTERING,
AND A PHASE DIAGRAM

We now elaborate on the rich character of the polaritonic
states, their effects on the propagation of light, the role of
disorder [39], and near-field couplings. These result in Bragg
reflection, longitudinal state localization, and its eventual

collapse to two-body resonances. These effects are summa-
rized in a polaritonic phase diagram.

To set the ground, we first consider ordered chains
(l = 0) with large spacings L > λ, where near-field effects are
negligible and �deph � �. Here, interactions are mediated by
the guided mode with wave number k = 2π/λ and G(z) ≈
iβIm[G(0)]eik|z| [40,41] and multiple coherent scattering
affects the system properties. For even N and Bragg or
anti-Bragg conditions (odd or even 2L/λ ∈ N, respectively),
A−1 can be exactly diagonalized by a Fourier ansatz (cf.
Appendix D). One of the resulting eigenstates is super-radiant
with the linewidth

γ+ = [1 + β(N − 1)]� (4)

and a mode function 	 = (1,1, . . . )/
√

N (even 2L/λ) or
	 = (1,−1, . . . )/

√
N (odd 2L/λ) that is perfectly matched

to the waveguide mode. Scattering from this state alone
yields efficient reflection and ohmic transmission T ∝ N−2

as N → ∞, in agreement with previous results [42], and
can be understood as coherent extinction by a collective
superdipole. The remaining N − 1 eigenstates are degenerate
and subradiant with

γ− = (1 − β)�. (5)

Their mode functions are periodic but do not match the guided
mode and cannot be excited through the nanoguide. Since the
N states provide a complete basis, we make the important
observation that γ− and γ+ describe general bounds for the
decay rates in far-field coupled chains independent of the exact
arrangement.

At different periodicities, extended Bloch-like states arise.
Figure 3(a) shows the squared amplitude of exemplary
extended mode function (p = 142) in a lattice of N = 250
emitters with L = 2.75λ and low β value of 0.4. In Fig. 3(b),
we identify the complex eigenvalues of the emitters on the real
(frequency shift) and imaginary (linewidth) axes, revealing a
band gap around the single-emitter resonance (δ = 0). We see
that subradiant extended modes with decay rates γ− � γ < �

gather at the band edges and that all collective modes involve
a large number of emitters (p ≈ 100, . . . ,200) as indicated
by the color-coded participation number assigned to each
resonance.

The more general case of a dielectric medium involves
an intrinsic degree of disorder [29,43]. Therefore, we now set
l = λ/2 to provide full phase randomization while considering
a chain of lattice spacing L = 2.75λ and β = 0.4 as before.
In Fig. 3(c) we present two examples of the resulting mode
functions. The light (blue) curve displays a super-radiant mode
that preserves the extended nature of its ordered counterpart in
Fig. 3(a), while the dark (purple) curve shows the characteristic
exponential envelope of a localized state. In Fig. 3(d) we plot
the complex eigenvalues of the various modes and show that
the localized states with p � N gather in the subradiant sector,
while the decay rates remain confined between γ±. We note
that subradiant states move into and eventually close the band
gap as l increases, but—being subradiant, i.e., dark—they do
not significantly modify the optical response in the band gap
region. In fact, the poor spatial match of exponentially confined
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FIG. 3. Chains of N = 250 emitters coupled to a nanoguide at low β = 0.4. (a), (b) Ordered chain with L = 2.75λ,l = 0. (c), (d)
Disordered dilute chain with L = 2.75λ,l = λ/2. (e), (f) Disordered dense chain with L = λ/2π,l = 0.49L. The color coding gives the
participation number of the respective mode function. (a) Exemplary mode function of an extended state. (b) The 250 eigenvalues forming the
polariton spectrum plotted as a function of their real (δ; horizontal) and imaginary (γ ; vertical) parts. The marked extended state corresponds
to the mode function in (a). (c) Exemplary mode functions of an extended state (light blue) and a localized state (dark purple). The black
dashed curve shows an exponential envelope for comparison. The corresponding states are marked by the circles in (d). (d) gives the polariton
eigenvalues with subradiant localized states (γ < �,p � N ) filling the band gap. (e) Exemplary mode function of a two-body resonance,
corresponding to the state marked in (f). (f) Polariton eigenvalue spectrum. The green curve displays the eigenvalues of a pair states (p = 2)
on a minimal chain of N = 2 emitters placed at different distances.

modes to the nanoguide mode provides only little scattering,
mainly out of the guide.

The combination of subradiance, reduced participation
number, and exponential mode envelopes reported above
clearly indicate that longitudinally localized polaritons persist
for open systems with β < 1. This finding was, to our
knowledge, not communicated previously. Furthermore, the
existence of a lower bound γ− to the linewidth according
to Eq. (5) [cf. Fig. 3(d)] suggests that transverse loss to
the three-dimensional (3D) continuum limits the polariton
lifetime regardless of the number of scatterers. As a result,
the system is not in the regime of Anderson localization in
the strict sense because the Thouless criterion [44], which
predicts ever stronger spectral line narrowing as the particle
number N increases, remains indecisive unless β → 1. This
situation differs fundamentally from the 3D arrangements of
emitters where a phase transition may occur [45,46] and also
from lossless true 1D systems, which always show Anderson
localization [44].

We have seen that losses can be compensated by increasing
the number of emitters within the coherence length c/�.
However, at very high densities (L � λ) and/or strong disorder
(L − l � λ), neighboring emitters are coupled by a near-
field potential G(z) ∝ −1/z3 [46–48]. Here, next-neighbor
interactions dominate over the nanoguide-mediated coupling
to other emitters, leading to the fractionalization of the
medium into independent chainlets of neighboring pairs even
at moderate disorder, with properties resembling the initial
example in Sec. III (see also Appendix C). Figure 3(e) displays
the pair character of the eigenstates in an exemplary mode
function for a chain of N = 250, L = λ/2π , and l = 0.49L. In
this regime, the general limit γ− � γ � γ+ no longer applies,
and the polariton spectrum shows a significant number of
strongly subradiant states with decay rates that are several
orders of magnitude below γ− [see Fig. 3(f)]. These sharp
resonances generate distinct features in the optical response.

The dominant (purple) hues in Fig. 3(f) show that nearly all
polariton modes are strongly confined to p < 20 emitters. In
fact, the participation number distribution strongly peaks at
p = 2, and the states gather near the green curve obtained for a
chain of N = 2 emitters placed at different spatial separations.
While G(z) can acquire any complex phase in the guided far
field, Im[G(z)] ≈ �0/2 in the near field so that for each pair
of emitters the sub- and super-radiant states with frequency
shifts δ1,2 and line widths γ1,2 are red- and blue-detuned,
respectively [46,47]. This leads to the strongly asymmetric
shape of the spectrum in the complex plane.

We present a polaritonic phase diagram in Fig. 4: as the
lattice spacing L and disorder amplitude l are varied, the
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FIG. 4. Polariton phase diagram obtained from the average
participation number p as a function of lattice constant L and disorder
amplitude l for a chain of N = 100 emitters in a nanoguide (β = 0.4,
averaged over 10 realizations). Near field coupling can affect next
neighbors above the (red) dashed curve. Below the (blue) dash-dotted
curve, phase randomization leads to a universal behavior. The (green)
arrows indicate the first Bragg resonances. To indicate the regions
ruled by extended states and two-body resonances, respectively, the
contours p = 50 and p = 2.5 provide guides to the eye.
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color coding gives the participation number p per eigenstate
of a chain of N = 100 emitters, averaged over all eigenstates
and several realizations. For ordered systems, the light (blue)
hues indicate extended states. Among these, Bragg resonances
(green arrows) appear as local dips because only the bright
state is optically active. Extended states are rapidly suppressed
by disorder at the onset of near-field coupling between
next neighbors (|L − l| < λ) above the dashed (red) curve.
As the disorder amplitude increases, a crossover leads to
longitudinally localized states (purple regions). Full phase
randomization is reached below the dot-dashed (blue) curve.
The intersection of both curves opens a regime of universal
behavior, independent of the disorder model, L, and l. As
expected, localized states become unstable at high density and
disorder where the value p ≈ 2 indicates a collapse of nearly
all states to two-body resonances (dark purple region).

V. DISCUSSION

In the past few years, a new experimental light-matter
platform has emerged, where a single mode of a subwavelength
waveguide (nanoguide) is coupled to various materials, rang-
ing from gas-phase atoms [19–21], semiconductor quantum
dots [16–18,49], molecules [15], and even superconducting
qubits [24,25]. The efficient coupling of the individual quan-
tum emitters to the optical mode of the nanoguide and the
ability to register the positions and transition frequencies of
the individual emitters with very high spatial and spectral
resolution make nanoguides ideally suited for investigating
fundamental features of light propagation in dielectric media.
On the theoretical side, these systems have been studied in the
context of Bragg cavities [42], coupling of two atoms via a pho-
tonic channel [40] or realization of photon-photon interactions
via an atom [42,50]. These features promote nanoguides as a
very promising avenue for exploring polaritonic physics [7],
light localization [31], and related phenomena [51] in a
compact and scalable fashion.

Our analysis shows that nanoguide-mediated multiple scat-
tering among emitters can give rise to normal-mode splitting
even without a cavity or a plasmonic structure. The key
parameters for this phenomenon are the spatial mode coupling
efficiency β and the spectral bandwidth, which determine
the coupling between the emitters and a photon. As in the
case of the microcavity-based mode splittings [2], however,
shortcomings in these quantities can be compensated by
increasing the number of emitters within a photon coherence
length.

We remark that the effects reported in this work cannot
be achieved in an open three-dimensional (bulk) ensemble
because of the poor mode matching between the scattering and
the incident field. We have also shown that each realization of
an ensemble of emitters may contain many spectral features
that arise from near-field dipole-dipole interactions or from
state localization caused by disorder. Interestingly, these
persist even in the presence of photon loss from the nanoguide.
Moreover, the most super-radiant states, which determine the
optical response of the nanoguide and the spectral mode
splitting, are robust to moderate disorder. A phase diagram
summarizes different regimes and captures the impact of
density and disorder on the polaritonic state properties.

By not invoking a quantum optical treatment, we have
aimed to emphasize the central role of the spatial mode
matching for achieving collective many-body states. However,
our semiclassical approach captures well the essence of a
quantum-optical master equation at weak driving fields and
can be readily extended to multilevel emitters [52] by using
a modified polarizability. Furthermore, the model can be
extended to account for more complex waveguide polarization
modes, angular momentum states, and their impact on the
propagation [53]. Moreover, it is possible to include different
models of disorder [29] with contributions of clusters beyond
pairs and excluded volumes [54]. Similarly, one might also ac-
count for inhomogeneous spectral distributions, as commonly
encountered in solid-state systems, or advanced models of
dephasing.
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APPENDIX A: SCATTERERS AND NANOGUIDES

1. Scatterers

For the numerical simulations the system exposed in Sec. II
was taken to be a cylindrical nanoguide that contains two-level
emitters with transitions at 760 nm and a natural linewidth of
�0 = 400 MHz, inspired by well-aligned molecular emitters in
solid-state environments [15,55]. Imposing modified atomic
units, the transition dipole matrix element is |μ| = � = 1,
and the polarizability in the near-resonant approximation is
α(�) = 1

�−i�/2 , with � = �0 + �deph. Dephasing at a rate
�deph is only included when explicitly mentioned.

2. Green’s function

The dielectric cylindrical nanoguide was taken to have
radius R = 160, . . . ,215 nm and refractive index n = 1.5
surrounded by vacuum. Modeling of the photon propagation
requires the solution of the full 3D-electromagnetic boundary-
value problem. However, near the cylinder axis, only radial
dipoles couple efficiently to guided photons, motivating the
projection of all dipoles, polarizabilities, fields, etc. on the
radial axis, resulting in scalar equations. The radially projected
dyadic Green’s function in the cylinder describes the radial
field generated by a radial dipole dn placed on the axis in zn,

Edip
n (z) = G(z − zn)dn. (A1)

It is expressed in the scattering decomposition G(z) =
G(free)(z) + G(sc)(z), where the free contribution

G(free)(z) = − eiκz

4πκ2z3
(1 − iκz + κ2z2) (A2)

describes the field distribution in free space that dominates
in the near field. Scattering off the cylinder walls provides
a contribution that includes the impact of guided modes and
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dominates at large distances. For radially aligned emitters on
the axis the well-known decomposition [33,41] simplifies to

G(sc)(z) = i

∫
dh

16π
eihz

[
rMM − 2ih

k2
rMN + h2

k2
2

rNN

]
. (A3)

Here, κ1 = ω/c and κ2 = nω/c denote the propagation
constant in vacuum or the fiber medium, respectively, and
we introduced reflection coefficients

rα = −H
(1)
1 (x2)

J1(x2)

A + Bα

A + C
(A4)

with

A = −(Rω/c)2(hR)2(1 − n2)2/
(
x2

1x2
2

)
,

C = [h̃(x1)x2 − j̃ (x2)x1][h̃(x1)x2 − n2j̃ (x2)x1],

BMM = [h̃(x1)x2 − h̃(x2)x1][h̃(x1)x2 − n2j̃ (x2)x1],

BNN = [h̃(x1)x2 − j̃ (x2)x1][h̃(x1)x2 − n2h̃(x2)x1],

BMN = −A + i(R2hκ2)(n2 − 1)[h̃(x2) − j̃ (x2)]. (A5)

Here, xi = R
√

κ2
i − h2 , h̃(x) = d

dx
ln H

(1)
1 (x), and j̃ (x) =

d
dx

ln J (1)(x). J (1)(x) and H
(1)
1 (x) denote the Bessel function

and the Hankel function of the first kind. The integral is
evaluated numerically.

3. Single-mode regime

In the single-mode regime, the guided mode contribution
with wave number k = neffω/c can be extracted from the
resonances of the scattered term G(sc) and yield the asymptotic

far-field [40,41]

G(z) ≈ iβIm[G(0)] exp(ik|z|). (A6)

The amplitude was expressed in terms of the local-field cor-
rected single-emitter linewidth �0 = 2Im[G(0)], and includes
the radiation reaction [32] in the nanoguide environment.
For the above parameters, the coupling efficiency of a single
emitter to the guided mode is β = limz→∞ |G(z)|/Im[G(0)] ≈
0.4, . . . ,0.56. Different choices of the radius or material,
e.g., IR-emitters inside a semiconductor cylinder (GaAs,
R = 140 nm, transition at 1.2 μm) may reach β > 0.9 [56].
Note that over the relevant narrow frequency band of a few
hundred �0, waveguide dispersion is negligible, as can be seen
by the vertical black curve in Figs. 2(e) and 2(f).

APPENDIX B: MEAN-FIELD APPROXIMATION

In long dense chains (kL � 1 � NkL), a mean-field
treatment following the approach of Ref. [57] can give a good
understanding of the physics, especially when dephasing limits
the impact of coherent multiple scattering. We rewrite Eq. (2)
of the main text for the fields, assuming a homogeneous dipole
line density ρ(z) = N/Z over the system length Z = NL

E(z) = E0(z) +
∫ Z

0
dz′αρ(z′)G(z − z′)E(z′). (B1)

Since most of the emitters are coupled via the far field, we
neglect near fields and use Eq. (A6). The good agreement
with the numerical results justifies a posteriori the assumption
that nearby emitters mainly induce a global frequency shift.
Replacing the total field by a mean-field Etot(z) = E+eiqz +
E−e−iqz, the integrals can be performed, considering the
discontinuity of G at z = z′

E+eiqz + E−e−iqz = E0e
ikz + Nβ

Z
αIm[G(0)]

[
−eiqz

(
E+

k − q
+ E+

q + k

)
− e−iqz

(
E−

k − q
+ E−

k + q

)

+ e−ikz

(
E+ei(k+q)Z

k + q
+ E−ei(k−q)Z

k − q

)
+ eikz

(
E−

k + q
+ E+

k − q

)]
. (B2)

For self-consistency, the coefficients for each exponential must
balance. Importantly, for e±iqz we have

1 + Nβ

Z
αIm[G(0)]

(
1

k − q
+ 1

k + q

)
= 0, (B3)

from which we obtain the effective wave number in the filled
waveguide

q2 = k2 + 2k
Nβ

Z
αIm[G(0)]. (B4)

For the case of Fig. 2(e), the resulting dispersion relation
is given by the white dashed curve, taking into account
the background shift. Finally, we define a dressed effective
mode index ñ = qc/ω = neffq/k that fulfills a generalized
Clausius-Mossotti relation [57] when expanded at lowest order
in α

ñ − 1

ñ + 2
≈ 2α

3k

N

Z
βIm[G(0)] = α̃

3ε0

1

LAeffneff
. (B5)

To obtain the second form, we use

βIm[G(0)] = �0/�bulkIm[Gbulk(0)] ≈ ω/c

2ε0Aeff
(B6)

with the effective area Aeff = vgn
2

c

∫
d2 rε(r)|Emode(r)|2
ε(0)|Emode(0)|2 , the trans-

verse field distribution of the mode Emode(r), and its group
velocity vg [58]. This underlines that the density needs to be
averaged over the mode volume rather than the geometric
cylinder. Note that at this order, terms related to a local
exclusion volume [57] can be neglected.

APPENDIX C: TWO-BODY RESONANCES

The dark and bright resonances of two-coupled emitters are
obtained by direct diagonalization of the matrix A−1 in Eq. (3)
for N = 2, yielding

δ
(2)
± − iγ

(2)
± /2 = � − [i�/2 ± G(�z,ω)]. (C1)
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Varying the emitter distance 0 < �z < ∞, these eigenvalues
cover the green curve in the complex plane in Fig. 3(f). At large
separations, when the interaction is mediated by the waveguide
mode alone, Eq. (A6) limits the amplitude |G| = β�0/2 and
thus bounds both the mode splitting and the line widths.

In the case of near-field coupling, the waveguide mode
Eext(zn) ≈ E0 can only drive the symmetric eigenstate 	+,
inducing dipoles

dn =
2∑

m=1

AnmEm = 2E0

� − i�/2 − G(�z)
. (C2)

We find the pair-transmission amplitude

T2 =
∣∣∣∣1 + 2iβ�/2

� − i�/2 − G(�z)

∣∣∣∣
2

= |1 − r|2. (C3)

The eigenvectors are 	
(2)
± = (±1,1)/

√
2. On the bright reso-

nance (� − Re[G(�z)] ≈ 0) and in near-field coupling regime
(Im[G(�z)] ≈ �/2), T2 = (1 − β)2 becomes identical to the
one of a single resonant emitter. Besides, the form of the
two-body potential induces a correlation between line shift
and linewidth: bright states are blue-shifted (−� = δ > 0)
with respect to the single resonance, and only these can
provide significant extinction. From Eq. (C3) it is clear that
the scattering is reduced and r → 0 for red-shifted detuning
(−� < 0).

In large ensembles, the states of a chain of N = 2
can nonetheless provide an excellent understanding of the
underlying physics: this is the case, when in the regime of
disordered near-field coupled chains, where the interaction
to one closest neighbor dominates for each emitter. In this
case, A−1 approximately factorizes into a product of 2 × 2
matrices, which may be diagonalized individually so that each
pair submatrix gives rise to one pair of dark and bright states.
Similar states have been encountered in 3D ensembles of
many emitters [46,47] but have more drastic impacts on linear
arrangements.

APPENDIX D: BRAGG RESONANCES AND LINEWIDTH
LIMITS

We outline the calculation of the collective modes on a
Bragg resonance kL/π ∈ N and assume even N . The latter
restriction has, however, little impact at the large N and finite
β < 1 considered here. In the far-field approximation,

A−1
mn ≈ δmn

αn

− iβ
�

2
Im[G(0)]eikL|m−n|(1 − δmn), (D1)

which is a circulant matrix [59] and can be diagonalized by
Fourier transformation. The eigenvalues are

δm − i
γm

2
≈ 1

α
− iβ

�

2

e−i(2πm/N−kL)(N−1) − 1

1 − ei(πm/N−kL)
. (D2)

For even (odd) values of kL/π a pole is encountered at
m = 0 (m = N/2). L’Hôpital’s rule then provides a single
super-radiant (bright) state, while the other N − 1 states are
degenerate and subradiant (dark):

δm − i
γm

2
= 1

α
− iβ

�

2
×

{−1 dark
N − 1 bright . (D3)

This agrees with a recent discussion that assumed β = 1 [60].
The mode functions are (1 � j � N )

ψm,j ≈ e−2πim(j−1)/N/
√

N. (D4)

Only the single bright mode 	+ = (1,±1,1,±1, . . . )/
√

N

matches the periodicity of the guided mode [Eext(zn) =
E0e

ikzn = E0	+,n], whereas the other modes have zero mode
overlap. To find the scattering matrix element, we neglect the
dark modes by projecting onto 	+, so that

A−1 ≈ � − i
�

2
[1 + β(N − 1)]	+ ⊗ 	+. (D5)

In the collective basis, the inversion is obvious. Far from the
source region Eq. (A6) applies and

Etot(z) = Eext(z) +
∑
n,m

G(z − zn)AnmEext(zm) (D6)

= E0e
ikz +

∑
n

iβ �
2 eik|z−zn|

� − i[1 + β(N − 1)]�/2
. (D7)

In the forward direction (z 
 zN > 0,zn = 2πkL), we recover
the transmitted power fraction [42]

T = |Etot|2
|E0|2 =

∣∣∣∣1 + iNβ�/2

� − i[1 + β(N − 1)]�/2

∣∣∣∣
2

. (D8)

At the single-body resonance � = 0 we find T = |1 − r|2,
R = |r|2, L = 1 − R − T , r = Nβ/[Nβ + (1 − β)]. Equa-
tion (D6) can be solved numerically away from the Bragg
resonance condition.

Section IV shows that the values γ± from Eq. (D3)
apply, as long as Eq. (D1) holds. For γ+, this follows also
from the matrix norm (operator norm) ||A−1|| = max{|ε −
iγ /2|}) ≡ maxn {∑N

m=1 |A−1
nm|}. The off-diagonal entries have

an amplitude β, so that the norm suggests an extreme eigen-
value ||A−1(� = 0)|| = [(N − 1)β + 1]�/2 = γ+/2, exactly
realized by the bright state at a Bragg resonance and confirming
its universal character.
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