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Abstract The cryogenic temperatures at which dynamic

nuclear polarization (DNP) solid-state NMR experiments

need to be carried out cause line-broadening, an effect that

is especially detrimental for crowded protein spectra. By

increasing the magnetic field strength from 600 to

800 MHz, the resolution of DNP spectra of type III

secretion needles (T3SS) could be improved by 22 %,

indicating that inhomogeneous broadening is not the

dominant effect that limits the resolution of T3SS needles

under DNP conditions. The outstanding spectral resolution

of this system under DNP conditions can be attributed to its

low overall flexibility.
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To overcome the inherent insensitivity of NMR in the solid

state by hyperpolarization, dynamic nuclear polarization

(DNP) has become the most promising approach to date

(Barnes et al. 2008; Lee et al. 2015). It has been shown that

DNP can drastically increase the sensitivity in solid-state

NMR (ssNMR) experiments (Ni et al. 2013; Sauvee et al.

2013; Song et al. 2006) and it has been successfully applied

to several biological systems (Becker-Baldus et al. 2015;

Debelouchina et al. 2013; Fricke et al. 2015; Gupta et al.

2016; Kaplan et al. 2015; Koers et al. 2014; Potapov et al.

2015). Unfortunately, those experiments need to be carried

out at cryogenic temperatures as the enhancement factor

decreases with increasing temperature (Rosay et al. 2010;

Sauvee et al. 2013; Zagdoun et al. 2013). At ambient

temperatures, at which standard protein ssNMR experi-

ments are conducted, the enhancement is negligible.

At usual DNP temperatures (*100 K) different con-

formations of the protein are frozen out. This aspect can

result in severe line-broadening due to the overlapping

peaks of the individual conformers which exhibit different

chemical shifts (inhomogeneous line-broadening) (Linden

et al. 2011; Siemer et al. 2012). Indeed, previous work has

found a remarkable correlation between experimentally

observed 13Ca line-width and protein backbone fluctuations

as predicted from molecular dynamics (MD) simulations

(Koers et al. 2014). Additionally, there is homogeneous

line-broadening, which, for example, is caused by the

proximity of the biradicals (Koers et al. 2014; van der

Cruijsen et al. 2015). In the crowded NMR spectra of

proteins (Shi et al. 2015), these effects are highly undesired

and make the analysis of such spectra extremely difficult.

Furthermore, broad lines lead to a loss of sensitivity, as the

signal intensity at a given peak volume reduces with the
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line-width and thus the sensitivity advantage provided by

DNP is lowered (Takahashi et al. 2012). This effect

becomes more severe when recording higher-dimensional

spectra, where the line-broadening ‘‘penalty’’ has to be paid

for each dimension.

Improving the resolution is therefore a principal goal to

fully exploit the advantages of the increased sensitivity

conveyed by DNP. This can be achieved by searching for

different sample preparation protocols rather than using the

established glycerol matrix (Liao et al. 2016; Takahashi

et al. 2013) and by searching for biradicals that allow

reasonable enhancement factors at higher temperatures

(Lelli et al. 2015; Perras et al. 2016).

Another option is to increase the magnetic field strength

(Koers et al. 2014). A higher magnetic field would in

principle not be expected to considerably reduce the line-

width in case it is dominated by inhomogeneous broaden-

ing. For example, such a situation would occur in the

presence of overlapping conformer peaks as they are dis-

tributed in terms of their chemical shift, which is directly

proportional to the external magnetic field. Only the

homogeneously broadened part scales with Hz and thus

results in improved resolution at higher fields.

In samples where structural heterogeneity is not the

limiting factor, it has been shown (Lopez del Amo et al.

2013) that the resolution at cryogenic temperatures

improves considerably when increasing the external mag-

netic field strength. Here, we observed a considerable

improvement in resolution when comparing two DNP
13C-13C proton-driven spin diffusion (PDSD) 2D NMR

spectra of the same protein acquired at magnetic fields of

600 and 800 MHz (Fig. 1). The 13C-13C correlation via

supercycled POST-C5 (SPC-5) (Hohwy et al. 1999) is

shown in Fig. S1 (supplementary material).

The studied sample consists of T3SS needles formed by

the supramolecular assembly of the 83-amino acid protein

MxiH (Demers et al. 2014, 2013). The preparation is

described and illustrated (Fig. S2) in the supplementary

material.

In a previous study conducted at 600 MHz (Fricke et al.

2014), this system exhibited one of the best resolutions

ever achieved for a protein sample under DNP conditions

(Can et al. 2015; Su et al. 2015). Increasing the field

strength to 800 MHz and using the biradical AMUPol

(Sauvee et al. 2013), the observed line-widths at half height

are about 22 % smaller, improving the overall resolution of

the spectrum sizably. In the previous study based on the

biradical TOTAPOL (Song et al. 2006), an enhancement of

23 was observed at 600 MHz. In the new study using

AMUPol at 800 MHz, we obtained an enhancement factor

of 21 (Fig. S3 in the supplementary material).

The fact that this protein assembly shows such well-

resolved DNP spectra is most likely caused by the overall

stiffness of the needle structure and the resulting reduced

dynamics: A structurally nearly identical and homologous

([60 % sequence identity) needle protein (Demers et al.

2013) is PrgI which also forms T3SS needles. Due to this

similarity, its dynamics will be used here to make deduc-

tions for the dynamics of MxiH needles. For such a PrgI

needle sample (sparsely 13C, uniformly 15N-labeled) (Lo-

quet et al. 2012) the 15N T1 times were measured to be on

average 106 s at 800 MHz 1H Larmor frequency (see

Fig. 2 for T1 times per residue, supplementary material for

experimental details). This value is in contrast to other

protein systems: For microcrystalline SH3 (uniformly 2H,
13C, 15N-labeled, 10 % back-protonated sample), the cor-

responding value is 26 s (900 MHz) (Chevelkov et al.

2007; Pauli et al. 2001). For microcrystalline ubiquitin

(uniformly 2H, 13C, 15N-labeled, 30 % back-protonated

sample), the reported value is 35 s at 850 MHz (average

over all residues) (Fasshuber et al. 2015; Schanda et al.

2010). As can be seen, the T1 relaxation times of the T3SS

needles are about four times longer and therefore prove the

remarkably low flexibility of the system. This results in a

much smaller contribution of inhomogeneous line-broad-

ening under DNP conditions and can serve as an expla-

nation on why the T3SS sample yields good resolution at

room temperature and at cryogenic temperatures alike.

It has been shown that ssNMR is a useful tool for the

investigation of protein dynamics (Ivanir-Dabora et al.

2015; Lamley et al. 2015; Lewandowski et al. 2015; Ma

et al. 2015). In our previous study (Fricke et al. 2014), we

found that the peaks of the residues located on the outer

surface of the needle are more difficult to identify than

those that face towards the needle lumen. This had been

attributed to a lower flexibility of the inner residues due to

the constraining effect of the needle structure. In contrast,

the outer part of the needle has more freedom to move

resulting in different conformations that interconvert at

room temperature (and thus lead to a single chemical shift).

They freeze out at low temperature leading to such severe

line-broadening that those residues become unobservable.

Another possible explanation of this observation could be

that the biradical molecules do not enter the needle so that

only the outer residues experience quenching by the

proximity of the biradicals (Koers et al. 2014; van der

Cruijsen et al. 2015).

To rule out the latter option and to lend further support

to our hypothesis that this effect indeed stems from the

differing degrees of dynamics at room temperature, ambi-

ent temperature 13C-13C PDSD 2D NMR spectra of the

pure protein and of the DNP sample (containing the DNP

matrix and the biradical) have been compared (Fig. 3). It

can be seen that for all peaks the line-widths at half height

are generally slightly higher in the spectrum of the

AMUPol-containing sample. Nevertheless, it does not

122 J Biomol NMR (2016) 65:121–126

123



become apparent that the peaks of the outer amino acids

(residues 1-39, the N-terminal helix) suffer from more

severe line-broadening than the inner amino acids (residues

45-83, the C-terminal helix), as the comparison of the

selected 1D-slices illustrates.

There are some peaks that have severely reduced

intensity in the AMUPol sample (some annotated in green).

These cases are located in the inner and outer parts of the

assembly and do not follow any identifiable preference for

residue location. The concerned amino acid types are

hydrophobic so that it can be assumed that there is a certain

interaction with the also slightly hydrophobic biradical.

Shifted peaks could be found only for the bc-correlations
of V3 (green box). This residue may possibly form a direct

interaction with AMUPol. A more flexible outer part of the

needle is further corroborated by the shorter 15N T1 times

of the outward-facing residues in comparison with the

inward-facing-residues in the homologous protein PrgI

(Fig. 2).

In summary, we found that the already excellent spectral

resolution of our macromolecular protein assembly increases

significantly going from DNP at 600 MHz to DNP at
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Fig. 1 Overlay of 13C-13C

PDSD 2D NMR spectra of

MxiH needles using DNP at

800 MHz (red, 8 kHz MAS,

95 K, 30 ms mixing time) and

at 600 MHz (blue, 11 kHz

MAS, 104 K, 20 ms mixing

time). 45� phase-shifted squared
sine bells were used as window

functions for both spectra. Full

line-widths at half height in the

direct dimension (F2) are

annotated for some resolved

peaks illustrating the increase in

resolution at 800 MHz. The

peaks between 26 and

32 ppm (F2) and 50 ppm (F1)

are present in the 800 MHz

spectrum (see mirror peaks

across diagonal), but are not

visible here as they have lower

intensity at this side of the

diagonal
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Fig. 2 15N T1 times in the homologous T3SS needle with PrgI

subunits. The corresponding secondary structure elements are illus-

trated on top. The averages over all residues are indicated for PrgI

needles (average over shown bars), ubiquitin and SH3 (bars not

shown) as dashed lines. Note that the residues facing inward (towards

the needle lumen) have higher T1 times (are less flexible) than the

ones facing outward
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800 MHz. This is attributed to the overall very low flexi-

bility of the structure which leaves homogeneous line-

broadening as the main cause for the broad peaks at cryo-

genic temperatures—an effect that decreases with increasing

field strength. For crowded protein NMR spectra, the reso-

lution is a determining factor, so this increase is a substantial

benefit. The lower DNP enhancement factor at higher

magnetic fields (Mance et al. 2015) can therefore be a rea-

sonable compromise as the information content in the

spectra increases and the sensitivity loss due to line-broad-

ening is reduced—an effect that becomes important when

recording 3D spectra required for resonance assignment.

We also found that at ambient temperature the line-

broadening due to the presence of the biradical is not sig-

nificantly different for inner and outer helix residues. This

supports the notion that the spectral differences between

inner and outer parts of the needle observed using DNP at

low temperature are not the result of the absence of

biradical inside the needles, but rather represent true dif-

ferences in conformational plasticity at room temperature.
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