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Abstract We test a recently developed engineering turbulence model, a so-called explicit
algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer.
First of all, we consider a stable boundary layer used as the well-known first test case from the
Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1).
The model is shown to agree well with data from large-eddy simulations (LES), and this
agreement is significantly better than for a standard operational scheme with a prognostic
equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a
(idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model.
Some interesting features of the model are highlighted, pertaining to its stronger foundation
on physical principles. In particular, the use of more prognostic equations in the model is
shown to give a more realistic dynamical behaviour. This qualitative study is the first step
towards a more detailed comparison, for which additional LES data are needed.
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1 Introduction

Turbulence modelling has been an important subject for the atmospheric sciences in order
to describe the significant turbulent transport of heat and momentum in the atmospheric
boundary layer (ABL, Holtslag et al. 2013). Furthermore, turbulence models have important
applications in engineering, e.g. for calculating the drag on ground vehicles or aircraft.
The most basic assumption present in many models is the eddy-viscosity hypothesis (first
formulated by Boussinesq 1877), which states that the turbulent fluxes are related to the
mean gradients of wind (and temperature) through the eddy viscosity (or eddy diffusivity), in
analogy to molecular diffusion. Further insights into the structure of turbulent flows, such as
the mixing-length model of Prandtl (1925) and energy considerations of Kolmogorov (1941),
have further contributed to the development of these models. Here one differentiates between
models that aim to capture the average effect of all turbulence scales (Reynolds-averaged
Navier—Stokes or RANS models) and large-eddy simulation (LES) models where only the
subgrid scales are modelled.

In particular, many models used in climate simulations or weather prediction are based
on the eddy-viscosity concept, and buoyancy effects are often included in the expressions
for the turbulent fluxes through empirical functions based on the similarity theory of Monin
and Obukhov (1954), though strictly valid only for the surface layer. An important quantity
in these models is the turbulence length scale, which is often based on the empirical model
proposed by Blackadar (1962). However, the eddy-viscosity hypothesis is not sufficient for
correctly describing the turbulent fluxes. In particular, it does not give a correct description
of the anisotropy of the Reynolds stresses u;u;. A more general approach was described by
Mellor and Yamada (1974, 1982), who derived a well-known hierarchy of turbulence models
based on transport equations for the Reynolds stresses and turbulent heat flux «; 0 in the ABL.
Later developed models are also based on this model hierarchy (e.g. Andrén 1990). However,
due to practical limitations in climate and weather-prediction simulations, only the simplest
models in this hierarchy are considered in practice, and a minimal number of prognostic
equations is used, mostly for the turbulent kinetic energy (TKE). Recent insights have shown
the need for additional prognostic equations, in particular for the turbulent potential energy
(TPE, Mauritsen et al. 2007, Zilitinkevich et al. 2007, 2013).

The effects of buoyancy and density stratification, which are crucial in the ABL, are
generally speaking less important on the scale of engineering applications. Not taking into
account buoyancy amounts to a significant simplification of the equations of turbulence
[compare e.g. Wallin and Johansson (2000) and Lazeroms et al. (2013)]. Popular examples
of turbulence models used in engineering applications are the K — ¢ model (Jones and
Launder 1972) and the K — w model (Wilcox 1993), which use two prognostic equations for
TKE and, respectively, the dissipation rate or the inverse time scale of turbulence.! Similar
models have been used in atmospheric contexts as well (e.g. Duynkerke 1988; Apsley and
Castro 1997; Sogachev et al. 2012), but to a far lesser extent. The standard formulations of
these two-equation models are still based on the eddy-viscosity hypothesis, but substantial
progress has been made in recent years to derive more general models from the transport
equations for the Reynolds stresses and the turbulent heat flux.

A key concept here is the so-called weak-equilibrium assumption (Rodi 1972, 1976),
which neglects advection and diffusion of certain dimensionless quantities. This assumption
yields algebraic equations for the turbulent fluxes (similar to the Mellor and Yamada hier-

! Here we adopt the symbol K for TKE, as is common in engineering, in order to be consistent with earlier work
(Lazeroms et al. 2013, 2015). The eddy viscosity and eddy diffusivity are denoted by vt and k¢, respectively.
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archy), and mathematical techniques have been developed to obtain an explicit model for
u;u; and u;6 from these equations in a coordinate-free form (i.e. in terms of tensors rather
than components with respect to a certain coordinate system). Notable examples for non-
buoyant flows that are well-established are the explicit algebraic Reynolds-stress (EARS)
model developed by Wallin and Johansson (2000) and the passive-scalar model by Wikstrom
et al. (2000). The non-buoyant EARS model has also been developed independently by Ying
and Canuto (1996) and applied to the atmosphere.

Recently, attempts have been made to extend this more general modelling approach to
turbulent flows with buoyancy, i.e. with temperature or density as an active scalar, thus
bringing the approach back to the domain of atmospheric models. The inclusion of an active
scalar further complicates the mathematical derivation of the model due to the coupling
between the Reynolds stresses and the heat fluxes that the buoyancy terms create. Examples
of models that were developed through this approach can be found in So et al. (2002, 2004)
and Vanpouille et al. (2013, 2015). In our study, however, we focus on the model framework
developed in Lazeroms et al. (2013, 2015), which according to the current authors has led to
the first model of this type that is self-consistent and fully explicit (i.e. completely expressed
in terms of the prognostic variables). In the previous work, this model has been thoroughly
tested in canonical test cases such as homogeneous shear flow and turbulent channel flow,
both with stable stratification. It should be noted that similar approaches have been used
in LES in both the atmospheric and engineering communities (Findikakis and Street 1979;
Wyngaard 2004; Rasam et al. 2013, 2014; Enriquez and Street 2014).

Although EARS models have proven themselves in engineering applications, deriving
a model from more fundamental principles and testing it in canonical test cases does not
imply that it is more accurate in more complex contexts such as the atmosphere. Such cases
might contain more physical phenomena that have not yet been considered in the model.
Therefore, the question arises how these newly developed models based on more general
principles perform when applied to the ABL. The current study is a first step in answering
this question. The aim is to test the new explicit algebraic model presented in Lazeroms
et al. (2013, 2015) in two test cases, the first of which is the GABLS1 case? (Cuxart et al.
2006; Beare et al. 2006), where a purely stable boundary layer is formed. This case has
particular attention because the stable boundary layer is currently one of the difficult issues
in atmospheric turbulence models (Holtslag et al. 2013; Svensson and Lindvall 2015). In
the second test case, we consider an ideal diurnal cycle forced by a fully periodic potential
surface temperature.

In the following section, we give an overview of the hierarchy of single-column RANS
models in order to show the (often detailed) differences and similarities that we would
like to address. Section 3 gives a more in-depth description of the model by Lazeroms
et al. (2013, 2015). In Sect. 4 we present the results for the GABLS] test case, which
are compared with data from LES and two other turbulence closures implemented in an
operational weather-prediction model, namely the ARPEGE model at Météo-France (Pailleux
et al. 2000). Section 5 covers the case of the (idealized) diurnal cycle, in which we compare
our model with a simpler first-order model. This comparison is mainly qualitative due to the
lack of LES data for this specific case.

2 GABLS stands for Global Energy and Water cycle EXperiment (GEWEX) Atmospheric Boundary Layer
Study.
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2 Overview of Turbulence Models

We consider models derived from the Reynolds-averaged Navier—Stokes (RANS) equations,
in which the variables have been decomposed into mean and fluctuating parts. The starting
point takes the equations for the mean velocity U = (U, V, W) and the mean potential
temperature @. In the case of the atmospheric boundary layer, the mean flow equations can
be written in the following simplified form,

DU ouw V1) (1a)
—_— = — —-V), a
Dt 0z &
DV dvw
— == U, — U), 1b
Dr % + f(Ug ) (1b)
DO dwo

== (10)
Dt 0z

where f = 2£2 sin ¢ is the Coriolis parameter depending on the rotation rate §2 of the Earth
and the latitude ¢, U; = (Ug, Vy) is the geostrophic wind (i.e. the large-scale pressure-
gradient force), and D/Dt = 9/0t 4+ Uy d/0dxy is the material derivative in the direction of
the mean velocity. The quantities #;w and w6 are components of the turbulent momentum
flux (or Reynolds stresses) and the turbulent heat flux, respectively, which contain unknown
correlations of the velocity fluctuations (u, v, w) and the temperature fluctuations 6. Note
that (1) only accounts for net turbulence transport in the vertical direction and assumes
horizontally homogeneous conditions for the turbulence statistics. When (1) is solved on a
vertical grid only, it is called a single-column model (SCM). The aim is to find a model for
the turbulent fluxes in order to close the system of Eq. (1), i.e. the turbulent fluxes need to be
expressed in terms of the mean velocity and mean potential temperature.

2.1 The Eddy-Viscosity and Eddy-Diffusivity Approach

The first assumption that is often made in turbulence models uses the concept of eddy viscosity
or eddy diffusivity to directly relate the turbulent fluxes to the mean gradients,

0

uw = —vl—U, (2a)
0z
A%

W = —v—, (2b)
9z

— 06

wh = —k—, (2¢)
0z

where v, is the eddy viscosity and «; the eddy diffusivity of heat. They are the exchange
coefficients of momentum and heat due to turbulent eddies, in analogy to molecular diffusion.
The eddy-viscosity hypothesis was first formulated by Boussinesq (1877) and is still widely
used, although it is not a generally valid assumption, as we discuss in the next sub-section.

Finding a closure for Eq. 1 now amounts to modelling the eddy coefficients v and «¢; a
simple scaling analysis suggests

Ve, ke~ q - L 3

where ¢ and [ are characteristic velocity and length scales of the turbulent eddies, respectively.
The fact that we actually need to model the scales ¢ and [/ leads to the following hierarchy
of turbulence models. The simplest class of models are the so-called first-order models (or
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zero-equation models), where purely algebraic expressions for ¢ and [ are used. The eddy
coefficients can then be written as,

ou
t=@5—m, (4a)
U
ke = Inlm |[—| fh, (4b)

where /iy, I, are (possibly different) length scales for momentum and heat, and the velocity
scale has been modelled by assuming ¢ = I;,|0U/dz|. The coefficients fn,, fi are stability
functions of e.g. the gradient Richardson number,

-8 00
T() 0z / ‘
where g is the acceleration due to gravity and Ty is a reference temperature. These functions
are mostly modelled through empirical considerations and differ a lot between different
models. The same holds for the length-scale models; one basic form for the length scale that
is often used in atmospheric turbulence models is due to Blackadar (1962),

1 1 1
=t ©)

l Kz Ao

) (&)

which tends to kz (where k = 0.4 is the von Kdrmdn constant) in the surface layer and to
the asymptotic value Ao higher up in the ABL. Modifications of this basic form exist, as well
as completely empirical functions (see e.g. Mellor and Yamada 1974, 1982; Andrén 1990).
First-order models as described here are still used in recently developed climate models (e.g.
Neale et al. 2010, 2012; Hazeleger et al. 2010) and numerical weather prediction (NWP)
models (Sandu et al. 2013).

The next step in the hierarchy is the one-equation model where one of the scales ¢ or [
is determined from a prognostic equation. In atmospheric models, the most commonly used
equation is that for TKE, denoted by K = (u2 + v2 4+ w?)/2,

DK U ___dV
\,-J

where 2 is shear production, ¢ is buoyancy production, ¢ is the dissipation rate and Z is a
diffusion term.? This equation is used to determine the velocity scale ¢ ~ +/K. In order to
close Eq. 7, the dissipation rate ¢ is modelled through

K3 /2

I’
where [, is the dissipation length scale, for which empirical expressions similar to /y, and I
are used. The diffusion term 2 can be modelled by e.g. gradient diffusion,

ad Vt 0K
9=—(+22), 9
Bz(UKaz) ©

where ok is the so-called Schmidt number for TKE. The TKE equation together with alge-
braic models for Iy, Iy, and /; (e.g. Eq. 6) have recently been adopted for the first time in

£~

(®)

3 The term 2 is often called “turbulent transport” in atmospheric studies.
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a global model for operational NWP, namely the ARPEGE model at Météo-France (Bazile
et al. 2011), and will also be used in the climate version of ARPEGE for the next Coupled
Model Intercomparison Project (CMIP6, see Meehl et al. 2014).

Adding another prognostic equation, one obtains the so-called two-equation models, where
the best known is the K — ¢ model, which uses Eq. 7 for TKE and a prognostic equation for
the dissipation rate ¢ instead of the algebraic assumption (8),

De € &?

— =C1 =P —Ce2—

Dr el K e2 K
where Cg, Ceo, Ce3 are constants and 7 is a diffusion term modelled in a similar way as
2. To determine the eddy coefficients in (3), the velocity scale is again taken to be ¢ ~ v K
and the length scale depends on ¢ by means of / ~ K 3/2 /¢, which yields,

&
+C£3fg+°@£’ (10)

K2
w=c, X (11a)
&
l (11b)
Kt = —,
t Prt

where C,, is a constant and Pry is the turbulent Prandtl number, often assumed constant. Since
the 1970s (see e.g. Jones and Launder 1972), the K — ¢ model has been used extensively
in many computational fluid dynamical calculations. Another example of a popular two-
equation model in engineering flows is the so-called K — @ model, where a prognostic
equation for an inverse time scale w is used instead of ¢ (Wilcox 1993). Both two-equation
models have also been studied in the context of the ABL (e.g. Duynkerke 1988; Apsley
and Castro 1997; Sogacheyv et al. 2012), but their use in atmospheric applications has been
problematic. As pointed out by Sogachev et al. (2012), the incorporation of buoyancy effects
into these models is not trivial. Other two-equation models for environmental flows make use
of a prognostic equation for the product of K and / (e.g. Mellor and Yamada 1982; Blumberg
et al. 1992).

2.2 Reynolds-Stress Modelling

As noted above, the eddy-viscosity approach is not generally valid and does not yield an
appropriate model for complex flow cases. In particular, it does not correctly take into account
the anisotropy of the Reynolds-stress tensor u;u; and inter-component exchange of kinetic
energy. Therefore, a more sophisticated class of models can be found by considering the
transport equations for all components u;u;, as well as the turbulent heat flux u;0,

Duju;

Dlt L— 9= Py + Iij — &ij + 9, (12a)
Du;6

o~ Zoi = Poi + Toi — eoi + Yo, (12b)

where in each of these equations, we have the following terms (from left to right): advection,
diffusion, shear production, pressure redistribution, dissipation and buoyancy production.
The production terms have the following form,

AU, AU

Pij = —uiuka — ujug o (13a)
I R—) i
Poi = I —ujegj’, (13b)
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g PR

Y = T (8i3u ;6 + 8;3u;0), (13¢)
8

“i = - Kpdis, (13d)
Ty

with §;; the Kronecker delta and Ky = 62 /2 is one half of the temperature variance. These
production terms are in closed form, while the other terms in (12), most notably the pressure-
redistribution terms, contain further unknown correlations that need to be modelled. For
the dissipation term in (12a) one often chooses an isotropic expression: &;; = %sﬁi j- The
pressure-redistribution terms I7;; and ITy; describe inter-component exchange due to pressure
fluctuations. Different models exist, though IT;; is usually decomposed into a slow part (or
return-to-isotropy term, Rotta 1951) and arapid part directly dependent on the mean gradients.
A general linear model for IT;; was formulated by Launder et al. (1975) and extended with
buoyancy-dependent terms by Launder (1975). A similar model for I1p; — &¢; can be found
in e.g. Wikstrom et al. (2000). For the diffusion terms &;; and %p; (generalized) gradient
diffusion models can be used (e.g. Daly and Harlow 1970). To completely close Eq. 12,
additional prognostic equations or models for & and the temperature variance 62 (as well as
its dissipation rate &y ) are needed. Note that Eq. 7 for the TKE is obtained by taking half the
trace of (12a).

Despite the high level of sophistication of Eq. 12, these so-called differential Reynolds-
stress models (DRSM) are difficult to evaluate in practice due to the large number of
prognostic equations. It is therefore desirable to simplify these equations to a purely alge-
braic form. Various approaches exist to accomplish this, which all amount to modelling the
advection and diffusion terms on the left-hand sides of (12). The simplest way to accomplish
this is to neglect these terms altogether. Although this assumes a steady-state for the turbulent
fluxes that is not generally valid, this approach is still used in recently developed models (e.g.
Zilitinkevich et al. 2013). A slightly different approach is that of Cheng et al. (2002), which
neglects the advection and diffusion terms of the anisotropic part of the Reynolds stresses,
bij = it — 3K.

One can argue that neglecting any of these dimensional quantities can lead to problems
in more complex situations. Instead, an analysis based on dimensionless fluxes is preferred.
A well-known method in atmospheric turbulence models is that presented by Mellor and
Yamada (1974, 1982), who consider Eq. 12 in terms of the following dimensionless quanti-
ties,

u;u; 2
ajj = lKJ - gsija (14a)
0
= (14b)
VKK,

where the tensor g;; is called the (dimensionless) Reynolds-stress anisotropy and &; is a
dimensionless heat flux normalized with TKE and the temperature variance. Mellor and
Yamada perform a scaling analysis of the equations for a;;, &, K and Ky, and neglect terms
based on powers of the anisotropy. Neglecting terms of different order leads to a hierarchy of
models of different complexity, leading from the full prognostic equations (level 4) back to
the standard first-order eddy-diffusivity models (level 1). This hierarchy serves as the basis
of many later atmospheric turbulence models (e.g. Andrén 1990). Note that the dissipation
of TKE is still modelled by means of a length-scale parametrization.

The common approach in engineering, however, is based on the work by Rodi (1972,
1976), who postulated that the advection and diffusion terms of dimensionless quantities can
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be neglected. This is called the weak-equilibrium assumption. In practice, this neglects only
advection and diffusion terms of a;; and &; as defined in (14). Going back, for example, to
Eq. 12a for u;u;, this assumption amounts to,

Duju; _ ujuj DK
Dr K Dt’

~ ujuj
7~ 2L g, (15b)

(15a)

i.e. temporal and spatial variations of u;u; are directly determined by temporal and spatial
variations of TKE. This assumption is clearly more general than neglecting advection and
diffusion of u;u; completely. Data from direct numerical simulations, in which all turbulence
is resolved, suggest that the weak-equilibrium assumption is valid in many contexts (e.g.
Vanpouille et al. 2013), though it fails most notably in near-wall turbulent regions, which are
usually not resolved in atmospheric models. The weak-equilibrium assumption results in a
model consisting of algebraic equations for #;u; and u;6 together with prognostic equations
for K, ¢ and Ky, which would be most similar to the Mellor and Yamada level-3 scheme
(e.g. Nakanishi and Niino 2004, 2006). However, there is a fundamental difference between
the weak-equilibrium assumption and the Mellor and Yamada approach, leading to models
of somewhat different complexity, as explained in Appendix 2.

Much work now focusses on finding the explicit solutions to the aforementioned algebraic
equations for u;u; and u; 6. For practical reasons, it is important to solve these equations alge-
braically and not use any numerical iterations at this level in the model. In many atmospheric
models, this is less of an issue because they are formulated with respect to a certain coor-
dinate system (i.e. the geometry of the ABL, see Eq. 1), so that one can solve the algebraic
equations for each component of #;u; and u;0 separately (see e.g. Mellor and Yamada 1974).
The more general models, however, aim for a coordinate-free formulation without reference
to a certain coordinate system and suitable for use in arbitrary geometries found in engineer-
ing applications. This requires more advanced mathematical considerations that are beyond
the scope of our study. The resulting models for u;u; and u;0 are called explicit algebraic
Reynolds-stress models, examples including the model of Wallin and Johansson (2000) for
neutral turbulent flow and of Wikstrom et al. (2000) for passive scalar transport. Extensions to
buoyant flows/active scalars were made by e.g. So et al. (2002, 2004), Lazeroms et al. (2013,
2015) and Vanpouille et al. (2015). The differences between these models mainly consist
of details in the mathematical framework that are not discussed here. Rather, we make use
of the model derived in Lazeroms et al. (2013) and of which some aspects were extended
and improved in Lazeroms et al. (2015)—for a more detailed description see Sect. 3 and
Appendix 1. We refer to this model as the current model.

2.3 Turbulent Potential Energy and Counter-Gradient Heat Flux

The EARS model discussed in Sect. 2.2 constitute one of the most advanced classes of tur-
bulence models used in engineering. On the other hand, many atmospheric models still make
use of a standard TKE scheme (i.e. Eq. 7). However, a recent development in atmospheric
turbulence modelling (Mauritsen et al. 2007; Zilitinkevich et al. 2007, 2013) is the addition
of a prognostic equation for the turbulent potential energy (TPE), defined as,

1 ¢ — e
8, 90 (16)

E, = .
P 2Ty 0z
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The main idea behind these models is the conversion of kinetic to potential energy by buoy-
ancy, whereas in standard TKE schemes the buoyancy term ¢ would just act as a source
or sink of energy. The aim of this approach is to predict the presence of turbulence in the
strongly stable regime, the possible existence of which has recently been pointed out in obser-
vations (Mauritsen and Svensson 2007; Tjernstrom et al. 2009). In standard models, on the
other hand, there exists a critical Richardson number above which turbulence is completely
damped. These considerations have recently led to turbulence models using a single prog-
nostic equation for the total turbulent energy (Mauritsen et al. 2007; Pithan et al. 2015), as
well as the so-called Energy- and Flux-Budget (EFB) closure that uses separate prognostic
equations for TKE and TPE (Zilitinkevich et al. 2007, 2013). The latter is also derived from
the momentum and heat-flux budgets in Eq. 12, albeit with more empirical considerations
than the EARS model.

On the other hand, the Reynolds-stress models described in Sect. 2.2 naturally depend on
the temperature variance 92 = 2Ky, a quantity that is essentially equivalent to the TPE in
Eq. 16. This dependence comes from the buoyancy term %, in Eq. 12b and the scaling used
for the turbulent heat flux (Eq. 14). An additional prognostic equation for Ky is easily added
to models like EARS, which can be written as,

DKy _ 529 +9 (17)
— =—u; —& ,
Dt J 3Xj ? 0

————

where & is the production term, &g is the dissipation rate and % is a diffusion term.
Interestingly, the possible existence of turbulence above the critical Richardson number has
not been an issue in engineering turbulence models. Indeed, the EARS models described
above appear to have a critical Richardson number close to the theoretical value of 0.25
known from the analysis of Miles (1961) and Howard (1961) (also discussed in Lazeroms
et al. (2013) and in Sect. 4). At the same time, these models are derived from rather basic
principles such as general expressions for the pressure terms [1;; and ITp; and the weak-
equilibrium assumption, while models such as the EFB closure make use of more empirical
relations and ad hoc corrections in e.g. these pressure terms. It is therefore likely that such
corrections are always necessary in order to obtain a turbulence model without a critical
Richardson number.

Another interesting feature of using an additional prognostic equation for Ky or TPE is the
appearance of a counter-gradient heat-flux term, whereas standard eddy-diffusivity models
have a heat flux that is always proportional to the mean temperature gradient. In the current
model, for example, the turbulent heat flux can be expressed as,

— 10
wo = —K[¥ + @Cg, (18)

where « is an effective eddy diffusivity and @, is the counter-gradient term proportional
to Ky. The appearance of the counter-gradient term can be of high importance in regions
with strong temperature fluctuations (i.e. large Ky) and a positive temperature gradient, for
example in the inversion layer. On the other hand, in models using a steady-state expression for
Ky (see the Mellor and Yamada level 2, or Andrén 1990), the term @, becomes proportional
to the mean temperature gradient, so that it can be incorporated into the x; term. A prognostic
equation for Ky such as (17) would therefore be necessary for obtaining the correct dynamics
in the counter-gradient term.
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3 Description of the Current Model and The Numerical Solver

In the following, we focus on the EARS model presented in Lazeroms et al. (2013, 2015) and
apply it to a number of test cases in the ABL, in order to compare its performance with some
of the other modelling approaches considered in the previous section. Here we summarize
the main aspects of the model specifically for these ABL cases.

The ABL is simulated by solving Eq. 1 for the mean wind and mean temperature. The
models for the Reynolds-stress components in these equations can be expressed by (2a) and
(2b) and the model for the turbulent heat flux by (18). The effective eddy viscosity vy, effective
eddy diffusivity «¢ and the counter-gradient flux term @, can be written symbolically as,

K2
Ve = Tfm, (19a)
K2
Kt = 7fh, (19b)
KK,
Dep = g fo (19¢)

In contrast to the empirical expressions used in standard eddy-viscosity models (e.g. Eq. 4),
the functions fm, fh, fe now follow directly from the derivation outlined in Sect. 2.2.
These expressions depend on a number of invariants of the flow and are given in full detail
in Lazeroms et al. (2013, 2015), though some aspects of their structure are discussed in
Appendix 1. The model parameters in this part of the model are contained in the expressions
fm>» fn, fo and are entirely due to the (general) models used for the pressure-redistribution
terms I1;; and ITy; in (12). These parameters have been calibrated for various flow cases in
previous work (Wallin and Johansson 2000; Wikstrom et al. 2000; Lazeroms et al. 2013).
Note that apart from the turbulent fluxes in (1), our general derivation also yields expressions
for the other components of the (anisotropic) Reynolds stresses u;u; and turbulent heat flux
u;6, as explained in Appendix 1.

In order to close these expressions, we use the K — & model discussed in Sect. 2.1, together
with a prognostic equation for Kg as shown in (17). This leads to the following,

DK _JdUu 9V g — d v 0K

— = uw— —wW—+ —wl—e+ —{——), (20a)
Dt 0z 0z To dz \og 0z

De e AU av &2 e g— 08 (v e

— = Co— (w—+7— ) - Car—=+C3—2wld+———), (0b
Dr elK(uwaZ +vwaz) 2t STV +3z (Gsaz) (20b)
DK 06 K d 0K

20 el 0. 9 M 9fe i (20¢)
Dr 0z rk 0z \ok, 0z

with Ce1 = 1.44, Ceo = 1.92, Co3 = —0.8, 0 = 0k, = 1.0, 0, = 1.3 and r = 0.55. Note
that the diffusion terms have been modelled using gradient diffusion as in Eq. 9. Furthermore,
the dissipation rate of Ky (second term on the right-hand side in (20c)) is parametrized by
g9 = Kp/(rt) with relaxation time scale t = K /¢, equal to the time scale of the velocity
fluctuations. The value of r is based on empirical considerations from direct numerical
simulations of Johansson and Wikstrom (1999). The rest of the parameter values in (20) are
standard values for the K — ¢ models found in the literature, except for C.3, for which no
standard value has been found. Here we treat this constant as a free parameter that we tune*

4 To obtain an idea of the variability due to the parameter C.3, we changed it from —0.8 to zero and found an
increase of the turbulent fluxes by around 10% and the boundary-layer height by around 20 m in the results
of Sect. 4.
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for an optimal performance based on the case described in Sect. 4. This approach is simpler
than e.g. that of Sogachev et al. (2012), who developed a consistent way of incorporating
buoyancy (as well as vegetation effects) into standard two-equation models for use in ABL
applications. However, a detailed investigation of the equations for the turbulence scales is
beyond the scope of this work, as the main feature of the EARS model is the explicit algebraic
formulation of u;u; and u;6. Here we regard the K — ¢ — Ky equations as a secondary, yet
necessary, part of the model. The constant C,3 in the € equation is not expected to be universal,
and further investigations with more advanced models for the turbulence scales (such as that
of Sogacheyv et al. 2012) are desirable.

Note that the current model is slightly different from that presented in Lazeroms et al.
(2013, 2015), where a so-called K —w model was used for reasons connected to the near-wall
treatment in engineering flows (also explained in Lazeroms et al. 2015). More precisely, the
standard K — w model is known to behave more realistically when the model is evaluated
in the viscous sublayer and exactly at the surface. On the other hand, the standard K —
o model is known to have issues in boundary-layer flows in the region of transition to
freestream conditions. Since we use logarithmic layer conditions instead of resolving the
viscous sublayer (see below), the K — ¢ model seems to be the best choice for the ABL cases
considered here. One should note, however, that these properties depend on the exact form of
the two-equation model, since Sogachev et al. (2012) found that their K — w model behaves
more appropriately than their K — ¢ model.

The system of differential equations (1) and (20) is solved on a domain [zo, H], where z¢
is the aerodynamic roughness length at the surface and H is the domain height. By taking
the lower boundary of the domain at z = zp, we can easily define the following boundary
conditions for the mean flow equations (1): U(z = z0) = V(z = 20) =0, O(z = z09) =
Ogurf (1), where Ogyr is a problem-dependent function of time. For the K — ¢ — Kg model
in (20), we assume so-called logarithmic layer conditions, which can be derived from a
balance of (shear) production and dissipation terms in the logarithmic layer, using a standard
eddy-viscosity model for simplicity. These boundary conditions read as follows,

2
u
K(z=2z0) = —=, 21a)
VCu
u
fe=20) = 21b)
P
Koz = 20) = ——202, 2lc)

VCu
with C;, = 0.09, Pr¢ = 0.9 and k = 0.4. The friction velocity u and friction temperature
0, are determined by a linear fit of the following logarithmic profiles near the surface,

VU@ + V@7 = i (22a)
P
sy 2 (22b)
20

O(z) — Oyt (1) =

Note that these boundary conditions are somewhat simpler than the often used empirical
relations based on Monin—Obukhov similarity, which also take into account buoyancy pro-
duction (Monin and Obukhov 1954). The present approach is justified if the grid size used for
fitting the logarithmic functions near the surface is sufficiently small for neglecting buoyancy
effects. This means that the first grid points at the surface have to be within the logarithmic
layer in order to obtain the correct slope in the velocity profile near the surface (cf. Fig. 3)
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and, subsequently, appropriate values for u, and 6, from Eq. 22. At the top of the domain,
the velocity equals the geostrophic wind velocity (U = Ug and V = V,) and a fixed value
of the potential temperature gradient (corresponding to the initial profile). For the quantities
in (20), we take d/dz = 0 at the top.

In this study, the same numerical solver as in previous work is used® (Lazeroms et al.
2013, 2015). Customized grid points, timesteps and initial conditions are added to complete
this method. In the test cases below, the grid resolution near the surface is chosen fine enough
to obtain a numerical solution that is independent of the grid, i.e. yielding velocity and
temperature profiles consistent with the logarithmic layer boundary conditions discussed
above (see also Fig. 3). In such a way, we can focus on the physical correctness of the model
rather than discrepancies due to the numerics.

4 Model Comparison for a Stable Boundary Layer (GABLS1)

The first test case considered here is the GABLSI1 case used in the intercomparison study
by Cuxart et al. (2006). This represents a purely stably stratified ABL, which is formed by
applying a constant geostrophic wind speed and constant cooling at the surface. The main
point of interest is to investigate how well the model performs in predicting stably stratified
turbulence in the atmosphere by comparing with LES data available from the GABLS1 study
(Beare et al. 20006).

The constant geostrophic wind speed in this case is Ug = 8 m s~ ! with the wind vector
directed in the x-direction. The case is set in the Arctic at a latitude of 73°N, corresponding
to f =139 x 10~* s~ !, and the potential temperature at the surface Ogyr = O (z = z0) is
given by,

Osurt(t) =6 — b, (23)

with ®9 = 265.1 K (including a small correction with respect to the original data®) and
b = 0.25 K h™!. The aerodynamic roughness length zq is taken equal to 0.1 m. For the
initial profiles and other parameters, we refer to Cuxart et al. (2006). In addition, the initial &
profile is chosen such that the turbulence time scale t = K /¢ initially equals 1 s, while the
initial Ky profile is put equal to zero. The model is now evaluated on a domain with height
H =400 m and 127 grid points, with the grid size ranging from 0.1 m near the surface to 10
m at the top. As in the original GABLS1 case, we run the simulation for 9 h (model time),
after which a quasi-steady state is reached; the timestep in the simulation is 60 s. At the end
of the simulation, mean values over the last hour are taken.

Similar computations have been performed with the ARPEGE model at Météo-France,
using two different turbulence schemes: the standard (operational) TKE scheme (Bazile et al.
2011) and a prototype of the EFB closure described in Sect. 2.3 (coded by E. Bazile, internal
communication), both with a vertical grid size of 6.3 m. For the LES data, we have datasets
from five different simulations with a 2-m resolution (Beare et al. 2006). Figure 1 compares
the results of all these computations for the mean wind speed and mean potential temperature

5 The numerical solver uses second-order central differences for the spatial discretization on a collocated grid,
and a first-order implicit Euler scheme in time. To obtain the system matrix, the model equations as presented
in this paper are implemented in Maple and automatically discretized.

6 Since the original GABLS1 case defines a true surface temperature, the value of ®g has been slightly
increased compared to Cuxart et al. (2006) (265 K) to account for the difference in the potential temperature
between the surface and z = z(. The difference of 0.124 K comes from the (extrapolated) mean value of LES
data at z = zg.
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Fig. 1 Profiles of a mean wind speed and b mean potential temperature in the GABLSI1 case, for the current
model (red solid line) and the Météo-France ARPEGE model with standard TKE scheme (blue dashed line)

and EFB closure (green dashed line), compared with LES results (black solid lines)
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Fig. 2 Profiles of a, b momentum flux, ¢ heat flux, and d turbulent kinetic energy in the GABLSI case.
Legend as in Fig. 1. The LES data are represented by the sums of resolved contributions and subgrid-scale
contributions

profiles. For both profiles, the results of the current model are very close to two sets of the
LES data, while the other three give a shallower turbulent layer. This reflects the model’s
capability of yielding good predictions of stably stratified flow, which was already shown
in Lazeroms et al. (2013) for more idealized cases. On the other hand, the standard TKE
scheme in the ARPEGE model gives a clear overprediction of the boundary-layer height.
Interestingly, the EFB closure results in profiles that are very similar to the results of the
current model, indicating that even though both models are derived from different principles,
they give a good description of the turbulence in the current test case. Figure 2 shows the
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Fig. 3 Profiles of a mean wind speed and b mean potential temperature in the GABLS1 case, for the current
model (blue dashed line) and the Météo-France ARPEGE model with EFB closure (green dashed line),
compared with the NCAR LES results (magenta solid line). The grey solid lines follow from Monin—Obukhov

similarity with s = 0.29 m s_l, Oy = 0.012/ux K, L = 149 m, zg = 0.1 m, k = 0.4 (values taken from
Cuxart et al. 2006) and Prt = 0.9. The grey dashed lines show only the logarithmic part of these functions

results for both the momentum flux and heat flux, as well as the TKE profile. Again we
conclude that the current model produces results closer to the LES than the standard TKE
scheme, and once more the EFB closure gives very similar results.

To demonstrate the validity of the boundary conditions used in the model, we plot the
mean wind-speed and mean potential temperature profiles on a logarithmic scale, shown in
Fig. 3. The model results are compared with the EFB closure implemented in the ARPEGE
model and the LES dataset that is closest to the current model in Figs. 1 and 2 (i.e. the
NCAR dataset, see Beare et al. 2006). Clearly, both the models and the LES obey the same
logarithmic law near the surface (up to &5 m). This also shows that the logarithmic layer
boundary conditions shown in Egs. 21 and 22 are consistent and would work for the present
case as long as the grid size near the wall is smaller than 5 m. Higher up in the boundary layer,
the effects of buoyancy and a correction to the logarithmic profile based on Monin—Obukhov
similarity are needed (Monin and Obukhov 1954). This correction is a linear function of
the dimensionless parameter z/L, where L = —uiTo/ (kgwOgyt) = uiTo/ (kgby) is the
Obukhov length (Obukhov 1946) depending only on surface fluxes. The wind profile agrees
well with the theoretical curve if the well-known coefficient 4.8 proposed by Hogstrom (1988)
is used in the linear term, which also appears to work fairly well for the temperature profile.”
Another indication of the correct treatment of the near-surface region can be seen in Fig. 4,
where we have plotted the hodograph of the mean velocity vector for both the current model
and the NCAR LES dataset. Clearly, the wind direction near the surface (making an angle of
~36° with the x-direction) resulting from the model corresponds very well to the LES data,
and also the wind turning in the rest of the boundary layer is well predicted.

In the context of this stably stratified test case, it is relevant to investigate the issue of the
critical Richardson number discussed in Sect. 2.3. In Fig. 5a we show the current model results
for the velocity variances plotted against the gradient Richardson number. From Fig. 5a it
is clear that all velocity fluctuations decay at a specific critical Richardson number. In this
case, the critical Ri value in the current model appears to be close to 0.2, which is slightly
lower than the critical value of 0.25 found in Lazeroms et al. (2013) with the K — @ model.

7 Note that this coefficient in the Monin-Obukhov similarity function is often taken to be equal for momentum
and heat transfer, a notable exception being the GABLS1 test case (see Cuxart et al. 2006), where the prescribed
value for heat transfer is 7.8.
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Fig. 4 Hodograph of the mean 0.5
velocity vector for the current

model (dashed line), compared 0.4
with the NCAR LES results
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Fig. 5 Results in the GABLS1 case for a the variances of the velocity fluctuations, and b the same variances

scaled with TKE, plotted against the gradient Richardson number. Shown are the three components u? (blue o),

2 (green x) and w2 (red A). The solid lines in panel a are extracted from the NCAR LES data (same colour
coding), which use the subgrid-scale model specified in Sullivan et al. (1994)

Interestingly, the NCAR LES data shown in the same figure appear to decay at similar values
of Ri, but residual turbulence remains slightly above this critical value. The LES results
appear to be in accordance with observations that suggest the existence of turbulence above
the critical Ri (Mauritsen and Svensson 2007; Tjernstrom et al. 2009). The present model
predicts no sustained turbulence for conditions above the critical Ri, but it allows the existence
of turbulence that decays very slowly if the turbulence length scales are large (see Sun et al.
(2015) for areview of these issues). Note that there are clear discrepancies between the model
and the LES for low Ri. However, these points are very close to the surface where neither the
model nor the LES resolves the small scales in the viscous sublayer, so it is hard to draw any
conclusions for this region (see also Rasam et al. (2011) for a discussion on the overprediction
of near-wall peaks in the velocity fluctuations for different subgrid-scale models).

Figure 5b shows the same variances scaled with TKE, which represents the contribution
of each component to the total TKE. Generally speaking, one can conclude that the vertical
contribution decreases slightly while the horizontal contributions remain around the same
value. Interestingly, the horizontal contributions appear to oscillate at the critical Richardson
number, most likely due to a slight turning of the wind in the upper part of the ABL, causing
different levels of shear production in the x- and y-directions. Not shown in the figure are

the data points above z ~ 225 m where Ri becomes very large and where u? = v2 and
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Table 1 Values of the initial
temperature profile as a function z (m) 0.03 50 850 900 1000 2000 3500 4000

of height Ok (K) 283 286 286 288 292 300 310 312

E/ 2 < 0.1K, with K very close to zero. Also note that Fig. 5 reveals the ability of the model
to predict anisotropic turbulence with clearly different components of TKE, in contrast to
standard models based on the eddy-viscosity hypothesis.

5 Qualitative Study of an Idealized Diurnal Cycle

We now consider a test case that includes the dynamics of a diurnal cycle; this is partly based
on the GABLS?2 intercomparison study (Svensson et al. 2011), in which the models were
forced by a prescribed diurnal variation of the surface temperature taken from observations
in Kansas, USA (CASES-99, Poulos et al. 2002). Here, we investigate a more idealized
version of the GABLS?2 case that is forced by a completely periodic surface temperature and
without the effects of humidity and subsidence. This case was also considered in Lazeroms
et al. (2015) in order to validate certain improvements to the model (i.e. the approximation
of Eq. 32 in Appendix 1). Such an idealized case is easier to handle in the current model
framework and allows us to focus primarily on the physics of turbulent heat transfer, which
is the main effect included in the current model. It also allows for simulations that are longer
than the three-day period considered in GABLS?2. The disadvantage of this approach is that
no LES data are available yet for a quantitative comparison, but in the following we focus
on qualitative results.

We consider a constant geostrophic wind velocity with Uy = 3 m s~! and Vo =—-9m
s~ the latitude of the GABLS2 case is 37.6°N, corresponding to f = 8.9 x 107> s~!. The
periodically varying potential temperature at the surface is given by,

] t
Ogurf (1) = Og + AO sin (272' ﬁ) , 24)

with @y = 283 K, A® = 11 Kand isinh. This function was chosen in order to obtain a tem-
perature variation similar to the final day of the GABLS?2 case. For the aerodynamic roughness
length we take zo = 0.03 m. The initial velocity profile is put equal to the geostrophic wind
velocity, and for the initial potential temperature we take a piecewise linear profile defined by
the values given in Table 1. The initial TKE is given by K (z) = 0.5(1 — z/200) for z < 200
m and a near-zero value for z > 200 m. The initial ¢ profile is again chosen such that the
initial turbulence time scale is 1 s, and the initial Ky = 0. Other parameters can be found in
Svensson et al. (2011) (note again that no effects of humidity and subsidence are used in the
current case). The model is evaluated on a domain with height H = 4000 m and 213 grid
points, the grid size is 0.5 m near the surface and increases to 100 m at the top of the domain,
and the model is run for 480 h (20 days) with a timestep of 60 s.

An interesting feature of the current case is the constant amplitude of the periodic surface
temperature variation. Initially, the mixed layer (located between z ~ 100 m and z &~ 1 km
to z &~ 1.2 km) is heated up rapidly because the maximum surface potential temperature
(294 K) is significantly larger than the initial potential temperature in the mixed layer (283
K), as seen in Fig. 6a. Since the amplitude of the potential temperature at the surface is
constant throughout the simulation, a quasi-steady state is expected to appear when there is a
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Fig. 6 Diurnal variation of a the mean potential temperature, and b the turbulent kinetic energy at z = 503
m as calculated by the current model. The equilibrium value of daytime TKE is indicated by the dashed green
line

balance between daytime heating, nighttime cooling and the effects of entrainment at the top
of the boundary layer. This can be seen in Fig. 6a, where the daytime increase of potential
temperature in the mixed layer appears to gradually slow down, and in Fig. 6b, where the
maximum value of TKE at a fixed height appears to reach an equilibrium value. Further test
runs with a length of up to 40 days have shown that this quasi-steady state remains.

We now investigate several qualitative features of the current model. For this purpose,
we show the diurnal variation of TKE over three consecutive days in the quasi-steady state
in Fig. 7a. For comparison, we also show in Fig. 7b the corresponding results obtained by
a typical first-order model, namely the level-2 version of the model framework derived in
Mellor and Yamada (1974, 1982). This model is based on a steady-state expression for the
TKE, which is not directly obtained from any prognostic equation. The equivalent TKE can
be calculated in the following way,

Keq = % (151 (2 + 9))*/3, (25)

which corresponds to Eq. 59 in Mellor and Yamada (1974). The length scale [ in this model
is determined by a modified version of the expression proposed by Blackadar (1962) (see
Eq. 6), where the asymptotic value [ = 100 m. The first-order model has been evaluated
with the same solver as used for the EARS model.®

A comparison of Fig. 7a, b reveals that the two models give quite different levels of TKE
and different boundary-layer heights. However, the intensity of the turbulence in the Mellor
and Yamada model depends heavily on the chosen expression for the length scale /, making
it difficult to compare the models quantitatively without any LES data. Nevertheless, some
interesting qualitative features can be discerned. The most apparent is the fact that, compared
to the first-order model, the current model gives a much slower decay of the TKE present

8 A more adaptive expression for [y that makes use of the profile of Keq, as shown in Mellor and Yamada
(1974, 1982), was difficult to implement in the current solver due to the implicit nature of this expression (i.e.
[ depends on Keq while Keq depends on /), requiring an iterative solution.
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Fig.7 Diurnal variation at the end of the simulation of, a TKE obtained from (20a) in the current model, and
b equivalent TKE obtained from (25) with the level-2 version of Mellor and Yamada (1974). Note that the
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Fig. 8 Diurnal variation (z = 503 m) at the end of the simulation of TKE K obtained from the TKE equation
(20a) in the current model (solid line) and equivalent TKE obtained from (25) with the level-2 version of
Mellor and Yamada (1974) (dashed line)

in the mixed layer during nightfall. In other words, there is still weak turbulence left in the
residual layer predicted by the current model. The phenomenon can be seen more clearly in
Fig. 8, which shows the evolution of TKE in the two models at a fixed height. This effect is
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Fig.9 Diurnal variation near the start of the simulation of a TKE obtained from the TKE equation (20a) in the
current model, and b equivalent TKE obtained from (25) with the level-2 version of Mellor and Yamada (1974).
Note that the colour scale is logarithmic. Also shown is ¢ the variation of the surface potential temperature

interesting in the light of recent studies of observational data that suggest the presence of weak
turbulence in the residual layer, even above the critical Richardson number (Tjernstrom et al.
2009). Whether this residual turbulence in the model is truly related to the effects described
by Tjernstrom et al. (2009) remains to be investigated.

The other aspects that we discuss are apparent near the beginning of the simulation before
the quasi-steady state has been reached. The evolution of the TKE in both models near the
start of the simulation is shown in Fig. 9. The second qualitative feature that requires attention
is the relatively smooth transition between the stable and convective boundary layers during
each morning. In the current model, the smooth transition is mainly caused by the weak
stability of the residual layer (also shown in Lazeroms et al. (2015)). These features have
also been found in observations (e.g. Angevine et al. 2001). On the other hand, many first-
order models are known to exhibit a near-instantaneous growth of the boundary layer in the
morning because the residual layer remains neutral (Beare 2008; Svensson et al. 2011). Also
in this case one can see that the first-order model in Fig. 9b has a somewhat more rapid
morning transition than the current model in Fig. 9a.

Moreover, Fig. 9a shows a more dynamical behaviour at the top of the daytime boundary
layer (inversion layer) for the current model as compared to the first-order model shown in
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Fig. 10 Diurnal variation near the start of the simulation of Kg = 97/ 2 obtained from Eq. 20c in the current
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Fig. 11 Diurnal variation near the start of the simulation of the equivalent length scale leq (Eq. 26) in the
current model. Note that the colour scale is logarithmic

Fig. 9b, for which the contour plot of TKE appears rather “flat”. This effect is likely due to
the inclusion of a prognostic equation for the temperature variance 82 = 2Ky in the current
model and the counter-gradient heat-flux term that it generates, whereas the first-order model
is derived from a steady-state expression for this quantity. The importance of the temperature
variance in the inversion layer can be seen in Fig. 10. Determining this quantity from a
prognostic equation allows for a more dynamically adapting behaviour and might improve
the description of entrainment processes in this part of the boundary layer.

As mentioned earlier, many turbulence models currently used in weather prediction and
climatology depend heavily on the chosen formulation for the length scale /. Therefore, we
investigate how this quantity is represented in the current model. Since the model makes use
of the K — ¢ equations instead of a separate formulation for /, an equivalent expression can
be constructed from K and e. This can be done as follows (cf. Egs. 8 and 11a),

K3/2

lcq == (jul“gi‘*, (2(5)
with C;, = 0.09. Figure 11 shows the diurnal variation of this equivalent length scale for
three consecutive days at the start of the simulation. One can see that this length scale has a
very dynamic behaviour, in contrast to the constant length scale (Eq. 6) used for the Mellor
and Yamada model. In practice, however, some atmospheric models tend to use different
(empirical) formulations for the length scale in stable and unstable situations, as well as
for the surface layer and the upper part of the boundary layer (e.g. Andrén 1990). These
different empirical relations are not necessarily continuous when transitions from stable to
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Fig. 12 Diurnal variation at the end of the simulation of a the turbulent momentum flux @y, = w2 + vw?

(logarithmic colour scale), and b the turbulent momentum flux at the surface (z = zq), both calculated from
the current model

unstable conditions occur. In such cases, a dynamically adapting length scale as provided by
the K — ¢ model can have significant computational advantages, as well as a more realistic
description of the turbulence physics. This also holds for the equations for TKE and the
temperature variance. The effect of using more prognostic equations in the current model
can also be seen in Fig. 9a, where the results are clearly different each day (i.e. TKE is
dynamically adapting during the first half of the simulation, before the quasi-steady state
has been reached), while the first-order model results in Fig. 9b are nearly identical each
consecutive day. The advantage of using dynamical equations for the turbulence scales has
also been noted by Sogachev et al. (2012). Of course, the K — ¢ framework is not the only way
to produce a dynamical length scale, and several dynamical equations for the length scale
have been introduced in the past in the atmospheric community (e.g. Mellor and Yamada
1982). In a more quantitative study, it would be helpful to test the EARS model in conjunction
with other length-scale formulations as well. See also Sun et al. (2015) for a discussion on
length-scale formulations.

To complete the discussion of this test case, we show the time evolution of the turbulent
momentum and heat fluxes calculated with the current model in Figs. 12 and 13. These results
are taken at the end of the simulation when the system has reached the quasi-steady state. One
can observe in Fig. 12a that the momentum flux in the residual layer is zero, while the TKE
is non-zero here (cf. Fig. 7), implying that these residual motions are uncorrelated and would
naturally decay. Interestingly, Fig. 13a reveals patches of positive but small (<10™* K m
s~ 1) turbulent heat-flux in this part of the residual layer, which is weakly stably stratified. We
therefore obtain a small positive contribution of the counter-gradient heat-flux term (Eq. 18) in
this region. Such a contribution would of course be absent in the first-order model. Apart from
this, the first-order model was found to give qualitatively similar results for the momentum
and heat fluxes, albeit with lower intensities compared to the current model, as already noted
for the TKE in Figs. 7, 8, and 9.

@ Springer



40 W. M. J. Lazeroms et al.

(a)
1500 0.03
002
|
1000} A1 oo1 =
—
£ 0 =
o 9
™ 5001 1001 &
002 |2
o)) " 4/- 4—/—4 L -0.03
200 410 420 430 440 450 460 470 480
t (h)
~ 01
[
v
g
M
&
=
(=3
a2
|CD
E ‘ ‘ ‘ ‘ ‘ ‘ ‘
oo 410 420 430 240 450 460 470 480

1 (h)

Fig. 13 Diurnal variation at the end of the simulation of a the vertical turbulent heat flux w0, and b the
vertical turbulent heat flux at the surface (z = z(), both calculated from the current model

6 Conclusions

We have applied a newly developed explicit algebraic Reynolds-stress (EARS) model to the
atmospheric boundary layer. The EARS model was derived from fundamental principles as
described in Sect. 2.2. An essential feature of the model is its ability to capture an anisotropic
distribution among the components of TKE, in contrast to standard eddy-viscosity models.
This is crucial for the ABL, and stratified flows in general, which can exhibit a high degree of
anisotropy. Apart from the evolution description for K, € and Ky given by Eq. 20, the model
framework contains only a few model parameters that appear through the general linear model
for the pressure-redistribution terms, and which have been calibrated in Lazeroms et al. (2013,
2015) and earlier work. Also the boundary conditions are based on rather general relations
for the logarithmic layer.

We were able to make a thorough comparison of model simulations with LES data in the
GABLSI case (Beare et al. 2006). The results in Figs. 1 and 2 show very good agreement
with available LES data (especially the dataset from NCAR) and the agreement appears
significantly better than with a standard TKE scheme. The good results of the model for
this stably stratified case are consistent with those presented in Lazeroms et al. (2013) for
turbulent channel flow. A very interesting result in Figs. 1 and 2 is the close agreement of the
current model and the EFB closure as implemented in the ARPEGE model, even though they
are based on somewhat different theoretical considerations. Most notably, the EFB closure as
presented in Zilitinkevich et al. (2013) appears to have more empirical assumptions where our
EARS model is based on more basic principles. A thorough comparison of the two models
in different test cases would be an interesting subject of future work, in order to grasp the
differences and similarities between them.

Furthermore, we have shown some qualitative results for an idealized diurnal cycle based
on the GABLS2 case (Svensson et al. 2011). A comparison with a simpler first-order model
has shown some interesting features of the current model, which shed light on the aspects
where the model might give an improvement over other models (e.g. the smooth morning
transition and the dynamics in the inversion layer). However, the big drawback of this test case
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is the lack of LES data for a thorough comparison. It would be interesting to conduct a LES
study of the currently presented diurnal cycle with sinusoidal surface temperature variation
to systematically assess the EARS model and other turbulence closures. A similar idealized
case based on strongly stable conditions in the Antarctic is currently being considered as part
of the GABLS4 intercomparison project. Furthermore, there are previous LES studies that
have focussed only on certain aspects of the diurnal cycle (Beare 2008; Kumar et al. 2010).

One specific result that requires attention is explained by Fig. 5a, which shows that,
although the current model is derived from quite fundamental considerations, it predicts a
critical Richardson number above which turbulence will not be sustained indefinitely, an
important difference with the EFB closure specifically designed for predicting sustained tur-
bulence for high Richardson numbers. The question remains as to whether the regime of
weak turbulence found in observations is caused by a phenomenon that in principle cannot
be captured by RANS models (cf. Sun et al. 2015), so that further (empirical) corrections are
the only means of removing the critical Richardson number. The residual TKE predicted by
the current model (Fig. 7a) in the residual layer is also interesting in this respect, since it is
a form of (decaying) turbulence present in very stable conditions (cf. Balsley et al. 2008). A
crucial aspect of the model might be its ability to correctly predict anisotropic flows, so that
the vertical motions are damped much more strongly in stable conditions than are horizontal
motions. These anisotropic effects can even be extended by using an anisotropic diffusion
length scale for TKE (e.g. Daly and Harlow 1970) instead of the simpler formulation in Eq. 9.
Another effect that may be of interest in the issue of the critical Richardson number is the
interaction of gravity waves and turbulence, which is normally not captured by turbulence
models (Nappo et al. 2014).

The current approach may go beyond the computational limitations of climate models and
NWP models. Despite its more fundamental derivation, the current model is not necessarily
more accurate than simpler models, which are specifically designed and tuned for use in
practical codes. However, a derivation from more general principles should make the model
applicable in a wide variety of conditions, in contrast to being tuned for very specific cases.
From this point of view, a more practical study of the model’s behaviour in a full climate
model is also necessary. The current model might prove to be more numerically stable than
simpler models because it describes the physics of turbulent transport in the ABL in a more
dynamical and continuous way, as discussed in the previous section.
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Appendix 1: Details of the Model

In Sect. 2.2, we explained that our model is derived from a set of dimensionless algebraic
equations for the Reynolds-stress anisotropy a;; and the normalized heat flux &;, defined in
(14). These equations can be written in the following form (see Lazeroms et al. 2013, 2015),
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N aij == £Sij + C1 (aixSkj + Sikarj — 50km Skmbij)
+ C (ain 2k — QRiarj) — C3 (&) + & T — FTk&kdij) . (27a)
Np & = — (csSij + ca$2ij) &€ — co (aij + 38;) Oj — cr T, (27b)

in which we have the mean strain-rate tensor S;, the mean rotation-rate tensor §2;;, the mean
temperature gradient ©®; and the buoyancy vector I related to gravity and the temperature
fluctuations. The quantities N and Ny denote scalar factors that still depend on a;; and &;
(see Eq. 32). The other symbols in (27) are model constants to which we assign the values
specified in Lazeroms et al. (2013). Equation (27) is equivalent to the transport equations
for the Reynolds stresses and heat flux, Eq. 12, after incorporating the Launder et al. (1975)
and Wikstrom et al. (2000) models for the pressure-redistribution terms and applying the
weak-equilibrium assumption. The model constants in (27) appear through the model for
these pressure terms.

In Lazeroms et al. (2013) we propose a method to solve these equations specifically for
two-dimensional flows. The general form of the model can be written as,

M
aij = > pT L (28a)
k=1
M/
g=> nvi, (28b)
k=1

where Tlik) and Vi(k) consist of tensorial combinations of S;;, £2;;, ©; and I;. This general
tensorial form is independent of the coordinate system. Inserting the ansatz in Eq. 27 yields
a linear system for the coefficients B and A.

For the more specific case of parallel shear flows, the coefficients B and A; were derived
explicitly in Lazeroms et al. (2013). The same coefficients are used in the current model to
determine fn,, fh, fo in the expressions for the eddy coefficients and counter-gradient heat
flux (Eq. 19). In their most compact form, these expressions read,

1
fr= =5 (B1+ Bz = i)y — Bl ). (299)
1
fh=- ()»91 + 5”9»94) , (29b)
fo = —Ag1, (290)
where
1K2[aV|?
s = S Skm = 22 |92 (30a)
K% 936

®_ne, =_82 %97 30b
14 & Ok To & 92 (30b)

2

g8 KKy

r’=rnagy = ol (30c)

0

are some important invariants in the flow. Furthermore, the general form (28) also yields
expressions for the other components of u;u; and u;0 (e.g. those shown in Fig. 5). The full
expressions for the coefficients By and Ay are given in Lazeroms et al. (2013, 2015). These
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coefficients also depend on the aforementioned invariants, as well as the model parameters
appearing in (27). For example, the coefficient 8; in (29a) can be written as,

8 N

R — 31
Pr=—1sn% CIls Gb
where C, = 4/9 is a model parameter and the factor N is defined as,
P+Y
N=eo—1+252 (32)
£

where ¢ = 1.8 and &2, ¢ and ¢ are terms in the TKE equation (7). As discussed in Lazeroms
et al. (2013, 2015), the exact value of N obeys a complicated non-linear equation, but an
efficient and robust method to approximate this quantity, as well as the factor Ny in (27), has
been presented in Lazeroms et al. (2015).

Note that we use the expressions for parallel flows, even though the geometry of the
(single-column) ABL as given by (1) is technically not a parallel flow. However, as already
mentioned in Lazeroms et al. (2015), one can show that the geometric properties of the ABL
cases considered here are equivalent to those of parallel flows because the relations between
the invariants of the tensor groups in the model are the same. Furthermore, we have assumed
that effects due to the Earth’s rotation can be neglected in the turbulence model, i.e. the Earth’s
rotation only affects the mean flow equations through the Coriolis term. This can be justified
by considering the Rossby number for the turbulent motions in the ABL, Ro = ¢q/(f]),
which is large (>10) for a velocity scale ¢ &~ 1 m s™!, length scale / < 10> m and Coriolis
parameter f ~ 10~* s71, as also noted in Lazeroms et al. (2015).

Appendix 2: Distinction Between the EARS Model and the Mellor and
Yamada Level-3 Closure

Although the weak-equilibrium assumption underlying the EARS model leads to a set of
equations similar to the level-3 closure models in Mellor and Yamada (1974, 1982), there are
some important fundamental differences between the two types of models. Here we explain
these differences in more detail focussing on the equations for the momentum flux (similar
arguments apply to the heat flux). As explained in Lazeroms et al. (2013), the transport
equation for the dimensionless anisotropy a;; (see Eq. 14) can be derived from (7) and (12a)
and has the form,

Da;; 1 ujuj 1 uij
ok \%iT ¢ =g \Zi +ij = &ij +%j - == (F —e+9) )],
(33)

in which the left-hand side denotes the advection and diffusion terms of g;;. In the weak-
equilibrium assumption, each term on the left-hand side is neglected, leading to the approxi-
mations in Eq. 15 for the advection and diffusion of #;u, and the following balance of terms,

Uil

K (W—S‘f‘g):yi‘/“r‘nﬁ—Eij"‘gi_/W (34

Since the shear production & and buoyancy production ¢ depend on u;u; and u;6, the terms
on the left-hand side of Eq. 34 are non-linear in the fluxes. This is the reason why, in order
to obtain a consistent EARS model, we have to solve the non-linear equation for the factor
N (Eq. 32) as explained in Appendix 1 and Lazeroms et al. (2015).
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On the other hand, the simplifications made in the level-3 model of Mellor and Yamada
(1974, 1982) are based on a scaling analysis and subsequently neglecting terms of order a?,
where a is the magnitude of g;;, rather than considering the variations in this quantity. This
leads to a different approximation of advection and diffusion of u;u;, viz.

Duiuj ~ 2(3 DK

D 39D’ (352)
2
Dij ~ gfsij-@, (35b)

which is an isotropic formulation of these terms, in contrast to the (possibly more general)
anisotropic formulation of Eq. 15. In fact, the same approximation would be obtained if one
neglects advection and diffusion of the dimensional anisotropy, b;; = u;u; — %8,- j» as was
done by Cheng et al. (2002). Neglecting these terms seems to be less plausible than neglecting
advection and diffusion of a;; because the assumption of slow variations in space and time
(i.e. the weak-equilibrium assumption) does not readily apply to dimensional quantities.
Hence, the Mellor and Yamada approach is strictly valid only in strong equilibrium where
also the turbulence scales are in equilibrium. The consequence is that rapidly developing
flows cannot be captured, see Wallin and Johansson (2000). Furthermore, the Mellor and
Yamada approach leads to the following balance of terms,

25 (P +9) = Pij + IT;; — &ij + %, (36)

which is fully linear in the turbulent fluxes (assuming a linear model for IT;; is used).
Therefore, Mellor and Yamada level-3 models do not contain a non-linear equation for the
production-to-dissipation ratio (i.e. the factor N in (32)). This is a major difference in com-
plexity between these types of models and EARS models.
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