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• A stage structured model for two parasitoids with a common host is reanalyzed.
• Maturation delays of the host are randomly distributed.
• Depending on these distributions multiple coexistence equilibria can arise.
• Multiple coexistence equilibria can be simultaneously stable.
• Stable coexistence does not necessarily require mutual invasibility.
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a b s t r a c t

Briggs et al. (1993) introduced a host–parasitoid model for the dynamics of a systemwith two parasitoids
that attack different juvenile stages of a common host. Their main result was that coexistence of the
parasitoids is only possiblewhen there is sufficient variability in thematuration delays of the host juvenile
stages. Here, we analyze the phenomenon of coexistence in that model more deeply. We show that
with some distribution families for the maturation delays, the coexistence equilibrium is unique, while
with other distributions multiple coexistence equilibria can be found. In particular, we find that stable
coexistence does not necessarily require mutual invasibility.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

It is known that parasitoid species of the same host can coex-
ist (Force, 1970; Price, 1970; Harvey et al., 2009). This observa-
tion seems to contradict a principle in ecology which predicts that
competing species cannot coexist on the same limiting resource
(Gause and Witt, 1935), though it has been shown that the prin-
ciple holds under very stringent equilibrium conditions (Chesson
and Case, 1986) and that competitors can coexist on the same bi-
ological resource along periodic solutions (Hsu et al., 1977; Arm-
strong and McGehee, 1980). Parasitoid species are a particularly
interesting case, as various mechanisms that can promote para-
sitoid coexistence on the same host have been suggested (Price,
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1970; Lane et al., 2006; Hackett-Jones et al., 2009). Briggs (1993)
started to investigate under which conditions parasitoids can
coexist when they attack different juvenile stages of a common
host. This investigation was continued by Briggs et al. (1993), who
found that in their model coexistence at equilibrium is possible
only when there is sufficient variability in the maturation delays
of the juvenile stages. They suggested that when the variability is
large enough, different host individuals can be interpreted as dif-
ferent resources: individuals with a relatively long egg phase sup-
port the egg parasitoid, and individuals with a relatively long larva
phase support the larva parasitoid. In the present paper, we re-
analyze the model by Briggs et al. (1993) and find more complex
patterns than those already identified: there may be multiple co-
existence equilibria, and, contrary to conventional wisdom, stable
coexistence does not require mutual invasibility. Themodel is pre-
sented in Section 2. In Sections 3–5, we formulate the original re-
sults in our somewhat different notation and, in Section 6,we show
that coexistence equilibria are not unique formany distributions of
thematuration delays. Finally, in Section 7,we set our results in the
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context of other works, discuss their relevance for biological pest
control, and propose questions for further investigation. A general
introduction to parasitoid–host systems can be found, for instance,
in the text book by Godfray (1994).

2. The model

The model describes a host with two juvenile stages E and
L, and an adult stage A. We refer to the first juvenile stage as
eggs and to the second juvenile stage as larvae but they can also
represent other developmental stages as pupae or different instars.
The egg stage is attacked by an egg parasitoid (whose density
is denoted by P) while the larva stage is attacked by a larva
parasitoid (density denoted by Q ) with attack rates aP and aQ ,
respectively. Non-infected host juveniles have randommaturation
delays which are distributed with probability density functions
wE and wL. Infected hosts do not progress to the next stage but
give rise to new parasitoids a constant time TJP or TJQ after the
infection. Unlike the original paper, we do not explicitly introduce
survival probabilities for the juvenile parasitoids, since these can
be absorbed in the parameters cP and cQ for the expected number
of parasitoids emerging from an infected host. All other host and
parasitoid stages have constant (background) death rates dE , dL, dA,
dP and dQ . Adult hosts have a life time fecundityρ (soρdA is the rate
with which an adult produces offspring).

The population dynamics are described by delay differential
equations shown below.We adopt the notation used in the original
paper but extend itwhenneeded. For simplicity, the termmaturing
is used for eggs transforming to larvae as well as for larvae
transforming to adults, although for eggs the term hatching might
be more appropriate. The balance equations for the population
densities are

dE(t)
dt

= RE(t) − ME(t) − aPP(t)E(t) − dEE(t)

dL(t)
dt

= ME(t) − ML(t) − aQQ (t)L(t) − dLL(t)

dA(t)
dt

= ML(t) − dAA(t)

dP(t)
dt

= aPcPE(t − TJP)P(t − TJP) − dPP(t)

dQ (t)
dt

= aQ cQ L(t − TJQ )Q (t − TJQ ) − dQQ (t)

(1)

where

RE(t) = ρdAA(t) Host egg recruitment
rate

ME(t) =
∞

0 RE(t − xE)SE(xE, t)wE(xE)dxE
Host egg maturation
rate = host larva
recruitment rate

ML(t) =
∞

0 ME(t − xL)SL(xL, t)wL(xL)dxL
Host larva maturation
rate = host adult
recruitment rate

with
SE(xE, t) =

exp

−
 t
t−xE

(aPP(y) + dE)dy
 Probability for host

eggs to survive from
time t − xE to t

SL(xL, t) =

exp

−
 t
t−xL

(aQQ (y) + dL)dy
 Probability for host

larvae to survive from
time t − xL to t

and
Parameter Description
ρ Total lifetime fecundity of host adults

dE Background mortality rate of host eggs
dL Background mortality rate of host larvae
dA Background mortality rate of host adults
dP Background mortality rate of egg parasitoids
dQ Background mortality rate of larva

parasitoids
aP Egg parasitoid attack rate
aQ Larva parasitoid attack rate

cP Expected number of egg parasitoids
emerging from infected egg

cQ Expected number of larva parasitoids
emerging from infected larva

TJP Duration of juvenile egg parasitoid stage
TJQ Duration of juvenile larva parasitoid stage

and

Function Description
wE probability density function for host egg

maturation delay
wL probability density function for host larva

maturation delay

3. Preliminaries

In order to investigate equilibrium states, we introduce some
quantities that depend on constant parasitoid densities P and Q .
Note first that eggs and larvae can have three different fates:
they can die due to the background death rates dE and dL, they
can be successfully attacked by parasitoids or they can progress
to the next stage. We first state the formulas for the transition
probabilities between the host stages and the expected durations
in the different stages (for the full computations see Appendix A).

The probability that a freshly emerged egg hatches into a larva
is

Π1(P) =


∞

0
wE(τ ) e−(aP P+dE )τ dτ (2)

and the probability that a freshly hatched larva emerges as an adult
is

Π2(Q ) =


∞

0
wL(τ ) e−(aQ Q+dL)τ dτ . (3)

As shown in Appendix A.2, the expected duration of the egg stage
is

Γ1(P) =
1 − Π1(P)

aPP + dE
, (4)

the expected duration of the larva stage (given that this stage is
reached) is

Γ2(Q ) =
1 − Π2(Q )

aQQ + dL
, (5)

and the expected duration of the adult stage (given that this stage
is reached) is

Γ3 =
1
dA

. (6)

We now can state the following relations, valid when the related
population densities are constant:



36 F. Pfab et al. / Theoretical Population Biology 113 (2017) 34–46
The rate of eggs emerging, given constant adult density A, is by
definition

RE = ρdAA. (7)

The constant egg density E is the product of the rate of eggs
emerging and the expected duration of the egg stage (to verify set
dE
dt = 0),

E = RE Γ1(P). (8)

The constant larva density L is the product of three factors, viz.,
the rate of eggs emerging, the probability for an egg to mature to a
larva and the expected duration of the larva stage, given that it is
reached (to verify set dL

dt = 0),

L = RE Π1(P)Γ2(Q ). (9)

The constant adult density A is the product of four factors, viz.,
the rate of eggs emerging, the probability for an egg to mature to
a larva, the probability for a larva to mature to an adult and the
expected life length of an adult (to verify set dA

dt = 0),

A = RE Π1(P)Π2(Q )Γ3. (10)

The average number of offspring from a freshly laid egg (the basic
reproduction number of the host) is the product of the average
output of an adult ρ and the probability for an egg to mature to
an adult,

R0 = ρ Π1(P) Π2(Q ). (11)

At a nontrivial equilibrium the basic reproduction number R0
equals one, as can be seen by plugging the definition of RE into Eq.
(10). The zero growth condition for host eggs (8) and larvae (9) can
be combined by eliminating RE . This yields

Π1(P)Γ2(Q )

Γ1(P)
=

L
E
. (12)

4. Equilibrium states

4.1. When only the egg parasitoid is present

For the case that only the egg parasitoid is present, its
equilibrium density P∗ can be determined by plugging Q = 0
into the basic reproduction number R0, which is equal to 1 at
equilibrium, i.e. by requiring

ρ Π1(P∗) Π2(0) = 1. (13)

Assuming that R0 > 1 for P = 0 and Q = 0, this equation has
a unique root for P∗ since R0 approaches 0 strictly monotonically
with increasing P .

The equilibrium state for the egg density is determined by the
requirement of zero growth rate for (non-trivial) P . This, by setting
dP(t)/dt = 0 and assuming constant population densities, leads
to

E∗

P =
dP
aPcP

. (14)

The equilibrium larva density L∗

P in the presence of only the egg
parasitoid can be calculated from the relation (12),

L∗

P = E∗

P
Π1(P∗)Γ2(0)

Γ1(P∗)
. (15)

The host adult density can be obtained for all equilibrium systems
by combining (7) and (8).
4.2. When only the larva parasitoid is present

In the same way as for the egg parasitoid, we can derive the
equilibrium densities for the case that only the larva parasitoid is
present. The equilibrium larva parasitoid density Q ∗ is determined
through the equation

ρ Π1(0) Π2(Q ∗) = 1 (16)

and again this equilibrium density is unique. The equilibrium larva
density is

L∗

Q =
dQ

aQ cQ
, (17)

and the equilibrium egg density is

E∗

Q = L∗

Q
Γ1(0)

Π1(0)Γ2(Q ∗)
. (18)

4.3. When both parasitoids are present

According to Eq. (11) the host adult density is in equilibrium
when the parasitoid densities satisfy

Q = Π−1
2


1

ρ Π1(P)


(19)

where Π−1
2 is the inverse function of Π2. Plugging (19) into (12)

yields a condition for all host stages to be in equilibrium

f (P) =
L
E

(20)

where f : [0, P∗
] → R+ is defined by

f (P) =
Π1(P)

Γ1(P)
Γ2


Π−1

2


1

ρ Π1(P)


. (21)

When both parasitoids coexist, the equilibrium egg and larva
densities are determined by the requirement of zero growth rate
for the egg and larva parasitoid, respectively. Hence, they are given
by E∗

P and L∗

Q , and thus the egg parasitoid coexistence equilibrium
P∗∗ is determined by the following condition:

f (P∗∗) =
L∗

Q

E∗

P
. (22)

The corresponding larva parasitoid density Q ∗∗ can be obtained by
Eq. (19).

Note that in the sameway one can derive an equivalent function
g(Q ) = L/E which determines coexistence equilibria by g(Q ∗∗) =
L∗Q
E∗
P
, where

g(Q ) =

Π1


Π−1

1


1

ρ Π2(Q )


Γ1


Π−1

1


1

ρ Π2(Q )

 Γ2(Q )

=
Γ2(Q )

Π2(Q )

1

ρ Γ1


Π−1

1


1

ρ Π2(Q )

 (23)

with Π−1
1 being the inverse function of Π1. All further analysis

could be carried out with either f or g but for simplicity we stick
with the function f .

Turning back to the function f , we see that the shape of the
function contains information on the multiplicity of coexistence
equilibria. According to Eq. (22), multiple coexistence equilibria
cannot arise if f is strictly monotonic. If on the other hand for
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some parameters f is not monotonic, we can always find values
of the parameters cP , cQ , dP or dQ that give rise to multiple
coexistence equilibria by shifting the critical horizontal L∗

Q /E∗

P =

dQ aPcP/dPaQ cQ until the graph of the function f (which does not
depend on those parameters) is intersected multiple times. Each
intersection yields a coexistence equilibrium. Similarly, the critical
horizontal can be shifted using those parameters until there are no
coexistence equilibria.

5. Invasibility of stable equilibria

When in the absence of parasitoids R0 > 1, either parasitoid can
establish a population. Often, a stable host–parasitoid equilibrium
will be reached with R0 set at 1 (Murdoch et al., 1987) and we
follow Briggs et al. (1993) in examining when this equilibrium can
be invaded by the other parasitoid. A case where the host and
parasitoid populations settle into a periodic solution is examined
numerically in the next section.

It is not difficult to show that a stable equilibrium population
with only the larva parasitoid can be invaded by the egg parasitoid
when the egg parasitoid alone reduces the egg density more than
the larva parasitoid alone, that is when

E∗

P < E∗

Q . (24)

To demonstrate this, we compute the Malthusian parameter λ =

λP(E) for the egg parasitoid at constant egg density E. Namely, we
linearize system (1) around the equilibrium, obtaining

dP(t)
dt

= aPcPEP(t − TJP) − dPP(t) (25)

where E = E∗

Q . We then assume

P(t) = eλtP(0) (26)

and obtain

λP(t) = aPcPEP(t)e−λTJP − dPP(t)
λ = EaPcPe−λTJP − dP .

(27)

The egg parasitoid can invade a stable equilibrium community of
the larva parasitoid and the host when this equation has a positive
real root for E = E∗

Q , that isλP(E∗

Q ) > 0. The claim that this requires
E∗

P < E∗

Q follows because the unique real root λP(E) increases
strictlymonotonically with E and λP(E∗

P ) = 0. (Note that we do not
have to consider complex roots for λ since their real parts cannot
exceed the real root.)

In the same way it can be seen that the larva parasitoid can
invade a stable equilibriumpopulationwith only the egg parasitoid
when

L∗

Q < L∗

P . (28)

We speak of mutual invasibility of stable equilibria when

E∗

P < E∗

Q and L∗

Q < L∗

P . (29)

The value of the function f defined in (21) at the boundary of its
domain, relative to the right hand side of (22), turns out to be
related to the invasibility conditions. Indeed,

f (0) =
Π1(0)
Γ1(0)

Γ2


Π−1

2


1

ρ Π1(0)


=

Π1(0)
Γ1(0)

Γ2

Π−1

2


Π2(Q ∗)


=

Π1(0)
Γ1(0)

Γ2

Q ∗


=
L∗

Q

E∗

Q
(30)
Fig. 1. The graph of the function f which intersects the level L∗

Q /E∗

P when the egg
parasitoid density corresponds to a coexistence equilibrium. Thematuration delays
are distributed with two discrete values each (see Appendix B.2). Parameter values
are TE1 = 0.2, TE2 = 1.35, TL1 = 0.75, TL2 = 5, rE = 0.5, rL = 0.3, aP = 2, aQ = 0.2,
dE = 0, dL = 0, ρ = 500, dP = 8, dQ = 0.175, cP = 0.5 and cQ = 0.5.

and

f (P∗) =
Π1(P∗)

Γ1(P∗)
Γ2


Π−1

2


1

ρ Π1(P∗)


=

Π1(P∗)

Γ1(P∗)
Γ2

Π−1

2 (Π2(0))


=
Π1(P∗)

Γ1(P∗)
Γ2 (0)

=
L∗

P

E∗

P
, (31)

which implies that the egg parasitoid can invade a stable
equilibrium with the larva parasitoid alone when f (0) < L∗

Q /E∗

P
and the larva parasitoid can invade a stable equilibrium with the
egg parasitoid alone when f (P∗) > L∗

Q /E∗

P .

6. Applying distributions for the maturation delays

We apply several distributions for the maturation delays in or-
der to analyze their influence on the multiplicity of coexistence
equilibria. Among those are the constant-duration distribution,
(shifted) exponential distribution and (shifted) gamma distribu-
tion, which have been introduced in the original paper of Briggs
et al. (1993). Here, the term ‘shifted’ refers to including minimal
values for thematuration delays. Additionally, we introduce a two-
value distribution where thematuration delays assume one of two
discrete values with certain probabilities.

It turns out that, among these distributions, only the constant-
duration and the (non-shifted) exponential distribution yield at
most one coexistence equilibrium. For those two distributions the
function f is monotonic and therefore the critical horizontal L∗

Q /E∗

P
can be crossed at most once. Elementary representations for f in
those cases are shown in Appendix B. For the case of constant
maturation delays, f is decreasing and hence there is a coexistence
equilibrium only if f (0) > L∗

Q /E∗

P > f (P∗), implying that neither
parasitoid can invade a stable equilibrium of the other parasitoid
and the host. For the case of exponentially distributed maturation
delays, f is increasing and hence, in the other way around, there
must be mutual invasibility of stable equilibria for a coexistence
equilibrium to exist.

For all the other distributions (two-value distribution, shifted
exponential distribution and (normal or shifted) gamma distribu-
tion), we could numerically find parameters so that the graph of
f crosses the critical horizontal line multiple times, giving rise to
multiple equilibria. Fig. 1 shows an example where the graph of f
crosses the critical horizontal line four times with two-value dis-
tributions for the maturation delays (see caption).
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Fig. 2. Time plots of population dynamics after small perturbations from equilibrium densities. The initial densities for t ≤ 0 are constant and correspond to perturbations
from the equilibriumdensities indicated by the first (I), second (II), third (III) and fourth (IV) intersection of the graphof f with the critical horizontal in Fig. 1. The perturbations
consist of increasing all equilibrium densities by 5%. Note that in plot (IV) the same attractor as in plot (III) seems to be approached. Distributions and parameter values are
the same as in Fig. 1. Additionally TJP = 1, TJQ = 1 and dA = 0.3.
Fig. 3. Bifurcation diagrams showing the equilibrium values for both parasitoid species. The upper vertical axis represents values for P and the lower vertical axis represents
values for Q . The outermost lines represent equilibria with only one parasitoid species while the inner equilibria are true coexistence equilibria. Values for P and Q
corresponding to the same coexistence equilibrium are drawn with the same color in the online version of the article. Stability is indicated by solid (stable) and dashed
(unstable) lines. For the stability analysis the eigenvalues of the characteristic equation were calculated with the MATLAB package eigAM/eigTMN by Breda et al. (2014).
Parameter values are the same as in Figs. 1 and 2 (except axis parameters).
6.1. Simulations and stability

To see how the system behaves after a small perturbation
from an equilibrium, we computed time plots with the software
Mathematica shown in Fig. 2. The plots reveal that coexistence
equilibria can be stable or unstable, possibly giving rise to
oscillations around the equilibrium after perturbation. Bifurcation
diagrams are shown in Fig. 3. The left panel shows how the
parameter aP shifts the horizontal in Fig. 1 without changing the
function f , and thus we can observe how coexistence equilibria
appear and disappear in pairs when changing the parameter. The
right panel shows how the adult mortality dA affects stability
without changing the equilibrium values (since this parameter
does not occur in the function f or in the level of the critical
horizontal line). Low values for dA seem to stabilize some equilibria
while high values for dA appear to destabilize all equilibria.

We further analyzed the dynamics for low values of the host
adult death rate dA. We show some simulations for that case in the
(P,Q )-plane in Fig. 4. There we see that the population densities

lie on the curve of equation Π1(P)
Γ2(Q )

Γ1(P)
=

L∗Q
E∗
P

and move in a
direction depending on the relative position of this curve and the
curve ρΠ1(P)Π2(Q ) = 1. This can be justified through a time-
scale argument that we just sketch here, leaving details to future
work. For the argument note that A(t) is a slow variable when dA is
low, what can be seen from the models definition (1); thus in the
fast time-scale E(t), L(t), P(t) andQ (t)will evolve under a constant
value for the rate of eggs emerging, see Eq. (7). Numerical evidence
suggests that this reduced system always quickly converges to its
(quasi)-equilibrium, where E = E∗

P , L = L∗

Q and Eqs. (8) and (9)
hold, corresponding to the solid curve in the (P,Q )-plane in Fig. 4.
Thus, on the slow time-scale, A(t) changes according to the third
equation of the system (1) with all other state variables at the
quasi-equilibrium. It can be easily verified that A(t) will increase
or decrease according to whether the basic reproduction number
R0 from Eq. (11) is greater or smaller than 1, thus according to
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Fig. 4. Parasitoid phase plane with time dynamics. Initial population densities (for t ≤ 0) correspond to the second coexistence equilibrium from left in Fig. 1. Perturbation
is introduced via the host adult densities, which are, respectively to its equilibrium value, decreased by 1% in the left panel and increased by 1% in the right panel. Host adult
mortality rate is very low, dA = 0.001. All other parameter values are as in Figs. 1 and 2.
(a) For dA = 0.3, the equilibrium of host and egg parasitoid is
unstable and the larva parasitoid can invade through oscillations.

(b) For dA = 0.05, the equilibrium of host and egg parasitoid is
stable and the larva parasitoid cannot invade.

Fig. 5. Time plots of population dynamics after introducing the larva parasitoid into an equilibrium system of egg parasitoid and host. The system is started with constant
population densities for t ≤ 0 corresponding to the equilibriumdensities of egg parasitoid andhostwith additional lowdensityQ = 0.01 of the larva parasitoid. Distributions
and parameter values are the same as in Figs. 1 and 2 with the exception of a lower value for dA in the right panel.
whether (P,Q ) is above or below the dashed curve in Fig. 4. As
at the quasi-equilibrium A and P are related by relation (8) with
E = E∗

P , an increase [decrease] of A(t) corresponds to an increase
[decrease] of P(t). This explains why the dynamics in the (P,Q )-
plane is towards the rightwhen the dashed curve is above the solid
curve (R0 > 1) and towards the left when the dashed curve is
below. Since the intersections between the two curves correspond
to values of (P,Q ) where all state variables are at equilibrium, the
previous graphical argument shows that, in the limit of dA → 0,
an equilibrium is stable when the dashed curve crosses the solid
curve from above, while it is unstable when the curves cross in the
opposite way.

These findings can be transferred to the shape of the function
f (P). Indeed, it can be easily verified that the solid curve is below
the dashed curve if and only if f (P) is below L∗

Q /E∗

P . Therefore, the
findings above imply that coexistence equilibria are stable, for dA
sufficiently small, when f ′(P∗∗) > 0, while they are unstable when
f ′(P∗∗) < 0. The second statement appears to be true for all dA > 0
but we give a formal proof only for the scenario with constant
maturation delays in Appendix C.2.

Further investigations of invasibility are illustrated with time
plots in Fig. 5, where the larva parasitoid is introduced at very
low density into an equilibrium system of egg parasitoid and host.
This numerical example has important implications concerning
invasion and coexistence which go beyond what was found by
Briggs et al. (1993). One point is that the invasibility criteria
stated in Section 5 do hold only for constant equilibria. If a
single-parasitoid equilibrium is unstable with respect to the
interaction of this parasitoid and the host, it has no sense to
investigate its invasibility by the other parasitoid. Instead one
should (numerically) find the single parasitoid–host attractor and
investigate its invasibility (Metz et al., 1992). One may actually do
this in one go by using the introduction of the second parasitoid
as a way to perturb the unstable equilibrium as done in Fig. 5. As
this figure reveals, oscillations may facilitate successful invasion
in the sense that the second parasitoid is successful when the
single parasitoid equilibrium is unstable (dA = 0.3), while being
unsuccessful in case it is stable (dA = 0.05) since L∗

P < L∗

Q .
By combining Fig. 5(b) with the right panel of Fig. 3, another
conclusion emerges: non-invasibility of a stable single-parasitoid
equilibrium does not exclude the possibility of stable equilibrium
coexistence of the two parasitoids (indeed, for dA = 0.05, we
observe in Fig. 3 that simultaneously the equilibriumwith only the
egg parasitoid, and two coexistence equilibria are stable).

7. Discussion

We found multiple (non-trivial) coexistence equilibria in a
model for the population dynamics of two parasitoids attacking
different juvenile stages of a common host. The model was
introduced by Briggs et al. (1993) and it involves distributed
maturation delays for the host juvenile stages. We have shown
that, depending on the distributions of the maturation delays,
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multiple coexistence equilibria can arise. To our knowledge, this
is the first documented example of multiple coexistence equilibria
in a parasitoid–host model, as well as the first example for the
multiplicity of coexistence equilibria to depend on the distribution
of maturation delays.

Non steady-state attractors in parasitoid–host systems, in
contrast, have received considerable attention before. Already
the dynamics of the classical discrete-time model by Nicholson
and Bailey (1935) are known to be oscillatory: one or both
species go extinct after diverging oscillations around the unstable
coexistence equilibrium. In a continuous-time parasitoid–host
model by Murdoch et al. (1987), stability of a steady-state
coexistence attractor can be facilitated by an invulnerable host
stage. For modifications of this model, multiple non steady-state
attractors have been found by Murdoch et al. (1992, 1997),
Briggs (1993) and Briggs et al. (1999). Particularly, Briggs (1993)
shows that such non steady-state attractors can lead to parasitoid
coexistence in situations where no stable coexistence equilibrium
is predicted. Further, Sieber and Hilker (2011) report multiple
(non-)equilibrium attractors in a single host population that is
exploited by microparasites and predators. Beyond that, there
is a well-developed body of theory on coexistence in variable
environments (deterministic and stochastic), see for example the
works by Abrams (1984), Chesson (1994) and Li and Chesson
(2016). Occurrence of oscillations in real parasitoid populations is
documented by Godfray and Hassell (1989), who offer a review
on oscillations of host–parasitoid systems in the tropics and
corresponding discrete and continuous models.

In our model, we found that equilibria can have different
properties. Single parasitoid equilibria are potentially stable
and non-invadable only when the host stage of the other
parasitoid is reduced more strongly than what would be needed
by the competitor to sustain. Similarly, we found that two-
parasitoid coexistence equilibria are ‘‘potentially stable’’ only
when increasing a parasitoid species reduces its own host stage
relatively to its competitors host stage when the competing
parasitoid species is chosen accordingly so that the host stays at
equilibrium. Coexistence equilibria for which this is not the case
turned out to be always unstable. This can be interpreted as a
manifestation of the principle that coexistence of competitors can
be possible only when intraspecific competition is stronger than
interspecific competition, see for example the review by Chesson
(2000). For the potentially stable equilibria, we found that stability
can be always alteredwith the parameter dA of host adultmortality
(which does not change the equilibrium values due to the way the
model is parameterized). Especially, we found that low values for
dA generally stabilize potentially stable equilibria. In the other way
around, we found that high values for dA are always destabilizing.
This is similar to the observations of Murdoch et al. (1987), who
found for a similar single-parasitoid model that stable equilibria
can exist only when there is a sufficiently long invulnerable adult
stage of the host.

We made several observations concerning invasibility and
single-parasitoid equilibria in the model. One point is that, in the
presence of multiple coexistence equilibria, stable coexistence can
occur without mutual invasibility. We described a situation where
the parasitoids can coexist although the larva parasitoid cannot
invade a stable equilibrium of egg parasitoid and host (L∗

P <
L∗

Q ). This is similar to the findings of Buonomo and Cerasuolo
(2014) in a model for plants and parasites. Our example also
shows that host juvenile densities can increase when an additional
parasitoid is introduced since the equilibrium larva density with
the egg parasitoid alone L∗

P is lower than the equilibrium larva
density L∗

Q when both parasitoids coexist. Analogous examples
can be found for situations where introducing the egg parasitoid
increases the equilibrium egg density. These findings differ from
those of other authors including Briggs (1993) and Briggs et al.
(1993), who assume that stable coexistence requires mutual
invasibility, and conclude that (in the absence of othermechanisms
such as hyperparasitism) introducing a second parasitoid cannot
lead to higher equilibrium densities of host juveniles. This is
interesting in the light of the discussion whether single or
multiple parasitoids should be introduced for optimal biological
pest control, see for example the contributions by Ehler (1990)
and Pedersen and Mills (2004). Furthermore, we found that the
invasibility criterion suggested by Briggs et al. (1993) is not
generally valid when there aremultiple coexistence equilibria. The
original criterion states that a parasitoid species can invade only
if its growth rate is positive at the equilibrium host density set
by the resident parasitoid. We found however that if there are
multiple coexistence equilibria, and the residents single-parasitoid
equilibrium is not stable, invasion of the other parasitoid can
take place through oscillations eventually leading to coexistence
of both parasitoids. This is related to the findings on invasion in
oscillating conditions by Armstrong and McGehee (1980), Bacaër
andGuernaoui (2006), Greenman andNorman (2007) and Bate and
Hilker (2013). Since in our model such situations occurred only
when there are multiple coexistence equilibria we conjecture that
this is indeed a necessary condition.

The question remains of when coexistence equilibria can arise
generally and what is the connection to the maturation delays
of the hosts. A literature search reveals that the occurrence of
multiple equilibria in population models is generally connected
to some non-linearity or non-monotonicity in the interaction of
different species. Evidence for that can be found in several models
based on ordinary differential equations. Pimenov et al. (2015)
find that in a predator–preymodel, multiple coexistence equilibria
can arise when the prey changes its behavior in dependence of
the predator density. Similarly Freeze et al. (2014) find multiple
coexistence equilibria in a three species model where a super
predator changes feeding behavior in dependence of its prey
species densities. Buonomo and Cerasuolo (2014) find multiple
coexistence equilibria in a model with host plants that react to
parasitism in a non-linear way.

We found in our model too that multiple coexistence equilibria
can occur only when the host larva–egg proportion depends in
a non-monotonic way on the density of one parasitoid while
the other parasitoid density is kept so that the host stays at
equilibrium. We have seen that this can never happen for two
important special cases: constant and exponentially distributed
maturation delays. For constant maturation delays, increasing
one parasitoid (and decreasing the other parasitoid accordingly)
increases its own host stage relatively to the host stage of
the competitor, which additionally implies that if there is a
coexistence equilibrium, it is unstable and neither parasitoid can
invade a stable population with the other parasitoid. Conversely
for exponentially distributed maturation delays, increasing a
parasitoid (and again decreasing the other parasitoid accordingly)
reduces its host stage relatively to the host stage of the
competitor, which additionally implies pairwise invasibility when
there is a coexistence equilibrium. For all other distributions we
investigated, the parasitoid densities can affect the hosts larva–egg
proportion in a non-monotonic fashion giving rise to multiple
coexistence equilibria. An illustration of how this can happen with
the two-value distributions we used in our numerical examples
is shown in Fig. 6. There we show the expected duration Γi of
a juvenile stage and the probability Πi to reach the next stage,
both for different densities of the corresponding parasitoid. We
see that increasing the parasitoid density first decreasesΠi heavily
because only a small part of the hosts with long maturation delay
reachesmaturation,while further increasing the parasitoid density
decreases Γi more strongly because parasitism still mainly affects
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Fig. 6. Age distribution of a host juvenile stage subjected to constant parasitism pressure aPP or aQQ equal to 0, 0.2 or 0.4 (from left to right; note that there is no background
death rate). The maturation delay for the stage is distributed by two discrete values T1 and T2 which occur with probabilities r and 1− r . The area under the curve represents
the expectation value Γi for the time in this stage, while the sum of the lengths of the vertical bars at the times T1 and T2 represents the probability Πi to reach the next
stage. The ratio Γi/Πi equals approximately 8.8, 9.5 and 7.9 from left to right, and thus first increases and then decreases with increasing parasitism. Parameter values are
r = 0.35, T1 = 1, and T2 = 12.
hosts with a long maturation delay whose contribution to Πi
was already low. Such mechanisms can lead to a non-monotonic
relation between the parasitoid densities and the hosts larva–egg
proportion, what potentially gives rise to multiple coexistence
equilibria. Note however that the ratio of a parasitoids host stage
and the other parasitoids host stage is according to (21) and (23)
not only proportional to Γi/Πi but depends also on Γj(Π

−1
j ( 1

ρΠi
))

(where j refers to the other parasitoids host stage); thus this
graphical illustration is incomplete, but still, in our view, sheds
some light on the mechanisms through which the distribution of
maturation delays affects coexistence equilibria.
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Appendix A. Transition probabilities and expected duration of
the stages

Here, we derive formulas for the transition probabilities from
egg to larva Π1(P) and from larva to adult Π2(Q ), and for
the expected duration of the egg, larva and adult stage, Γ1(P),
Γ2(Q ) and Γ3, respectively. The calculations are valid for constant
parasitoid densities P and Q . We use the following notations for
the various random variables.

Random
variable

Density Description

XE wE(τ ) Time needed for egg
maturation

XL wL(τ ) Time needed for larva
maturation

KE (aPP+dE)e−τ(aP P+dE ) Time until an egg dies
or is infected (when it
does not mature
before), distributed
exponentially

KL (aQQ +

dL)e−τ(aQ Q+dL)
Time until a larva dies
or is infected (when it
does not mature
before), distributed
exponentially

KA dAe−τdA Time until an adult
dies, distributed
exponentially
A.1. Transition probabilities Π1(P) and Π2(Q )

When the parasitoid densities are constant, the probability for
a freshly laid egg to mature to a larva is

Π1(P) = P[XE < KE]

=


∞

0


∞

τ

wE(τ ) (aPP + dE) e−(aP P+dE )σ dσ dτ

=


∞

0
wE(τ ) e−(aP P+dE )τ dτ , (A.1)

where we use the independence of XE and KE . Likewise, the
probability for a freshly hatched larva tomature to an adult is given
by

Π2(Q ) = P[XL < KL] =


∞

0
wL(τ ) e−(aQ Q+dL)τ dτ . (A.2)

Obviously, Π1 and Π2 decrease strictly monotonically to 0.

A.2. Expectation values for the durations of different stages

When the parasitoid densities are constant, the expected
duration of the egg stage (which is either terminated by death of
the egg or maturation to a larva) is for aPP + dE ≠ 0

Γ1(P) = E[min{KE, XE}]

= E[KE |KE ≤ XE]P[KE ≤ XE] + E[XE |XE < KE]P[XE < KE]

= E[KE |KE ≤ XE]P[KE ≤ XE]

+ (E[KE |XE < KE] − E[KE − XE |XE < KE])P[XE < KE]

= E[KE |KE ≤ XE]P[KE ≤ XE]

+ (E[KE |XE < KE] − E[KE])P[XE < KE]

= E[KE] − E[KE]P[XE < KE]

=
1

aPP + dE
(1 − Π1(P)) (A.3)

where we used that KE is exponentially distributed.
For aPP + dE = 0 obviously

Γ1(0) = E[XE]. (A.4)

In the same way, the expected duration of the larva stage
(given that it is reached) can be calculated for constant parasitoid
densities and aQQ + dL ≠ 0,

Γ2(Q ) = E[min{KL, XL}] =
1

aQQ + dL
(1 − Π2(Q )) (A.5)

and for aQQ + dL = 0

Γ2(0) = E[XL]. (A.6)

http://www.lexem.eu
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Note that the expectation values of KE and KL and thusΓ1 andΓ2
decrease strictly monotonically with the corresponding parasitoid
densities.

The expected duration of the adult stage of a freshly emerged
adult is

Γ3 = E[KA] =
1
dA

. (A.7)

Appendix B. Computing f for some distributions

Elementary representations for the function f from Eq. (21)
can be found for some distribution families for the maturation
delays. To facilitate the computations, we rearrange f by using the
formulas for Γ1 and Γ2 derived in Appendix A.2 (assuming that
aPP + dE and aQΠ−1

2


1

ρ Π1(P)


+ dL are non-zero),

f (P) =
Π1(P)

Γ1(P)
Γ2


Π−1

2


1

ρ Π1(P)



=
Π1(P)
1−Π1(P)

aP P+dE

1 − Π2


Π−1

2


1

ρ Π1(P)


aQΠ−1

2


1

ρ Π1(P)


+ dL

= (aPP + dE)
Π1(P)

1 − Π1(P)

1 −
1

ρ Π1(P)

aQΠ−1
2


1

ρ Π1(P)


+ dL

. (B.1)

Now, the following formulas for f in the special cases can be easily
verified.

B.1. Constant durations

The maturation from egg to larva and from larva to adult takes
a constant time TE and TL, respectively. For this distribution,

Π1(P) = e−(aP P+dE )TE

Π2(Q ) = e−(aQ Q+dL)TL
(B.2)

and (for dE > 0 and dL > 0)

f (P) =
TL(aPP + dE)


ρe−(aP P+dE )TE − 1


ρ (log(ρ) − (aPP + dE)TE)


1 − e−(aP P+dE )TE

 . (B.3)

The function f (P) decreases strictly monotonically in its domain
P ∈ [0, P∗

] with P∗
= (log(ρ) − dLTL − dETE)/(TEaP) obtained by

solving (13).1 Therefore, the arguments of Sections 4.3 and 5 show
that a coexistence equilibrium is necessarily unique and arises only
when none of the parasitoids can invade an equilibriumpopulation
of the other parasitoid and the host. To prove the monotonicity of
f (P), we define γ = (aPP + dE)TE and q = log(ρ). The domain
for P implies that 0 < γ < q. Obviously f (P) is decreasing if the
following function g(γ ) is decreasing,

g(γ ) = eq
TE
TL

f (P) =
γ (eγ

− eq)
(γ − q)(eγ − 1)

. (B.4)

To prove the desired monotonicity of g(γ ), we take the derivative
by γ and show that gγ (γ ) < 0 for 0 < γ < q. Differentiation
yields

gγ (γ ) =
eγ

q + qγ − γ 2


+ eq+γ


q − qγ + γ 2


− qe2γ − eqq

(γ − q)2 (eγ − 1)2

(B.5)

1 Note that for dE = 0 or dL = 0, the stated representation of f (P) is undefined at
the boundary of its domain but our result on monotonicity stays generally valid for
the original function defined in (21). This can be verified by a simple limit argument.
and the numerator (now interpreted as a function of q for any
γ > 0)

k(q) = eγ

q + qγ − γ 2

+ eq+γ

q − qγ + γ 2

− qe2γ − eqq (B.6)

determines the sign of gγ (γ ). The first two derivatives of k(q) by q
are

kq(q) = eq+γ

q − qγ + γ 2

+ 1 − γ


− eq(1 + q) − e2γ + eγ (γ + 1)

kqq(q) = eq

eγ

q − qγ + γ 2

− 2γ + 2

− q − 2


.

(B.7)

It can be easily seen that the equation kqq(q) = 0 has only one
solution for q. Therefore, kq(q) = 0 has at most two solutions and
k(q) has at most two (local) extrema.

Moreover, we see that k(0) = k(γ ) = 0, that k(q) −−−−→
q→−∞

∞

(the dominant term being qeγ with coefficient 1 + γ − eγ ), and
that k(q) −−−→

q→∞
−∞ (the dominant termbeing qeq with coefficient

eγ (1 − γ ) − 1). Since kq(γ ) = 0, this implies k(q) < 0 for q > γ
(and actually k(q) ≤ 0 for q ≥ 0). This completes the proof that
f (P) decreases strictly monotonically.

B.2. Two-value distribution

The maturation delay from egg to larva and from larva to
adult are each distributed with two distinct values that occur
with certain probabilities. The transformation from egg to larva
has length TE1 with probability rE and length TE2 with probability
1 − rE . The transformation from larva to adult has length TL1
with probability rL and length TL2 with probability 1 − rL. For this
distribution,

ΠE(P) = rEe(aP P+dE )TE1 + (1 − rE)e(aP P+dE )TE2

ΠL(Q ) = rLe(aQ Q+dL)TL1 + (1 − rL)e(aQ Q+dL)TL2 .
(B.8)

Π−1
L and therefore f have no elementary representations. The

numerical example presented in Fig. 1 shows however that f can be
non-monotonic and that therefore multiple coexistence equilibria
can occur.

B.3. Exponential distribution

Thematuration delays from egg to larva and from larva to adult
are exponentially distributed with expectation 1/λE and 1/λL,
respectively. For this distribution,

Π1(P) =
λE

aPP + dE + λE

Π2(Q ) =
λL

aQQ + dL + λL

(B.9)

and

f (P) =
aPP + dE + λE

ρλL
. (B.10)

Obviously, f (P) increases strictly monotonically in this case.
Therefore, the arguments of Sections 4.3 and 5 state that a
coexistence equilibrium is necessarily unique and arises only in the
case of mutual invasibility.

B.4. Shifted exponential distribution

The maturation delay from egg to larva and from larva to
adult have shifted exponential distributions. They have aminimum
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Fig. B.7. The graph of the function f with gamma distributed maturation delays.
Parameter values are pE = 2, pL = 5, λE = 1, λL = 1, aP = 0.198, aQ = 1, dE = 0,
dL = 0, ρ = 550, dP = 1, dQ = 1, cP = 1 and cQ = 1.

duration ofmE andmL, respectively, followed by an additional time
which is distributed exponentiallywith expectation 1/λE and1/λL,
respectively. For this distribution,

ΠE(P) = e−(aP P+dE )mE
λE

aPP + dE + λE

ΠL(Q ) = e−(aQ Q+dL)mL
λl

aQQ + dL + λL
.

(B.11)

Π−1
L and therefore f have no elementary representations. Numer-

ical calculations show that f can become non-monotonous and
therefore multiple equilibria can arise.

B.5. Gamma distribution

The maturation delay from egg to larva and from larva to
adult have gamma distributions with shape parameter pE and pL,
respectively, and inverse scale parameter λE and λL, respectively.
For this distribution,

ΠE(P) =


λE

aPP + dE + λE

pE

ΠL(Q ) =


λL

aQQ + dL + λL

pL
.

(B.12)

Π−1
L and therefore f have elementary representations,

f (P) =

(aPP + dE)((aPP + dE + λE)
pE − ρλ

pE
E )


λ
−pE
E (aP P+dE+λE )pE

ρ

1/pL

λLρ((aPP + dE + λE)pE − λ
pE
E )


λ
−pE
E (aP P+dE+λE )pE

ρ

1/pL
− 1

 .

(B.13)

Numerical calculations show that f can become non-monotonous
and therefore multiple equilibria can arise, see Fig. B.7.

B.6. Shifted gamma distribution

The maturation delay from egg to larva and from larva to
adult have shifted gamma distributions. They have a minimum
duration of mE and mL, respectively, followed by an additional
time which is gamma distributed with shape parameter pE and pL,
respectively, and inverse scale parameter λE and λL, respectively.
For this distribution,

ΠE(P) = e−(aP P+dE )mE


λE

aPP + dE + λE

pE

ΠL(Q ) = e−(aQ Q+dL)mL


λL

aQQ + dL + λL

pL
.

(B.14)
Π−1
L and therefore f have no elementary representations. As

with the non-shifted gamma distribution, f can become non-
monotonous and therefore multiple equilibria can arise.

Appendix C. Characteristic equation

Here, we derive a characteristic equation by considering a small
perturbation from an equilibrium (E, L, A, P , Q ),

E(t) = E + e(t), L(t) = L + l(t),

A(t) = A + a(t)

P(t) = P + p(t), Q (t) = Q + q(t)

(C.1)

and assume that

e(t) = hEeλt , l(t) = hLeλt , a(t) = hAeλt

p(t) = hPeλt , q(t) = hQ eλt .
(C.2)

The aim of the characteristic equation is to investigate stability of
an equilibrium by the complex roots for λ. An equilibrium is stable
when all roots have negative real parts while it is unstable when
there are roots with positive real part, see Diekmann et al. (1995).
In order to derive the characteristic equation, we define

RE := ρdAA
γE := aPP + dE
γL := aQQ + dL

ME :=


∞

0
REe−xEγEwE(xE)dxE

ML :=


∞

0
MEe−xLγLwL(xL)dxL

(C.3)

and

rE(t) := RE(t) − RE

= ρdAA(t) − RE

= ρdA(A + a(t)) − RE
= ρdAa(t)

(C.4)

and

mE(t) :=ME(t) − ME

=


∞

0
RE(t − xE)SE(xE, t)wE(xE)dxE − ME

=


∞

0
(RE + rE(t − xE))e−xEγE

× e−aP
 t
t−xE

p(y)dy
wE(xE)dxE − ME

=


∞

0
(RE + rE(t − xE))e−xEγE

×


1 − aP

 t

t−xE
p(y)dy


wE(xE)dxE − ME

=


∞

0
rE(t − xE)e−xEγEwE(xE)dxE

−


∞

0
REe−xEγE aP

 t

t−xE
p(y)dywE(xE)dxE (C.5)

whereweuse that ex ≈ 1+x for small x and that rE(t−xE)p(y) ≈ 0.
In the same way,

mL(t) :=ML(t) − ML

=


∞

0
mE(t − xL)e−xLγLwL(xL)dxL
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−


∞

0
MEe−xLγLaQ

 t

t−xL
q(y)dywL(xL)dxL

=


∞

0


∞

0
rE(t − xE − xL)e−xEγEwE(xE)dxE

−


∞

0
REe−xEγE aP

 t−xL

t−xE−xL
p(y)dywE(xE)dxE


· e−xLγLwL(xL)dxL

−


∞

0
MEe−xLγLaQ

 t

t−xL
q(y)dywL(xL)dxL. (C.6)

Now we can state the derivatives

ė(t)= Ė(t) = RE(t) − ME(t) − aPE(t)P(t) − dEE(t)
=RE + rE(t) − (ME + mE(t))

− aP(E + e(t))(P + p(t)) − dE(E + e(t))

= rE(t) − mE(t) − aP(Ep(t) + e(t)P) − dEe(t) (C.7)

where we use that RE − ME − aPEP − dEE = 0 and e(t)p(t) ≈ 0.
In the same way

l̇(t) = mE(t) − mL(t) − aQ (Lq(t) + l(t)Q ) − dLl(t)
ȧ(t) = mL(t) − dAa(t)
ṗ(t) = cPaP(Ep(t − TJP) + e(t − TJP)P) − dPp(t)
q̇(t) = cQ aQ (Lq(t − TJQ ) + l(t − TJQ )Q ) − dQ q(t).

(C.8)

We introduce the notation

Π1 := Π1(P) =


∞

0
e−xEγEwE(xE)dxE

Π2 := Π2(Q ) =


∞

0
e−xLγLwL(xL)dxL

Π1(λ) := Π1


P +

λ

aP


=


∞

0
e−xE (γE+λ)wE(xE)dxE

Π2(λ) := Π2


Q +

λ

aQ


=


∞

0
e−xL(γL+λ)wL(xL)dxL

(C.9)

and obtain the following by plugging (C.2) into (C.7) and (C.8):

λhE = ρdA


hA − hAΠ1(λ) + AaPhP

Π1 − Π1(λ)

λ


− aP(EhP + hEP) − dEhE

λhL = ρdA


hAΠ1(λ) − AaPhP

Π1 − Π1(λ)

λ

− hAΠ1(λ)Π2(λ) + AaPhP
Π1 − Π1(λ)

λ
Π2(λ)

+ AaQhQΠ1
Π2 − Π2(λ)

λ


− aQ (LhQ + hLQ ) − dLhL

λhA = ρdA


hAΠ1(λ)Π2(λ) − AaPhP

Π1 − Π1(λ)

λ

× Π2(λ) − AaQhQΠ1
Π2 − Π2(λ)

λ


− dAhA

λhP = aPcPe−λTJP (EhP + hEP) − dPhP

λhQ = aQ cQ e−λTJQ (LhQ + hLQ ) − dQhQ

(C.10)

where we divide on both sides by eλt and use that ME = ρdAAΠ1.
From the last two equations of (C.10) we can express hp and hq
explicitly in terms of he and hl as

hP = hEΦP(λ) where ΦP(λ) =
PaPcPe−λTJP

λ + dP − aPcPEe−λTJP

hQ = hLΦQ (λ) where ΦQ (λ) =
QaQ cQ e−λTJQ

λ + dQ − aQ cQ Le−λTJQ
.

(C.11)
Using the solutions from (C.11) and the first two equations in
(C.10), we can express hE and hL in the form of Eq. (C.12), which
is given in Box I. Plugging hP , hQ , hE and hL in the third equation of
(C.10), we have the characteristic equation in the form G(λ) = 1,

G(λ)=
ρdA

λ + dA


Π1(λ)Π2(λ)

− AaPΠ2(λ)ΦP(λ)ΦE(λ)
Π1 − Π1(λ)

λ

− AaQΠ1ΦQ (λ)ΦL(λ)
Π2 − Π2(λ)

λ


. (C.13)

C.1. A sufficient condition for instability

The following observation can be helpful for proving instability
of an equilibrium. It is easily verified that G(λ) −−−→

λ→∞

0. Hence, if

G(0) > 1 then there is a positive real root for the characteristic
equation and the coexistence equilibrium is unstable. Therefore,
we investigate the structure of G(0). First, we see that

lim
λ→0

Π1 − Π1(λ)

λ
= −

dΠ1/dP
aP

lim
λ→0

Π2 − Π2(λ)

λ
= −

dΠ2/dQ
aQ

.

(C.14)

We will denote Π
′

1 = dΠ1/dP and Π
′

2 = dΠ2/dQ . Then we
calculate
ΦP(λ)ΦE(λ)

= ΦP(λ)
ρdA(1 − Π1(λ))

λ + dE + aPP + ΦP(λ)

aPE − ρdAAaP

Π1−Π1(λ)

λ


=

ρdA(1 − Π1(λ))

λ+dE+aP P
ΦP (λ)

+


aPE − ρdAAaP

Π1−Π1(λ)

λ

 . (C.15)

Since 1/ΦP(λ) −−→
λ→0

0,

lim
λ→0

ΦP(λ)ΦE(λ) =
ρdA(1 − Π1)

aPE + ρdAAΠ
′

1

. (C.16)

In the sameway Eq. (C.17) is given in Box II. Since 1/ΦQ (λ) −−→
λ→0

0,

lim
λ→0

ΦQ (λ)ΦL(λ)

=
ρdA(1 − Π2)(aPEΠ1 + ρdAAΠ

′

1)

(aQ L + ρdAAΠ1Π
′

2)(aPE + ρdAAΠ
′

1)
. (C.18)

Now, G(0) can be simplified as

G(0)=ρ


Π1Π2 + AΠ2Π

′

1
ρdA(1 − Π1)

aPE + ρdAAΠ
′

1

+ AΠ1Π
′

2
ρdA(1 − Π2)(aPEΠ1 + ρdAAΠ

′

1)

(aQ L + ρdAAΠ1Π
′

2)(aPE + ρdAAΠ
′

1)



=ρ


Π2(aPEΠ1 + ρdAAΠ

′

1)

aPE + ρdAAΠ
′

1

+ AΠ1Π
′

2
ρdA(1 − Π2)(aPEΠ1 + ρdAAΠ

′

1)

(aQ L + ρdAAΠ1Π
′

2)(aPE + ρdAAΠ
′

1)



=ρ
(aPEΠ1 + ρdAAΠ

′

1)(aQ LΠ2 + ρdAAΠ1Π
′

2)

(aPE + ρdAAΠ
′

1)(aQ L + ρdAAΠ1Π
′

2)
. (C.19)
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2)
hE = hAΦE(λ)

where ΦE(λ) =
ρdA(1 − Π1(λ))

λ + dE + aPP + ΦP(λ)

aPE − ρdAAaP

Π1−Π1(λ)

λ


hL = hAΦL(λ)

where ΦL(λ) =

ρdA

Π1(λ)(1 − Π2(λ)) − ΦE(λ)ΦP(λ)AaP(1 − Π2(λ))

Π1−Π1(λ)

λ


λ + dL + aQQ + ΦQ (λ)


aQ L − ρdAAaQΠ1

Π2−Π2(λ)

λ


(C.1

Box I.
7)
ΦQ (λ)ΦL(λ) = ΦQ (λ)
ρdA


Π1(λ)(1 − Π2(λ)) − ΦE(λ)ΦP(λ)AaP(1 − Π2(λ))

Π1−Π1(λ)

λ


λ + dL + aQQ + ΦQ (λ)


aQ L − ρdAAaQΠ1

Π2−Π2(λ)

λ


=

ρdA

Π1(λ)(1 − Π2(λ)) − ΦE(λ)ΦP(λ)AaP(1 − Π2(λ))

Π1−Π1(λ)

λ


λ+dL+aQ Q

ΦQ (λ)
+


aQ L − ρdAAaQΠ1

Π2−Π2(λ)

λ

 (C.1

Box II.
Fig. C.8. Time plots of population dynamics after small perturbations from equilibrium densities. Both maturation delays, from egg to larva and from larva to adult, have
constant lengths TE and TL , respectively. The initial densities for t ≤ 0 are constant and correspond to perturbations from the unique set of coexistence equilibrium densities.
In the left panel, the egg parasitoid density P is decreased by 1% and the larva parasitoid wins the competition. In the right panel, the larva parasitoid density Q is decreased
by 1% and the egg parasitoid wins the competition. Parameter values are TE = 1, TL = 1, aP = 1, aQ = 1, dE = 0, dL = 0, dA = 0.2, ρ = 10, dP = 1, dQ = 1, cP = 1, cQ = 3,
TJP = 1 and TJQ = 1.
C.2. Instability of the coexistence equilibriumwhenmaturation delays
are constant

We have seen in Appendix B.1 that with constant maturation
delays at most one coexistence equilibrium exists, and that,
if it exists, none of the parasitoids can invade an equilibrium
population of the other parasitoid and the host. This observation
and the simulations shown in Fig. C.8 suggest that the coexistence
equilibrium is unstable.Wewill nowprove this conjecture byusing
the criteria from Appendix C.1, which states that an equilibrium
is unstable when the corresponding G(0) > 1. Using the
formulations of Appendices B.1 and C.1, it is easily verified that
with constant maturation delays Π

′

1 = −aPTEΠ1 and Π
′

2 =

−aQ TLΠ2. Plugging into (C.19) yields with the notation Γ1(P) =

Γ 1 and Γ2(Q ) = Γ 2,

G(0)=ρ
(aPEΠ1 − aPTEρdAAΠ1)(aQ LΠ2 − aQ TLρdAAΠ1Π2)

(aPE − aPTEρdAAΠ1)(aQ L − aQ TLρdAAΠ1Π2)

=
Γ 1 − TE

Γ 1 − TEΠ1

Γ 2 − TL
Γ 2 − TLΠ2

, (C.20)

where we use E = ρdAAΓ 1, L = ρdAAΠ1Γ 2 and ρΠ1Π2 = 1
according to Eqs. (7), (8), (9) and (11). For both fractions in the
last line of (C.20), the numerator is positive and the denominator
is negative. To verify this, we deduce from Eq. (A.3) that

Γ 1 = E[min{KE, TE}] < TE and
Γ 1 = Π1TE + (1 − Π1)E[KE |KE ≤ TE] > Π1TE,

(C.21)

where KE is an exponentially distributed random variable. In the
same way, Γ 2 < TL and Π2TL < Γ 2. To prove G(0) > 1, it
is therefore enough to show that Γ 1 − TEΠ1 < TE − Γ 1 and
Γ 2 − TLΠ2 < TL − Γ 2. To verify the first – and in the same way
the second – inequality, we use Γ 1 = (1 − Π1)/(aPP + dE) from
Eq. (A.3), and argue

Γ 1 − TEΠ1 < TE − Γ 1 ⇔

1 − Π1

aPP + dE
− TEΠ1 < TE −

1 − Π1

aPP + dE
⇔

1 − Π1 − Π1(aPP + dE)TE < (aPP + dE)TE − 1 + Π1 ⇔

1 − e−γ
− γ e−γ < γ − 1 + e−γ

⇔ γ

0
(xe−x)dx <

 γ

0
(1 − e−x)dx ⇐

xe−x < 1 − e−x
∀x > 0 ⇔

1 + x < ex ∀x > 0,

(C.22)

where γ = (aPP + dE)TE . The last line of (C.22) is obviously
true. This completes the proof that the coexistence equilibrium is
unstable when the maturation delays are constant.
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