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Evidence for three genetic loci involved in both anorexia
nervosa risk and variation of body mass index
A Hinney1, M Kesselmeier2, S Jall3,4, A-L Volckmar1, M Föcker1, J Antel1, GCAN28, WTCCC328, IM Heid5, TW Winkler5, GIANT28,
SFA Grant6,7,8, EGG28, Y Guo8, AW Bergen9, W Kaye10, W Berrettini11, H Hakonarson12, Price Foundation Collaborative Group28,
Children’s Hospital of Philadelphia/Price Foundation, B Herpertz-Dahlmann13, M de Zwaan14, W Herzog15, S Ehrlich16, S Zipfel17,
KM Egberts18, R Adan19,20, M Brandys19,20, A van Elburg19, V Boraska Perica21,22, CS Franklin21, MH Tschöp3,4, E Zeggini21,
CM Bulik23,24,25, D Collier26,27, A Scherag2, TD Müller3,4 and J Hebebrand1

The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to
the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have
reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice
versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-
values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published
GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four
genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant
associations (P-values o5 × 10− 5, Bonferroni-corrected Po0.05) for nine SNP alleles at three independent loci. Interestingly, all AN
susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF
and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or
obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589;
Poverall: 2.47 × 10− 06/Pfemales: 3.45 × 10− 07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic
expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as
compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN
GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The
chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition,
the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in
weight regulation.
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INTRODUCTION
The joint analysis of genome-wide association studies (GWAS)
data pertaining to different phenotypes/diseases with overlapping

or co-morbid endophenotypes recently led to the discovery of
novel genes that had escaped detection in single phenotype/
disease analyses. For instance, by a cross-disorder analysis of five
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major psychiatric disorders common underlying biological
mechanisms were revealed.1,2 A number of genetic variants were
associated with more than one psychiatric disorder, illustrating the
usefulness of the approach. Other cross-disorder analyses have
shown overlapping genetic risk factors for phenotypes that had
not been expected to share risk factors (e.g., ulcerative colitis and
bone density or white blood cell count3). Heritability of anorexia
nervosa (AN) is moderately high.4–8 However, the two published
genome-wide association meta-analysis (GWAMA)9,10 were under-
powered to detect signals of small effect sizes, which are
characteristic of single-nucleotide polymorphisms (SNPs) identi-
fied for other psychiatric disorders.1,2 The largest GWAMA for AN
was performed in 2907 patients with AN and 14,860 controls by
the Genetic Consortium for AN (GCAN) and the Wellcome Trust
Case Control Consortium 3 (WTCCC3). Although a global meta-
analysis comprised discovery and replication data sets on a total
of 5551 AN cases and 21,080 controls, genome-wide significance
was not reached.10 However, 76% of the variant effects were
directionally consistent between discovery and replication groups.
This observation was unlikely to be spurious (P= 4× 10− 6).10

A substantial genetic contribution to the variance of body mass
index (BMI) is implicated by twin, family and adoption studies.11,12

The largest currently published GWAMA pertaining to BMI
variance revealed 97 genome-wide significant (P⩽ 5 × 10− 08)
gene loci;13 we use the term ‘BMI SNPs’ for those SNPs associated
with an increased BMI. As most of the respective genes are
expressed in the brain, a largely central regulation of human body
weight appears likely.13,14 A region on chromosome 16p11.2
supports a possible genetic link between obesity and AN. Carriers
of the respective deletion(s) are hyperphagic and obese, whereas
the carriers of the duplication(s) are underweight and show
restrictive/selective eating behavior.15,16

Sex-specific analyses have previously been conducted for BMI
and related phenotypes. For instance, the weight increasing effect
was more pronounced in female mice of the initial melanocortin-4
receptor gene (Mc4r) knock-out strain.17 In humans with MC4R
mutations leading to reduced function, the weight increasing
effect was also stronger in females.18 Sex-stratified GWAMAs for
waist–hip ratio (WHR) variation and other anthropometric traits
(height, weight, BMI, waist circumference and hip circumference)
revealed a sexual dimorphism in the genetic effects for fat
distribution and waist phenotypes.19–22 For many of these,
genome-wide significance was detected for females only.19,20

AN might be considered as an extreme weight condition,23

potentially entailing that genetic factors involved in body weight
regulation may overlap with those predisposing to AN as
suggested by several groups.8,10,23–30 Recent LD-score regression
analyses revealed a negative genetic correlation between AN and
obesity (and a similar genetic correlation with BMI), suggesting
that the same genetic factors influence normal variation in BMI as
well as dysregulated BMI in AN.30 However, in the latest GWAMA
for AN 89 SNPs with genome-wide significance for BMI variation
and obesity31,32 and 15 SNPs related to extreme obesity31 were
not associated with AN.10

There is no evidence for an aberrant body weight regulation
prior to manifestation of AN; thus, recalled premorbid weight of
AN patients seemingly covers the whole BMI range.33–35 The BMI
range of patients at medium term (5–10 years) follow-ups is
shifted to the left (lower BMI); in recovered patients overweight
occurs with a substantially lower probability than in the general
population.36,37

Here we performed three cross-trait analyses involving AN risk
and BMI variation in two GWAMAs. First, we performed a cross-
trait analysis of the 1000 SNPs with the lowest P-values from the
largest GWAMA for AN (GCAN10) for evidence of association in the
largest published GWAMA for BMI variation (GIANT13). Second, we
performed sensitivity analyses in sex-stratified data sets from the
BMI GWAMA for the best cross-trait SNPs (Table 1) because of the

profound female preponderance in AN;38,39 furthermore, sex-
stratified analyses have revealed BMI loci that had not been
detected in sex-combined analyses.13 Finally, we performed a
look-up of GWAMA-derived BMI, (childhood) obesity and WHR loci
within the AN GWAMA.
Post hoc we also performed (1) a look-up of the best cross-trait

SNPs (Table 1) in: (1) obese children and adolescents from the EGG
Consortium,40 and (2) the first GWAS for AN9 comprising 1,033 AN
cases and 3,733 pediatric controls from the Price Foundation
Collaborative Group and the Children’s Hospital of Pennsylvania.
Finally, we performed functional studies of the four genes nearest
to the best cross-trait findings.

MATERIALS AND METHODS
Look-up of ‘AN SNPs’ (GCAN) in GIANT GWAMA for BMI including
sex-specific analyses
Our primary analysis is based on the in silico look-up of the 1000 best hits
according to P-value (SNPs in high linkage disequilibrium (LD) were not
excluded) derived from the case–control AN GWAMA10 in the large-scale
GWAMA of up to 322,135 individuals from the population-based GIANT
meta-analysis for BMI.13 In light of the aforementioned results for obesity
risk alleles in the AN GWAMA,10 we did not pursue the directional
hypothesis that AN susceptibility/risk alleles are protective of obesity (i.e.
are expected to be BMI lowering); as a consequence, we report two-sided
tests. Secondarily, we performed sex-stratified analyses for the best cross-
trait SNPs in the BMI GWAMA.13

We estimated the percentage of AN GWAMA SNPs that met the same P-
value threshold in the BMI GWAMA (Supplementary Figure S1). We
estimated that the genetic overlap of BMI and AN can seemingly be
demonstrated if the number of SNPs analyzed is larger than 500, so that
the 1000 SNPs we had chosen is justified. We decided against a
computational derivation of an 'optimal' cutoff as this could inflate the
type I error rate. We did not aim for a comprehensive assessment of the
joint common SNP variation architecture of both traits.
Post hoc we performed analyses in the sub data sets of GIANT (a: full

GWAS chip data on N~ 233,000; b: Metabochip on N~ 88,000) to analyze
if the observed effects are confirmed for each sub data set.

Look-up of ‘BMI SNPs’ in GWAMA for AN susceptibility (GCAN)
We performed an in silico look-up of the 56 novel genome-wide significant
`BMI SNPs´ detected by Locke et al.13 in the case–control AN GWAMA
(GCAN10). Subsequently we also analyzed previously described SNPs for
BMI, obesity, childhood obesity and WHR (see Supplementary Tables).
A total of 2916 quality-controlled genotypes of controls were included in
both GCAN and GIANT (n= 1437 NBS-WTCCC National Blood Service
donors and n=1479 British 1958 birth cohort-WTCCC). Balancing between
consistency (i.e. running our analyses on the same data sets as those
published) and the necessity of sample independence, we rendered a
re-analysis excluding these overlapping samples unnecessary.

Subsequent look-ups in independent GWAS data sets
We performed a look-up of the best cross-trait SNPs in GWAMA data of the
EGG Consortium40 consisting of 5530 obese children and adolescents
(BMI⩾ 95th percentile) and 8318 controls (BMIo50th percentile). Data on
the childhood obesity trait has been contributed by the EGG Consortium
and was downloaded from www.egg-consortium.org.40 An additional look-
up of the best cross-trait SNPs from GCAN and GIANT was performed in the
first GWAS for AN9 consisting of 1033 AN cases and 3733 pediatric control
subjects of European ancestry; five SNPs were available.
Written informed consent to take part in genetic association studies

was given by all participants and in case of minors by their parents. Studies
were approved by the respective institutional review boards or ethics
committees and conducted in accordance with the Declaration of
Helsinki.9,10,13,40

Statistical analyses
We performed two main analyses and one stratified analysis nested within
the first main analysis focussing on European-descent individuals of two
GWAMAs. The GWAMA for AN10 was performed as fixed-effect meta-
analysis based on single-SNP case–control association analyses under an
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additive genetic model with control for population stratification at the
discovery data set level. Similarly, the GWAMA for BMI variation13 also
worked with a fixed-effect meta-analysis based on discovery data set
results obtained under a linear regression model adjusted for age, age,2

sex and study-specific covariates including control for population
stratification effects. For the first main analysis, we looked-up the 1000
SNPs of the GWAMA for AN10 with the lowest P-values (discovery P-values
from 5.56 × 10− 22 to 4.79 × 10− 4, of note: the SNP with the lowest
P-value in the initial discovery GWAS for AN was not confirmed by
genotyping in the replication sample10) in the GWAMA for BMI.13 We
applied a conservative Bonferroni correction to the uncorrected P-values of
the GWAMA for BMI to address multiple testing (see Table 1 and
Supplementary Tables), and accordingly regarded all associations as
significant which met a nominal P-value⩽ 5× 10− 5 (Table 1). For the SNPs
with significant associations in the GWAMA for BMI, we also report the
results of sex-stratified sensitivity analyses (Table 1). For the second main
analysis, we performed a look-up of the 97 BMI loci in the GWAMA for AN.
The direction of effect was evaluated only for SNPs with a nominal
P-value⩽ 0.05.
Post hoc we also analyzed genome-wide significant loci for BMI, obesity,

childhood obesity not originally described in Locke et al.13 (reviewed in
Yazdi et al. 41) and 68 genome-wide significant loci for WHR derived from a
European GWAMA primary analysis (GIANT21) in the GWAMA for AN
(GCAN10).

Animals and diet
Unless stated otherwise, male C57BL/6J mice were fed ad libitum with
either a standard chow diet (Harlan Teklad LM-485; 5.6% kcal fat) or a high-
fat diet (D12331; Research Diets, New Brunswick, NJ, USA; 58% kcal fat).
The mice had free access to water and were maintained under constant
ambient conditions (22± 1 °C, constant humidity, 12 h/12 h light/dark
cycle). All animal studies were performed in Cincinnati, OH, USA and were
approved by the Animal Ethics Committee of Cincinnati, OH, USA.

Gene expression analyses
To assess effects on fasting and re-feeding, hypothalamic gene expression
was profiled in male 27/28-week-old C57BL/6J mice fed either ad libitum

with a regular chow diet, or which had been fasted for 12, 24 or 36 h, or
which had been fasted for 36 h and then re-fed for 6 h using either a fat-
free diet or a high-fat diet (N= 6–8 mice per group). The use of existing
ex vivo material is in agreement with the US and German guidelines of the
Animal Welfare Committee to restrict animal experiments to an absolutely
necessary minimum. Target genes were amplified using the ViiA 7 real-
time PCR system (Life Technologies, Darmstadt, Germany); results were
normalized to the housekeeping gene hypoxanthine guanine phosphor-
ibosyltransferase 1 (HPRT). The used primer sequences were CTBP2-F:
3′-TACCACACCATCACCCTCAC-5′; CTBP2-R: 3′-TGTGGCAGACTGTCGAATCT-5′;
CCNEI-F: 3′-AGCCTCGGAAAATCAGACCA-5′; CCNEI-R: 3′-CTTCGCACACCTCC
ATTAGC-5′, CARF-F: 3′-GTGGACGACAGATAGTGGGA-5′; CARF-R: 3′-GGAGA
GGAGAGTCTTGGCTG-5′; NBEAL1-F: 3′-AGGAGAAGGAAATGGCTGATCA-5′
and NBEAL1-R: 3′-TCCACTGTGAGAGAAGCTGG-5′. Data represent means ±
s.e.m. *Po0.05, **Po0.01, based on a one-way ANOVA with Dunnett’s
multiple comparison post hoc test.
To additionally assess the effects of a high-fat diet on hypothalamic

expression, Nbeal1 and Ctbp2 was assessed in age-matched male C57BL/6J
mice fed either a regular chow diet (body weight 32.69 ± 0.45 g) or a high-
fat diet (body weight 54.72 ± 1.25 g; N=7–8 mice per group). Data
represent means ± s.e.m.

In silico analyses
Expression patterns and known variants in the coding regions (missense,
nonsense and frameshift) were analyzed in silico (http://www.genecards.
org/; http://exac.broadinstitute.org/about).

RESULTS
Association of AN risk SNPs with increased BMI
We detected association (P-values o5 × 10− 5, Bonferroni-cor-
rected Po0.05) at three independent chromosomal loci in the
BMI GWAMA (chromosome 2: four SNPs in LD, r2⩾ 0.819, D′= 1;
chromosome 10: three SNPs, r2⩾ 0.363, D′⩾ 0.728; and chromo-
some 19: two SNPs, r2 = 1, D′= 1); the lowest P-value (rs1561589,
2.47 × 10− 6, Pcorrected = 0.0025) was observed at the chromosome

Table 1. Nine of the 1000 SNPs with the lowest P-values in a GWAS for AN risk (GCAN9) are associated with increased BMI (GIANT,11 with Bonferroni-
corrected Po0.05 significance; sorted according to the nominal P-values for increased BMI in all GIANT participants)

Chromosome/
position
SNP
nearest gene

Location Rank in
AN GWAS

AN effect allele/
frequency in AN

cases

Odds ratio
(s.e.)

P-value for
AN risk

Frequency of AN
reference allele for

BMI

β (s.e.) for BMI for
reference allele

Nominal P-value for
increased BMI: all

female/male

Bonferroni-
corrected
P-valuea

Direction
of effectb

+/−

10/126685663
rs1561589
CTBP2

Intron 201 A/0.33 1.14 (0.04) 7.74 × 10− 05 A/0.34 0.0157 (0.0033) 2.47 x10− 06

3.45 × 10− 07/0.043
0.0025 +

10/126681170
rs12771627
CTBP2

Intron 190 G/0.75 0.87 (0.03) 7.28 × 10− 05 G/0.74 − 0.0162 (0.0035) 4.25 × 10− 06

5.8 × 10− 06/0.022
0.0043 +

10/126674064
rs11245456
CTBP2

Intron 177 C/0.75 0.87 (0.03) 6.79 × 10− 05 C/0.75 − 0.0171 (0.0037) 4.58 × 10− 06

1.03 × 10− 05/0.009
0.0046 +

19/34978662
rs17513613
CCNE1

Distant 5’ 409 T/0.70 0.88 (0.03) 0.0002 T/0.67 − 0.015 (0.0033) 5.41 × 10− 06

6.4 × 10− 03/
1.24 × 10− 05

0.0054 +

2/203492447
rs17406900
CARF

Intron 709 A/0.48 0.90 (0.03) 0.0003 A/0.49 − 0.0134 (0.0031) 1.08 × 10− 05

1.8 × 10− 04/
2.27 × 10− 03

0.0108 +

2/203639257
rs7593917
NBEAL1

Intron 444 A/0.46 0.89 (0.03) 0.0002 A/0.46 − 0.0131 (0.0031) 2.48 × 10− 05

9.54 × 10− 05/
9.39 × 10− 03

0.0248 +

2/203582157
rs11691351
NBEAL1

Distant 5’ 412 A/0.46 0.89 (0.03) 0.0002 A/0.46 − 0.0126 (0.0031) 3.57 × 10− 05

1.98 × 10− 04/
8.21 × 10− 03

0.0357 +

19/34988693
rs8102137
CCNE1

Distant 5' 248 T/0.70 0.88 (0.03) 9.45 × 10− 05 T/0.67 − 0.0169 (0.0041) 3.76 × 10− 05

0.006/2.46 × 10− 04
0.0376 +

2/203635796
rs7573079
NBEAL1

Intron 401 G/0.46 0.89 (0.03) 0.0002 G/0.46 − 0.0124 (0.0031) 4.61 × 10− 05

2.80 × 10− 04/0.008
0.0461 +

Abbreviations: BMI, body mass index; CARF, calcium responsive transcription factor; CCNE1, cyclin E1; CTBP2, C-terminal binding protein 2; GWAS, genome-wide
association studies; NBEAL1, neurobeachin-like 1; SNP, single-nucleotide polymorphism. aPrimary analysis, sex-combined, correction for 1000 tests. bDirection of
effect: + the effect/risk allele for increased BMI and AN risk are identical; − the effect/risk allele for increased BMI and AN risk are not identical.
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10 locus (Table 1). Within the GIANT13 data we post hoc also
analyzed the data sets separately for (a) full GWAS chip data
(HapMap imputed) on N~ 233,000 and (b) Metabochip on
N~ 88,000 (Supplementary Table S1). Both independent data sets
confirmed the association of the nine SNPs.
The nearest genes to these nine SNPs ordered from lowest to

highest P-values are: (1) chromosome 10: CTBP2 (C-terminal
binding protein 2 gene); (2) chromosome 19: CCNE1 (cyclin
E1 gene); (3) chromosome 2: CARF (calcium responsive transcrip-
tion factor gene) and (4) NBEAL1 (neurobeachin-like 1 gene). The
third chromosomal locus included two genes, because the four
SNPs are located in a region with high LD (lowest LD for the
four SNPs: r2⩾ 0.819, D′= 1). Interestingly, for all SNPs, the AN risk
alleles were consistently associated with increased BMI (Table 1).
Sex-specific analyses for the best cross-trait SNPs (Table 1)

revealed that the chromosome 10 association signal was primarily
driven by females. Again, post hoc sex-specific analyses in the sub
data sets of GIANT (a: full GWAS chip data on N~ 233,000; b:
Metabochip on N~ 88,000; Supplementary Table S1) confirmed
the larger effect in females for the best locus.

Further look-ups
Because AN typically manifests during adolescence, we analyzed
the identified SNPs in the EGG Consortium data set,40 which
includes only children and adolescents. The look-up of the nine
cross-trait SNPs (Table 1) did not reveal significant findings at the
five SNPs available (P-values from 0.0916 at rs11245456 to 0.6075
at rs1561589). However, the direction of effect was the same
between AN risk and early onset extreme obesity in all five SNPs.
The look-up of the nine cross-trait SNPs in the first GWAS for

AN9 comprising 1033 AN cases and 3733 pediatric controls (five
SNPs were available, each locus was represented) showed
nominally significant results for two SNPs at chromosome 2
(rs17406900, nominal P=0.03; rs7573079, nominal P=0.04), our
second best locus. However, for these SNPs the direction of effect
was opposite to the effect in GCAN.

Association of ‘BMI SNPs’ with AN
The look-up of the ‘BMI SNPs’ in the AN GWAMA did not
reveal (Bonferroni-corrected for 97 SNPs) significant results
(Supplementary Tables S2–S4). Similarly, post hoc look-ups of
additional genome-wide significant loci for BMI, obesity, child-
hood obesity41 (Supplementary Table S5) and WHR21 (Supple-
mentary Table S6) in the GWAMA for AN (GCAN10) did not reveal
statistically significant findings after correction for multiple testing.

In silico analyses
All four genes located at the three identified loci are widely
expressed in brain tissues, including the hypothalamus (http://
www.genecards.org/). A spectrum of different, potentially func-
tionally relevant variants (missense, nonsense and frameshift) was
detected for all four genes (Supplementary Table S7).

Mouse model
Gene expression profiling of Ctbp2, Ccne1, Carf, Nbeal1 in male
C57BL/6J mice revealed that hypothalamic expression of both
Ctbp2 and Nbeal1 was decreased by fasting (one-way ANOVA
Po0.05 for both targets; Figure 1). Notably, hypothalamic
expression of Ctbp2 and Nbeal1 remained decreased after 36 h
fasting followed by 6 h re-feeding with either a fat-free diet or a
high-fat diet relative to control mice fed ad libitum (Figure 1). In
line with the downregulation of hypothalamic expression of Ctbp2
and Nbeal1 in response to nutrient availability, expression of Ctbp2
was increased in diet-induced obese compared with age-matched
lean control mice (Po0.01; Figure 2); for Nbeal1 we noted a trend

for increased expression in obese compared with lean mice
(P= 0.070; Figure 2).

DISCUSSION
Among the 1000 SNPs with the lowest P-values in the GCAN
GWAMA for AN10 we identified nine SNPs in three chromosomal
regions with significant P-values in the currently largest GWAMA
for BMI variation13 using a conservative Bonferroni correction.
The relevance of these three loci is uncertain, because none of

the nine SNPs have previously been identified for either AN or
BMI/obesity or other psychiatric disorders. Two NBEAL1 SNPs
(intronic and 3′UTR, rs16839626, rs6733725; no detectable LD to
the SNPs identified here; http://www.broadinstitute.org/mpg/
snap/ldsearchpw.php) had been detected in a GWAS for obesity
related traits in 815 Hispanic children from 263 families.42 Nominal
associations (not genome-wide significant) for energy storage and
fat mass deposition (P=2×10−7), fat mass change (4×10−7) and
weight change (3×10−6) were shown.42 Central (including hypo-
thalamic) expression of all four genes was detected. We did not
detect association of the previously published GWAMA SNPs for BMI,
(childhood) obesity or WHR with AN (Supplementary Tables).
The following results do not readily substantiate the relevance

of our association findings: (a) The analysis of the five out of nine
available cross-trait SNPs in 5530 obese children and adolescents
(BMI⩾ 95th percentile) versus 8318 controls (BMIo50th percen-
tile) from the EGG Consortium40 did not reveal significant findings.
However, for all available SNPs the direction of effect was identical
to that observed in the GIANT GWAMA. Because the EGG
Consortium GWAMA is substantially smaller than the recent GIANT
approach,13 true signals may not have been detectable. (b) The
look-up of the same cross-trait SNPs in the first GWAS for AN9 did
not support our findings. This might partly be explained by the
lower sample size in the analysis of the Price Foundation
Collaborative Group and Children’s Hospital of Pennsylvania
samples9 (1033 AN cases and 3733 pediatric controls) compared
with the latest GWAS10 (2907 cases with AN and 14,860 controls).
In conclusion, we cannot exclude that our detected associations
for the nine SNPs represent false-positive associations.
The following lines of evidence do however support that we

have indeed detected SNPs associated with both AN and obesity:
The identification of the three loci with nominal P-values in
the range of 10− 5 to 10− 6 for association with BMI is quite
unexpected. Accordingly, at least one and maximally all three loci
are involved in body weight regulation; the same potentially holds
true for AN. If this assumption is correct, future larger GWAMAs for
both AN and BMI/obesity will pick up the respective loci. It is also
of interest that all risk alleles were directionally consistent for AN
risk and higher BMI. This is especially unexpected as (a) patients
with AN do not have an elevated premorbid BMI;33 (b) BMI-values
of followed up patients only infrequently exceed the cutoff for
overweight (BMI⩾ 25 kg/m2)36 and (c) LD-score regression ana-
lyses revealed a negative genetic correlation between AN and
obesity.30 It is unlikely that the overlap between the AN (controls)
and GIANT GWAMAs explains our results.

Sex-specific analyses
We also performed look-ups in sex-stratified analyses for the best
cross-trait SNPs in the BMI GWAMA, because (i) AN predominantly
occurs in females38,39 and (ii) sex-specific analyses rendered BMI
loci that had not been picked up by sex-combined analyses.13 We
found that the three AN risk SNPs at the chromosome 10 locus
with the lowest P-values in the BMI GWAMA (sex-combined)
mainly originated from the female participants (Table 1). This
finding provides additional indirect evidence that particularly this
locus is involved in both AN and body weight regulation in
females mainly.
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Animal model
The hypothalamic expression data obtained in male mice clearly
substantiate that the detected associations at two loci may indeed
represent true positive findings. The cDNA of the fasting/re-
feeding experiment described in this manuscript is commonly
used in the Müller/Tschöp lab to assess regulation of target genes.
Whereas unfortunately there is no documentation on the total
number of previously analyzed targets, it can be confirmed that
only few of the previously analyzed genes have been found to be
differentially regulated under the conditions reported here.43

Expression of Ctbp2, whose locus represented our strongest

association signal (Table 1), proved to be inversely regulated by
fasting and diet induced obesity. Thus, hypothalamic gene
expression was reduced for this gene and additionally in fasted
(12, 24 or 36 h) mice; this downregulation persisted 6 h after
renewed access to ad libitum feeding (re-feeding for 6 h with
either a high-fat diet or a fat-free diet). Genes, whose expression is
downregulated in fasting, are usually anorexigenic (e.g. leptin44,45),
while expression of orexigenic genes (e.g. ghrelin46) is increased in
fasting. Hence it is likely that both Ctbp2 and Nbeal1 have an
anorexigenic effect. In accordance with this assumption, both
genes were upregulated in DIO (Figure 2).

BDNF signaling
It is of interest to point out that the two genes CTBP2 and CARF are
involved in brain derived neurotrophic factor (BDNF) signaling
pathways.47–63 The leptinergic–melanocortinergic–BDNF pathway
includes genes with known genetic variation underlying both
monogenic and polygenic obesity.64 Multiple SNPs near BDNF are
genome-wide significantly associated with obesity.13,65 Evidence
for an involvement of BDNF in AN stems from studies on (a)
animal models, (b) genetics and (c) serum or brain levels of BDNF.
However, some of the data are equivocal. In more detail: (a) in
animal models the central infusion of BDNF induces weight
loss.66,67 The suppressive effects of BDNF on feeding behavior and
body weight are mediated by corticotropin-releasing factor and
hypothalamic neuronal histamine in mice.68 BDNF signaling is
altered by reduced BDNF expression in the hippocampus, in
activity-based anorexia in mice69 and in immobilization stress
induced anorexia in rats.70 Deletion of the Bdnf gene in the

Figure 1. Hypothalamic expression of Ctbp2 (a), Ccne1 (b), Carf (c), Nbeal1 (d), or in response to fasting for 12, 24 or 36 h, and after re-feeding
for 6 h with either a high-fat diet (HFD) or a fat-free diet (FFD, N= 6–8 mice per group) (c). *Po0.05, **Po0.01, based on a one-way analysis of
variance with Dunnett’s multiple comparison post hoc test. HPRT, hypoxanthine guanine phosphoribosyltransferase 1.

Figure 2. Hypothalamic expression of Ctbp2 and Nbeal1 in diet-
induced obesity (DIO) as compared with age-matched lean control
mice. HPRT, hypoxanthine guanine phosphoribosyltransferase 1.
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paraventricular nucleus of hypothalamus resulted in hyperphagia,
reduced locomotor activity, impaired thermogenesis and severe
obesity. Additionally, in response to cold exposure BDNF expression
in the paraventricular nucleus of hypothalamus was increased.71 (b)
Association of variation in BDNF with AN was shown by some but
not all studies.72–84 For the widely studied BDNF Val66Met variant, a
recent meta-analysis showed no association of the infrequent
66Met allele with AN.82 (c) Decreased serum and brain levels of
BDNF had unequivocally been reported in patients with AN.66,85–100

This was recently confirmed in a meta-analysis.97 While only one
study has suggested an interaction between CTBP2 and BDNF,47

the interaction of CARF and BDNF has been substantiated in
numerous studies (see above). Thus, again as BDNF might be
involved in both AN and obesity27,101,102 this gene is biologically
highly plausible.
In the following we provide additional information on the genes

located nearest to the three loci identified via the nine SNPs
starting with the chromosome harboring the SNPs with the lowest
P-values.

Chromosome 10
The three intronic SNPs in the CTBP2 gene (C-terminal binding
protein 2) show the lowest P-values in our BMI GWAMA13 look-up
(Table 1); as stated above the effect is almost only due to females.
The two alternative CTBP2 transcripts lead to two distinct proteins,
one of which is a transcriptional repressor, while the other is a
major component of synaptic ribbons, a specialized form of
synapses. A NAD+ binding domain is common to both isoforms.
There is evidence that the gene/protein is involved in brown
adipose tissue function and regulation.103–109 Ctbp2 knock-out mice
displayed abnormal phenotypes in the cardiovascular and central
nervous systems, in addition to having effects on embryogenesis,
growth/size/body and mortality/aging (http://www.informatics.jax.
org/allele/ MGI:2183646110). Recently, an miRNA that was upregu-
lated during the development of obesity in mice (miR-342-3p) was
described to promote a suppressing effect on CtBP2,111 again
underscoring the relevance of the gene for weight regulation.

Chromosome 19
The cyclin E1 gene (CCNE1) identified via the two SNPs 5′ to this
gene encodes a protein that belongs to the highly conserved
cyclin family. Cyclins act as (i) regulators of specific kinases and
(ii) contribute to the coordination of mitotic events. In many
tumors overexpression of this gene has been observed.112 It was
recently shown that proliferation of 3T3-L1 preadipocytes
promoted by recombinant myostatin increased expression of
proliferation related genes (e.g. cyclin E1 by 20.5%113).

Chromosome 2
The third chromosomal locus includes two genes, because the
four SNPs are located in a region with high LD (lowest LD for
the four SNPs: r2⩾ 0.819, D′= 1). Three of the SNPs are located in
an intron, one is 5′ to NBEAL1 (Table 1): (1) The calcium-response
factor gene (CARF or as an alias name amyotrophic lateral
sclerosis 2 (juvenile) chromosome region, candidate 8 gene:
ALS2CR8) acts as a transcriptional activator that mediates the
calcium- and neuron-selective induction of BDNF expression.52

Lack of Carf (Als2cr8) in knock-out mice results in deficits
associated with learning and memory.56 Functionally relevant
recessive mutations in the gene have been described in patients
with amyotrophic lateral sclerosis 2 (ALS2114).

CONCLUSION
In sum, in a cross-trait analysis for genetic loci involved in AN risk
and increased BMI three chromosomal loci with potential
relevance for both traits were detected. Apart from the

identification of these loci, their role in both AN and body weight
regulation was particularly substantiated by ex vivo data of mouse
models for fasting and DIO, suggesting an anorexic role of CTBP2
and NBEAL1, by the sex-specific results for CTBP2 and the finding
that CTBP2 and CARF are involved in BDNF regulation. Further in-
depth molecular genetic and biological analyses are essential to
understand the relevance of these loci and the genes they contain
in the etiology of AN and in body weight regulation/obesity. The
association of AN alleles with increased BMI might imply that a
specific genetic variant (allele) can either increase or decrease BMI
depending on the presence or absence of additional factors
with an influence of the body weight (e.g. occurrence of an
eating disorder), or the variant predisposes to dysregulation and
other genes or environmental factors determine its direction). If
true, this general concept has implications for gene mapping
approaches in genetic epidemiology calling for more hypothesis-
driven stratified analyses. A spectrum of different variants
(missense, nonsense and frameshift) has been described for the
four genes (Supplementary Table 7), so that a mutation screen in
these genes in study groups of patients with AN or extreme
obesity is warranted.
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