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ABSTRACT

At present, human risk assessment of the structurally similar non-dioxin-like (NDL) PCBs and polybrominated
diphenylethers (PBDEs) is done independently for both groups of compounds. There are however obvious similarities
between NDL-PCBs and PBDEs with regard to modulation of the intracellular calcium homeostasis (basal calcium levels,
voltage-gated calcium channels, calcium uptake, ryanodine receptor) and thyroid hormone (TH) homeostasis (TH levels and
transport). which are mechanisms of action related to neurobehavioral effects (spontaneous activity, habituation and
learning ability). There also similarities in agonistic interactions with the hepatic nuclear receptors PXR and CAR. Several
effects on developmental (reproductive) processes have also been observed, but results were more dispersed and
insufficient to compare both groups of compounds. The available mechanistic information is sufficient to warrant a dose
addition model for NDL-PCBs and PBDEs, including their hydroxylated metabolites.
Although many of the observed effects are similar from a qualitative point of view for both groups, congener or tissue
specific differences have also been found. As this is a source of uncertainty in the combined hazard and risk assessment of
these compounds, molecular entities involved in the observed mechanisms and adverse outcomes associated with these
compounds need to be identified. The systematical generation of (quantitative) structure-activity information for NDL-PCBs
and PBDEs on these targets (including potential non-additive effects) will allow a more realistic risk estimation associated
with combined exposure to both groups of compounds during early life. Additional validation studies are needed to
quantify these uncertainties for risk assessment of NDL-PCBs and PBDEs.
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Humans are commonly exposed to polychlorinated biphenyls
(PCBs) and polybrominated diphenylethers (PBDEs). Common
routes of exposure for humans are via ingestion of household
dust, inhalation, dairy products, meat, fish and human milk. For
PCBs as well as PBDEs, the highest intake is found for infants,
toddlers, and small children, with intake decreasing with age
and increasing body weight (El Majidi et al., 2014; Frederiksen
et al., 2009). It is well established that prenatal and postnatal
exposure via human milk exposes the neonate to both PCBs
and PBDEs (UNEP, 2013).

PCBs have been widely used for industrial and commercial
applications, such as heat transfer fluids, plasticizers, and

flame-retardants (Safe, 1993). Brominated flame-retardants,
such as PBDEs, were introduced in the 1970s as replacements of
PCBs. PBDEs are used mainly as additive flame-retardants (not
covalently bound to the polymers), resulting in leakage from
consumer products into the environment (Birnbaum and
Staskal, 2004). PCBs have been banned globally since the 1980s,
while PBDEs have been banned in the EU during the last decade.
Since these bans, exposure levels have been found to be declin-
ing (eg, Guo et al., 2016; Shunthirasingham et al. 2016).
Nevertheless, PCBs and PBDEs are still being detected in the en-
vironment and humans and expected to remain in the environ-
ment due to their persistence for decades to come. Based on the
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amount of exposure most PCBs to which humans are exposed
do not exhibit dioxin-like (DL) properties and therefore usually
called non dioxin-like (NDL) PCBs. NDL-PCBs and PBDEs
included in this review are those that are predominantly de-
tected in humans and wildlife. Moreover, hydroxylated metab-
olites of both NDL-PCBs and PBDEs have also been found in
different human tissues and blood (Chen et al., 2013; Quinete
et al., 2014).

At present, human risk assessment of PCBs is differentiated
with, on the one hand, the sum of PCB congeners that exhibit
DL properties [on a relative effect potency (REP) basis; Van den
Berg et al. 2006] or on the other hand, the total sum of all PCB
congeners. The human risk assessment of PBDEs, based on indi-
vidual congeners or total sum of PBDE congeners, has so far
been done independently of that for PCBs. This is in spite of the
fact that environmentally common PBDEs bear a strong struc-
tural similarity with NDL-PCBs (Figure 1).

In this review we evaluate and discuss the aptness of com-
bining exposure and effects of NDL-PCBs and PBDEs in human
risk assessment based on mechanistic considerations. To this
aim, experimental endpoints by NDL-PCBs and PBDEs and their
hydroxylated metabolites are discussed in relation to mechan-
isms of action (Table 1) with special focus on exposure and ef-
fects during early life stages. From a mixture toxicity point of
view we also focus on the potential additive effects based on
mechanisms of action of both groups of compounds.

METHODOLOGY

Literature searches for peer-reviewed articles in the scientific
literature addressing toxicity and biological effects of NDL-PCBs
and/or PBDEs in experimental in vitro and in vivo mammalian
models were performed using the PubMed database of the US
National Library of Medicine. NDL-PCB and PBDE congeners that
are commonly detected in human milk have been included in
this review based on global surveys from the World Health
Organization and UNEP (UNEP, 2013). These surveys provide a
clear and timely overview of the quantitative exposure of
human newborns as well as the maternal body burden. In add-
ition, the levels of PCBs and PBDEs in human milk can be used
as a proxy for regional exposures and support further remedial
actions for these persistent organic pollutants. Data on cytotox-
icity and related mechanisms were not included. It was ac-
cepted that NDL-PCBs and PBDEs are not able to significantly
activate the aryl hydrocarbon receptor AhR and induce specific
DL toxicity and biological effects, eg, CYP1A1 induction (Peters
et al., 2004). Therefore, experimental studies in which PCBs or
PBDEs induced CYP1A1 activity were excluded from this review
as this may indicate the presence of contaminating DL com-
pounds, which may obscure specific effects of NDL-PCBs and
PBDEs. We also excluded experimental studies if commercial
PCB or PBDE mixtures such as Aroclor-1254 and DE-71 were

used, because their contamination with DL compounds is well
established.

NDL-PCBs AND PBDEs: EFFECT SIMILARITIES

Neurobehavior
Neurobehavioral effects resulting from exposure to NDL-PCBs
and PBDEs, in particular after pre- and/or postnatal exposure,
have been studied extensively in rodents. Common endpoints
included tests for locomotor activity, spontaneous behavior,
habituation capability, spatial learning and anxiety, which were
measured in open-field set-ups and Morris water maze or radial
arm mazes.

Although some studies found reduced spontaneous activity
following exposure to PBDEs (Ta et al., 2011; Viberg et al., 2006;
Zhang et al., 2013) and NDL-PCBs (Boix et al., 2011), most studies
in mice and rats perinatally exposed to NDL-PCBs as well as
PBDEs showed an increase in spontaneous activity (Gee and
Moser, 2008; Gralewicz et al., 2009; Holene et al., 1998; Kuriyama
et al., 2005; Lesmana et al., 2014; Suvorov et al., 2009).
Neurobehavioral studies with mice that have used different
PBDE and NDL-PCB congeners have also reported a reduced
habituation capability for both groups of compounds (Eriksson
et al., 2001; Eriksson and Fredriksson, 1996; Johansson et al.,
2008; Viberg et al., 2003a,b, 2004) as well as impaired spatial
learning and memory abilities in both rats and mice (Boix et al.,
2010; Piedrafita et al., 2008; Schantz et al., 1995; Yan et al., 2012).

From a quantitative point of view, it should be noted that
these neurobehavioral studies with NDL-PCBs and PBDEs often
involved a limited number of dose levels. This precludes the
determination of REPs due to the lack of complete dose-response
relationships. In addition, the lowest observed (adverse) effect
levels vary strongly between congeners and measured endpoints
and may differ as much as 3 orders of magnitude. So far, few
studies investigated the effects of NDL-PCBs or PBDEs on specific
neurotransmitter systems after in vivo (perinatal) exposure, but
some interactions have been observed that relate to the choliner-
gic, serotonergic and dopaminergic systems (Castoldi et al., 2006;
Coccini et al., 2011; Honma et al., 2009; Lilienthal et al., 2014; Seegal
et al., 1997; Viberg et al., 2002). Mechanism(s) of action for these
neurobehavioral effects cannot be established based on these
data alone, and various cellular and molecular processes may
underlie the observed effects, which could hamper the estimation
of neurotoxicity risk resulting from combined exposure to PBDEs
or NDL-PCBs. In Table 1, an overview is presented of effects
observed in behavioral studies with specific NDL-PCBs and PBDEs
or hydroxy-metabolites.

Calcium Homeostasis
Calcium (Ca2þ) is involved in numerous cellular and subcellular
neuronal processes, such as neurotransmitter release by exocy-
tosis, cell death, and mitochondrial function. Calcium release
from the endoplasmic reticulum, in particular via ryanodine

FIG. 1. A, Both PBDEs and (NDL-)PCBs consist of 2 interconnected benzene rings with one or more substitutions (bromine or chlorine, respectively) on meta (m), para

(p), and/or ortho (o) positions. B, Molecular structures of PBDEs (eg, BDE-47; left) and (NDL-)PCBs (eg, PCB-153; right).
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receptors or 1,4,5-triphosphate receptors, plays a role in the
modulation of the intracellular calcium signals (Berridge, 2012).
In this respect, it is important to note that for a number of
NDL-PCBs and PBDEs congeners similar effects on calcium
homeostasis and signaling were detected in several studies
with cell lines and primary cells.

Increased basal intracellular Ca2þ levels were most com-
monly observed following exposure to different NDL-PCB or
PBDE congeners (He et al., 2009; Tan et al., 2004; Yilmaz et al.,
2006), but in a few studies, a decrease of basal intracellular
Ca2þ levels was observed (Llansola et al., 2010). Disruption
(increase) of basal [Ca2þ]i can be caused by an impairment of the

TABLE 1. Overview of affected endpoints (health effects and mechanisms of action) by NDL-PCBs and PBDEs and their hydroxylated metabol-
ites with regard to neurobehavior (A), calcium homeostasis and signaling (B), the thyroid system (C) and CYP induction via PXR/CAR (D) as
observed in experimental studies.

PBDEs PCBs

A spontaneous behavior (in vivo) Gee and Moser, 2008 Boix et al., 2011
Kuriyama et al., 2005 Gralewicz et al., 2009
Suvorov et al., 2009 Holene et al., 1998
Ta et al., 2011 Lesmana et al., 2014
Viberg et al., 2006
Zhang et al., 2013

habituation capability (in vivo) Eriksson et al., 2001 Eriksson and Fredriksson, 1996
Johansson et al., 2008
Viberg et al., 2003a
Viberg et al., 2003b
Viberg et al., 2004

spatial learning (in vivo) Ta et al., 2011 Boix et al., 2010
Yan et al., 2012 Piedrafita et al., 2008

Schantz et al., 1995
B basal intracellular calcium concentration (in vitro) Coburn et al., 2008 He et al., 2009

Dingemans et al., 2007 Johansson et al., 2006
Dingemans et al., 2008 Llansola et al., 2010
Dingemans et al., 2010a Tan et al., 2004
Gassmann et al., 2014 Yilmaz et al., 2006
He et al., 2009
Kodavanti et al., 1996
Pereira et al., 2013

depolarization-evoked calcium concentration (in vitro) Dingemans et al., 2010b Langeveld et al., 2012
ryanodine receptor activation (in vitro) Kim et al., 2011 Pessah et al., 2006

Pessah et al., 2010
kinase signaling (in vitro) Fan et al., 2010 Fan et al., 2010

Li et al., 2013 Lee and Yang, 2012
C thyroxin levels in blood and plasma (in vivo) Blanco et al., 2013 Desaulniers et al., 1999

Kuriyama et al., 2007 Hedge et al., 2009
Richardson et al., 2008 Kato et al., 2010

Liu et al., 2012
Meerts et al., 2002

triiodothyronine levels in blood and plasma (in vivo) Blanco et al., 2013 Kato et al., 2011
Lee et al., 2010 Liu et al., 2012

TH receptor binding (in vitro) Li et al., 2010 Kitamura et al., 2005
Ren et al., 2013

TH binding to TTR (in vitro) Cao et al., 2010 Chauhan et al., 2000
Marchesini et al., 2008 Lans et al., 1993
Meerts et al., 2000 Lans et al., 1994

Marchesini et al., 2008
Purkey et al., 2004

TH binding to TBG (in vitro) Cao et al., 2010 Lans et al., 1994
Marchesini et al., 2008 Marchesini et al., 2008

D PXR activation (in vivo and in vitro) Pacyniak et al., 2007 Al-Salman and Plant, 2012
G€ahrs et al., 2013
Kopec et al., 2010

CAR activation (in vivo and in vitro) Lee et al., 2010 Al-Salman and Plant, 2012
Sueyoshi et al., 2014 G€ahrs et al., 2013

Kamata et al., 2015
Kopec et al., 2010

Abbreviations: TBG, thyroxine-binding globulin; TTR, transthyretin.
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uptake of Ca2þby organelles or an increase of the efflux of
Ca2þ from organelles (besides influx of extracellular Ca2+), and
both mechanisms were detected following exposure to PBDE as
well as NDL-PCB congeners (Coburn et al., 2008; Johansson et al.,
2006; Pereira et al., 2013). Influence of the molecular structure is
observed [eg, NDL-PCBs with chlorine atoms at the ortho- and
ortho-lateral (meta, para) positions were most potent for their
effects on Ca2þuptake in organelles (Kodavanti et al., 1996)] but
this is not clearly observed in all studies.

For PBDEs, in vitro, the hydroxylated metabolite 6-OH-BDE-47
was at least one order of magnitude more potent than its parent
compound in increasing basal Ca2þ levels (Dingemans et al.,
2007, 2008). In a following up structure-activity study, this
increased potency was confirmed for other hydroxylated PBDEs
while higher brominated PBDEs did not affect basal Ca2þ levels.
It was demonstrated in this study that shielding of the OH group
by adjacent bromine atoms and/or the proximity of the ether
bond lowers the higher potency of these metabolites relative to
the PBDE parent compounds (Dingemans et al., 2010a).
Comparable effects of 6-OH-BDE-47 on basal Ca2þcellular levels
were also observed in human neuroprogenitor cells at relatively
low concentrations (0.2 mM; Gassmann et al., 2014).

Exposure to NDL-PCBs and OH-PBDEs has also been show to
inhibit [Ca2þ]i increases evoked in vitro by depolarization (Dingemans
et al., 2010b; Langeveld et al., 2012). Few effects were observed for
PBDE parent congeners, while inhibition of depolarization-evoked
Ca2þ increases by OH-PBDEs was mostly associated with preceding
increases in basal Ca2þdue to Ca2þrelease from intracellular stores
(Dingemans et al., 2010b). A structure-activity study showed that tri-,
tetra-, and some pentachlorinated NDL-PCB congeners disturbed the
calcium homeostasis while NDL-PCBs with 6 or more chlorines
showed no or only minor effects on basal and depolarization-
evoked Ca2þ levels (Langeveld et al., 2012).

Both NDL-PCBs and PBDEs as well as their hydroxylated metab-
olites are also modulators of RyR activation, which is another
mechanism of action causing disruption of Ca2þhomeostasis and
signaling (Pessah et al., 2010). A structure-activity study that
focused on the potency of NDL-PCBs towards sensitizing RyR1
receptor activation again showed the importance of ortho and meta
chlorine substitutions and metabolic hydroxylation of these PCBs
increases the activity towards RyR (Pessah et al., 2006). Ortho- and
(absence of) para bromine substitutions are also critical for such
effects by PBDEs and effects of OH-PBDEs on RyR activation (Kim
et al., 2011).

In summary, there are clear similarities in mechanisms of
actions of PBDEs and NDL-PCBs as well as their hydroxylated
metabolites in disturbing calcium homeostasis via release of
Ca2þ from intracellular stores and inhibition of Ca2þsignaling
(for overview see Table 1). This is cause for concern with regard
to combined exposure, as disruption of the calcium homeosta-
sis in (developing) neuronal cells could be one of the fundamen-
tal causes of neurobehavioral effects observed later in life.

Although the small number of studies on these phenomena
currently precludes a detailed comparison between both groups
of compounds, there are numerous other mechanisms of actions
observed of PBDEs and/or NDL-PCBs that might underlie the
observed neurobehavioral effects. NDL-PCBs and PBDEs both
affect calcium-related kinase and pathways, which are directly
involved in the modulation of release of calcium from intracellu-
lar stores (e.g. Fan et al., 2010; Lee and Yang, 2012). Furthermore,
PBDEs affect neurite outgrowth and neuronal migration
(Schreiber et al., 2009; Xiong et al., 2012) and congeners from both
groups of compounds have been shown to affect the cytoskeleton

in neurons (Alm et al., 2008; Brunelli et al., 2012) and modulate
neurotransmitter receptor function (Westerink, 2014).

Thyroid System
Thyroid hormones (THs) are essential for growth and develop-
ment in the fetal and post-natal stage, but also regulate metabo-
lism in adults (Brent, 2012). THs are also essential for
development of the nervous system (Schroeder and Privalsky,
2014).

Multiple studies have shown that NDL-PCBs, PBDEs and their
hydroxylated metabolites can all significantly influence the TH
homeostasis (Lans et al., 1994; Meerts et al., 2000; Murk et al.,
2013). Although results are not consistent, most in vivo studies
showed a decrease in total and free thyroxin (T4) concentrations
following exposure to NDL-PCBs or PBDEs (Blanco et al., 2013;
Hedge et al., 2009; Kato et al., 2010; Kuriyama et al., 2007; Liu
et al., 2012; Richardson et al., 2008). Accumulation of T4 in the

liver (Kato et al., 2011) and an increase in T4 glucuronidation
have been suggested as responsible mechanism for these obser-
vations (Richardson et al., 2014). However, there are also several
in vivo studies that did not observe alterations in free and total
T4 concentrations after NDL-PCB and PBDE exposure (Gee et al.,
2008; Kobayashi et al., 2009; Tseng et al., 2008). Although an
adequate explanation for this discrepancy is lacking, it may be
related to differences in dose levels and/or adaptive mecha-
nism(s) during the exposure window.

Another mechanism is the inhibition of competitive binding
of T4 to transport proteins transthyretin (TTR) and thyroxin-
binding globulin (TBG), which has been observed for hydroxy-
lated metabolites of both (NDL-) PCBs and PBDEs (Cao et al.,
2010; Marchesini et al., 2008; Meerts et al., 2000, 2002; Purkey
et al., 2004). Structure-activity and in vitro studies with NDL-
PCBs, PBDEs and their hydroxylated -metabolites showed that
the position of the OH-group and presence of adjacent bromines
play an important role in the binding affinity to the TH receptor
and transport proteins (Chauhan et al., 2000; Kitamura et al.,
2005; Lans et al., 1993; Li et al., 2010; Ren et al., 2013; Yang et al.,
2011). In vivo studies that address the role of hydroxylated
metabolites of PCBs and PBDEs are scarce, but one study using
prenatal exposure to OH-PCB-107 in rats reported a decrease in
total and free T4 in the offspring (Meerts et al., 2002). Further
studies are warranted to investigate whether these hydroxy-
lated metabolites of NDL-PCBs and PBDEs may indeed exert
stronger in vivo effects than their parent compounds.

There are also a number of in vivo studies in which a
decrease in serum triiodothyronine (T3) concentrations has
been observed following exposure to PBDEs (eg, Blanco et al.,
2013; Lee et al., 2010) or NDL-PCBs (Kato et al., 2011; Liu et al.,
2012), but again there are studies that could not find any effect
on T3 levels (eg, He et al., 2011; Kato et al., 2012; Ness et al., 1993).
In contrast, increases in T3 or T4 levels have been rarely
reported (Desaulniers et al., 1999). Although several studies have
investigated a possible effect on levels of thyroid-stimulating
hormone (TSH), no significant effect has been reported for
either group of compounds (He et al., 2011; Kato et al., 2011).

In Table 1 an overview is presented of effects of NDL-PCBs
and PBDEs or hydroxy-metabolites on the thyroid system. As
imbalance of TH homeostasis in the early life stage can result in
lower cognitive functions later in life, the similarities in effects
of PBDEs and NDL-PCBs on this endocrine system are of con-
cern, in particular with regard to combined exposure.
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Activation of PXR and CAR
The constitutive androstane (CAR) and pregnane X (PXR) recep-
tors belong to the same nuclear hormone receptor family and
are expressed in liver and intestine (Kretschmer and Baldwin,
2005). Both receptors regulate several CYP enzymes (eg, CYP2B
and CYP3A), conjugating enzymes and transport proteins (eg,
MDR1). Interactions of xenobiotics with PXR and CAR can thus
influence metabolism and body distribution of exogenous and
endogenous compounds such as pharmaceuticals and steroid
hormones (Tolson and Wang, 2010). Furthermore, chronic acti-
vation of PXR and CAR is associated with adverse health effects,
such as metabolic dysfunction, change in hormone metabolism
and development or progression of various types of cancer
(Banerjee et al., 2015; Kretschmer and Baldwin, 2005).

NDL-PCBs can directly activate PXR and CAR resulting in
subsequent transcription of target genes (eg, CYP3A4 and
MDR1) at levels approximating human serum levels (Al-Salman
and Plant, 2012; G€ahrs et al., 2013; Kamata et al., 2015; Kopec
et al., 2010). In vitro experiments with PBDEs also showed that
these compounds are able to activate the PXR receptor, which
resulted in induction of CYP3A11 and CYP2B10 (Pacyniak et al.,
2007). Another study established that PBDEs can also act as CAR
agonists and induce the expression of CYP2B and CYP3A genes
(Sueyoshi et al., 2014). This CYP induction was also observed in
BDE-209 exposed mice (Lee et al., 2010). Taken together, several
studies clearly showed that both NDL-PCBs and PBDEs are PXR
and CAR agonists (Table 1), which at least results in CYP
enzyme induction, which is also supported by the conclusions
of a molecular modeling study (Wu et al., 2009). Especially
NDL-PCBs and PBDEs that contain multiple ortho-substitutions
can have an agonistic effect on these nuclear receptors, suggest-
ing that this position of a bromine or chlorine atom is important
for binding to the PXR or CAR and subsequent gene expression.
As both PBDEs and NDL-PCBs directly activate these receptors,
the effects of combined exposure of these groups of compounds
on excretion patterns of pharmaceuticals and hormone levels
may be influenced and warrants further investigation.

SUMMARY OF EFFECTS

Similarities between effects of NDL-PCBs and PBDEs are in par-
ticular observed on neurobehavior, cellular calcium homeosta-
sis, TH levels, and interactions with CAR/PXR. From a
qualitative point of view the neurobehavioral observations were
not always consistent, which may be caused by differences with

regard to the experimental models and neurobehavioral end-
points between laboratories. The effects of both groups of com-
pounds on calcium and TH homeostasis are predominantly in
the same direction, with hydroxylated-metabolites of NDL-PCBs
and PBDEs being significantly more active than the parent com-
pounds. Agonistic interactions with PXR and CAR of NDL-PCBs
and PBDEs also show structural similarities with ortho chlorine
or bromine substitutions being a major determinant for this
effect. It should also be noted that there are also some (in vivo)
studies in which specific effects of specific PBDEs or NDL-PCBs
on neurobehavior or the thyroid system could not be demon-
strated (eg, Boix et al. 2011; Gee et al. 2008). These apparent dis-
crepancies with many of the studies mentioned earlier may be
attributed to specific mechanisms (eg, metabolism) or the lim-
ited number of dose levels studied. In Figure 2a schematic over-
view is given for the above mentioned effects of NDL-PCBs and
PBDEs, which indicates overall similarities in mechanisms of
action between both groups of compounds.

FUTURE DIRECTIONS

Based on the majority of the available data on mechanisms of
action, a concentration/dose-addition model appears likely
for the hazard and risk assessment of NDL-PCBs and PBDEs, as
suggested earlier by (Simon et al., 2007; Westerink, 2014) for neu-
rotoxicity. Nevertheless, a number of uncertainties and infor-
mation gaps need to be identified and resolved.

The likeliness for (non) additive effects or mechanistic inter-
actions between NDL-PCBs and PBDEs (eg, Eriksson et al., 2006;
He et al., 2009, 2011) and differences in REPs generate uncer-
tainty in hazard and risk assessment. Part of this uncertainty
may be resolved if the molecular entities involved in adverse
health outcomes are identified and quantified with regard to
their associations with individual congeners of both groups of
compounds and their hydroxylated metabolites. Uncertainties
also remain with regard to the causal relations between the
observed mechanisms of action and adverse health effects, in
particular as it cannot be excluded that multiple mechanisms of
action converge to result in health effects.

The use of in vitro models can help elucidate mechanisms of
action that underlie possible (non) additive interactions of NDL-
PCBs and PBDEs. Quantitative structure-activity and in vitro
studies can be used for the future development of mechanism-
specific toxic equivalent factor (TEF) values, in line with the
present TEF concept for risk assessment of DL compounds (Van

FIG. 2. Schematic overview of similarities in effects of NDL-PCBs and PBDEs. A solid fill indicates that there are multiple studies that have demonstrated the effect of a

congener on a particular endpoint, while a broken fill indicates that the evidence is derived from an individual study. A clear ellipse indicates that there is experimental

evidence in the literature demonstrating a lack of effect of a congener on a particular endpoint. Further evaluation is warranted to identify the most appropriate stud-

ies for the establishment of REPs. Notes: a. IUPAC congener naming system; b. effects observed on measures of spontaneous motor activity; c. effects observed in cogni-

tive tests for spatial and task learning; d. effects observed on basal Ca2þ levels, uptake of Ca2þ in organelles and RyR activation; e. effects observed on depolarization-

evoked Ca2þ; f. effects on T4, T3, and/or TSH levels.
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den Berg et al., 2006). In such a novel approach the hydroxylated
metabolites of both NDL-PCBs and PBDEs should also be
included, as their potency appears to be similar or even higher
compared with that of their parent chemicals for some end-
points like the thyroid system, calcium homeostasis and steroi-
dogenesis (Cant�on et al., 2006; Dingemans et al., 2008; Meerts
et al., 2000). Preliminary TEF schemes for PCBs have already
been developed based on in vitro neurotoxicity data (Simon
et al., 2007) and TH levels (Yang et al., 2010). Such approaches
can be expanded for both groups of compounds and newly iden-
tified molecular targets (eg, voltage gated calcium channels). A
similar approach may be applied for the effects of NDL-PCBs
and PBDEs or their metabolites on individual receptors such as
the RyR, TR, PXR, or CAR. Furthermore, there is a clear need for
adequate review of existing studies on which TEF values are
based and experimental validation of such TEF values with
in vivo studies to further improve the possibilities for incorpora-
tion in human risk assessment, especially for the early life
stages.

The mechanistic information evaluated in this review to our
opinion provides enough arguments to use additivity as an
interim default approach for both groups of compounds in the
risk assessment. In addition, in vitro studies are available to
establish interim REPs for the quantitatively most important
NDL-PCBs and PBDEs. Therefore we propose to combine interim
REPs for both NDL-PCBs and PBDEs from in vitro studies in an
additive manner. These can be related to human tissue levels
used in a risk assessment framework to improve the estimation
of risks associated with combined exposure to both groups of
compounds.
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