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Abstract. In the early 1950s, Kruskal generalized the well-known subse-
quence theorem of Erdős and Szekeres to finite sequences over all domains
satisfying his requirement of ‘relation spaces’. We give a Ramsey-theoretic
perspective on the subsequence theorem and generalize it to sequences over
all domains with a finite number of binary relations, without constraints. We
show that Kruskal’s generalization is equivalent to this more general Ram-
sey version, giving an elegant mathematical basis to the former. The critical
bounds in the results are proved to be best possible, even for domains with
partial orders only. The Ramsey version subsumes various earlier general-
izations of the subsequence theorem and allows for many new applications.
For example, the theorem of Erdős and Szekeres is a special case of various
interesting graph-theoretic properties.

Keywords: monotone subsequences, Erdős-Szekeres theorem, Ramsey’s theorem,
binary relations, posets, De Bruijn’s theorem, graphs, tournaments.

“The Basic Theorem is not in essence a statement
about the real number system.”

J.B. Kruskal, 1952 [22]

1 Introduction

In 1935, Erdős and Szekeres [10] proved the following elegant result in their study of
convex configurations among n points in the plane: if σ = σ1, · · · , σn is a sequence
of n2 + 1 distinct numbers, then σ contains an increasing subsequence of n + 1
numbers or a decreasing subsequence of n + 1 numbers (or both). The result is an
early gem in extremal combinatorics.

Several appealing proofs of the theorem have since appeared (cf. [36]). The result
also follows from Dilworth’s Lemma for partially ordered sets P : if |P | ≥ w · s + 1,
then P has an anti-chain of size at least w + 1 or a chain of length at least s + 1,
or both [7]. Just consider P = {σ1, · · · , σn} with σi � σj if and only if i ≤ j and
σi ≤ σj , and apply the lemma with w = s = n (cf. [20]).

In the nineteen fifties, J.B. Kruskal [22] noted that the subsequence theorem
is not just a theorem about numbers or partial orders. In a first generalization
he considered a geometric notion of monotonicity and the occurrence of monotone
subsequences in finite-dimensional vector spaces. In a second generalization, Kruskal
argued that the subsequence theorem can be seen as a result for finite sequences in
all, what he called, relation spaces with finitely many binary relations.

Kruskal’s second generalization is commonly applied to finite sequences of vec-
tors, but the result still appears to be less general than desired. One reason may be
that Kruskal imposed a strong assumption (‘axiom’) on the relations in a ‘relation
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space’, restricting its apparent generality. We will argue that the limiting assump-
tion can be removed and that Kruskal’s generalization is essentially a much broader
result.

For a proper perspective, we turn to Ramsey theory [16, 19]. This theory does
not deal with sequences per se. However, it is well-known that Ramsey’s Theorem
can be used to prove the ‘infinite version’ of the subsequence theorem: any infinite
sequence of distinct real numbers contains an infinite increasing subsequence or
an infinite decreasing subsequence, or both. In Section 2 we show that this fact
neatly generalizes to sequences over arbitrary domains X with finitely many binary
relations, without restriction.

The proper generalization of the Erdős-Szekeres theorem for all finite sequences
that are sufficiently long is now immediate from the same approach, using the
finite version of Ramsey’s Theorem. However, for obtaining the precise ‘Ramsey
number’ depending on the various parameters in the result, a different proof is
needed. In Section 2 we provide the missing link. The proof builds on Seidenberg’s
combinatorial proof of the Erdős-Szekeres theorem, thus showing the full potential
of this proof [34].

The ‘Ramsey version’ of the Erdős-Szekeres theorem holds for all domains with
multiple binary relations, without limiting assumptions. Nevertheless, we will argue
in Section 3 that Kruskal’s generalization is equivalent to the Ramsey version of
the subsequence theorem. It puts Kruskal’s generalization in a new perspective and
gives it the broader scope we claimed. We will show that several other restricted
versions are equivalent to the general Ramsey version as well.

The Ramsey version unifies and extends many other generalizations of the Erdős-
Szekeres theorem. In Section 2 we show this for partially ordered sets, in Section
4) for tuple spaces X = X1 × · · · × Xd (d ≥ 1). We show e.g. that Kruskal’s
generalization of De Bruijn’s theorem is a direct consequence of the general theorem
as well. In Section 5 we apply the Ramsey version to derive various ‘subsequence
theorems’ for graphs like rooted trees and tournaments.

In Section 6 we show that the Ramsey bound in the generalized version of the
Erdős-Szekeres theorem is best possible for all parameter values. In fact, we prove
the that the result is already best possible for spaces with multiple partial orders
only. In Section 7 we give some conclusions.

The subsequence theorem of Erdős and Szekeres has been generalized in various
contexts, geometric and otherwise [1, 4, 5, 8, 11, 13, 24, 26, 28, 32, 33, 35, 38]. In the
present paper we attempt to record the full generality of Kruskal’s result from the
broader, Ramsey-theoretic perspective.

2 Generalizing the Subsequence Theorem

In this Section we first formulate and prove an analogue of the subsequence theorem
for infinite sequences over spaces with multiple binary relations. Next we prove the
corresponding result for finite sequences of the same generality. Then we digress on
the interesting case of spaces with multiple partial orders, which is historically and
practically relevant. Optimality of the bounds will be shown in Section 6.
Terminology In order to state the results, we need some terminology. Let X be
an arbitrary non-empty set and R ⊆ X × X a binary relation on X. The inverse
of R is R−1 = {(b, a) | (a, b) ∈ R}. We write (a, b) ∈ R as aRb. We say that
a, b ∈ X are related in R if aRb or bRa (or both), otherwise we say that a and b are
unrelated in R. The elements of S ⊆ X are said to be (mutually) unrelated in R if
(|S| = 1 or) when any two elements a, b ∈ S with a 6= b are unrelated in R. Given
a sequence σ of distinct elements from X, a subsequence σi1 , · · · , σik

(1 ≤ i1 <
· · · < ik ≤ n) is called ascending in R if σi1R · · ·Rσik

. It is called descending in R if
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σi1R
−1 · · ·R−1σik

or, equivalently, if σik
R · · ·Rσi1 . The terms are consistent with

those for partial orders. (NB: Ascending and descending subsequences in a relation
R need not be cycle-free when R is not a partial order.)

2.1 Generalization for Infinite Sequences

The infinite version of the subsequence theorem is usually stated for sequences of
reals. This version is well-known from the proof of various convergence results in
real analysis such as the Bolzano-Weierstraß theorem.

Burkill and Mirsky [3] noted in 1973 that the infinite version can be seen as
an application of Ramsey’s Theorem. Newman and Parsons [27] later observed the
same fact and noted that their argument did not make use of any special property
of the reals, except that they form an (infinite) linearly ordered set. Hence they
concluded the following, more general fact: any infinite sequence of elements from
any linearly ordered set has a monotone subsequence.

Remark. The result goes further than the corresponding ‘set version’ which asserts
that every infinite linear order contains an infinite ascending sequence or an infinite
descending sequence (or both). This fact is known as the Ascending or Descending
Sequence principle (ADS) [18, 23]. We return to this principle below.

For a more general result, we make the step from linearly ordered sets to sets
with any finite number of binary relations. The following fact may be observed,
which expands on [27] and [16] (p. 17-18) and is ‘typically Ramsey’.

Theorem 0. Let σ be an infinite sequence of distinct elements from domain X
and let {R1, · · · , Rq} be a collection of binary relations over X. Then σ contains an
infinite subsequence whose elements are unrelated in each of the relations R1, · · · , Rq

or σ contains an infinite subsequence that is ascending or descending in at least one
of the Ri (1 ≤ i ≤ q).

Proof. Let σ and {R1, · · · , Rq} be as given. Put the 2-subsets [i, j] with i 6= j into
bins B0, B1, C1, · · · , Bq, Cq as follows:

– if σi and σj are unrelated under each of the relations {R1, · · · , Rq} then put
[i, j] into bin B0.

– if σi and σj are related under any of the relations {R1, · · · , Rq} then assume
that the elements of [i, j] are ordered such that i < j and do the following:
• if σiRkσj and k is the smallest index (1 ≤ k ≤ q) such that this holds, then

put [i, j] into Bk.
• if σiRkσj does not hold for any k (1 ≤ k ≤ q), then let σiR

−1
l σj where l is

the smallest index (1 ≤ l ≤ q) such that the latter holds. (Such an l must
exist.) Then put [i, j] into Cl.

This prescription partitions the collection of all 2-subsets of N into 2q + 1 bins. By
Ramsey’s Theorem [29], there must exist an infinite subset S ⊆ N such that the
2-subsets of S are all contained in the same bin. Let s1 < s2 < · · · be a listing of
S, in sorted order. Now the following cases can arise:

– all 2-subsets of S are contained in B0: then the elements of σs1 , σs2 , · · · are
unrelated in each of the relations Ri (1 ≤ i ≤ q).

– all 2-subsets of S are contained in Bk for some k with 1 ≤ k ≤ q: then
σs1 , σs2 , · · · is ascending in Rk.

– all 2-subsets of S are contained in Cl for some l with 1 ≤ l ≤ q: then σs1 , σs2 , · · ·
is descending in Rl.

Hence σs1 , σs2 , · · · is an infinite subsequence of σ as required. ut
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Theorem 0 can be formulated also in case the elements of σ are not all distinct,
but we will not digress on this. We mention the following application, which extends
the observation from [27]: every infinite sequence of distinct elements from a poset
X contains an infinite subsequence whose elements form an anti-chain in X or an
infinite subsequence whose elements form a chain in X, or both.
Remark. The observation for posets is noted in the literature (cf. [6], p. 242). The
result goes further than the corresponding, but more commonly stated ‘set ver-
sion’ which only asserts that every infinite poset contains an infinite anti-chain or
an infinite chain (or both). The latter is known as the Chain-AntiChain principle
(CAC). Clearly, Ramsey’s Theorem ⇒ CAC ⇒ ADS, but it is known that the
reverse implications are problematic [18, 23].

2.2 Generalization for Finite Sequences

Theorem 0 gives the template for the generalization of the Erdős-Szekeres theorem
for finite sequences. Here we formulate and prove the generalization for arbitrary sets
with any finite number of binary relations defined on them. We implicitly assume
that all numeric parameters are integers ≥ 1.

Theorem 1. Let σ be a sequence of n distinct elements and {R1, · · · , Rq} a col-
lection of binary relations over X. If n ≥ w · s1 · · · sq · r1 · · · rq + 1, then σ contains
a subsequence of length w + 1 whose elements are unrelated in each of the rela-
tions R1, · · · , Rq or there is an i (1 ≤ i ≤ q) such that σ contains an ascending
subsequence of length si + 1 or a descending subsequence of length ri + 1 in Ri.

Proof. If σ has a subsequence of size w + 1 whose elements are mutually unrelated
in each of the Ri’s, then we are done. Thus, for the remainder of the proof we may
assume that no subsequence of σ can have more than w elements that are mutually
unrelated in each of the binary relations. Write σ = σ1, · · · , σn.

For every position i of σ, define the 2q-tuple [ui1, di1, · · · , uiq, diq] ∈ N2q with
uit equal to the length of the longest ascending subsequence according to relation
Rt ending at i, and dit equal to the length of the longest descending subsequence
according to Rt beginning at i (1 ≤ t ≤ q). Clearly uit ≥ 1 and dit ≥ 1 for every i
and t.

Suppose that uit ≤ st and dit ≤ rt for all i (1 ≤ i ≤ n) and t (1 ≤ t ≤ q). As
there can be at most s1 · · · sq · r1 · · · rq different 2q-tuples with these constraints, it
follows by the pigeonhole principle that there must at least w+1 positions of σ that
all have the same tuple. Say these positions are i1, · · · , iw+1 with i1 < · · · < iw+1.

By assumption, the set {σi1 , · · · , σiw+1} cannot all consist of elements that are
unrelated in every one of the relations R1, · · · , Rq. Hence there must be a t (1 ≤
t ≤ q) and positions ij < ik such that σij and δik

are related in the relation Pt.
Assume that δij Rtδik

. Then the longest ascending subsequence according to relation
Rt ending at position ik must be longer than the one ending at position ij by at
least one (namely by the term δik

), contradicting the fact that the 2q-tuples at both
positions are equal. The case where δik

Rtσij similarly leads to a contradiction.
It follows that there must be a position i where at least one of the components

of the associated 2q-tuple does not stay within the bound, i.e. there must be a t
(1 ≤ t ≤ q) such that uit > st or dit > rt. This completes the proof. ut

In keeping with the Ramsey-theoretic nature of the result, the bound on n in
Theorem 1 does not depend on any characteristic of X or the binary relations. The
proof of Theorem 1 generalizes the elegant proof of the Erdős-Szekeres theorem by
Seidenberg [34] and the extension of the latter by Kruskal to relation spaces [22].

The original Erdős-Szekeres theorem can be retrieved by considering the case of
ordered sets, i.e. sets with a single relation R that is a total order. These sets clearly
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have no anti-chains of size greater than 1. The Erdős-Szekeres theorem then follows
from Theorem 1 by taking q = w = 1.

2.3 Partially Ordered Sets

Theorem 1 takes an attractive form when applied to sets with multiple partial orders.
In the terminology of posets, we obtain to the following result.

Theorem 1′. Let σ be a sequence of n distinct elements and {P1, · · · , Pq} a col-
lection of partial orders over X. If n ≥ w · s1 · · · sq · r1 · · · rq + 1, then σ contains a
subsequence of length w+1 whose elements form an anti-chain in each of the partial
orders P1, · · · , Pq or there is an i (1 ≤ i ≤ q) such that σ contains an ascending
subsequence of length si + 1 or a descending subsequence of length ri + 1 in Pi.

Note that the most general formulation of the Erdős-Szekeres theorem found
in most textbooks is the following: Let σ be a sequence of n distinct numbers. If
n ≥ sr+1, then σ contains an increasing subsequence of length s+1 or a decreasing
subsequence of length r + 1 (cf. [20],[22]). Theorem 1′ implies the following stronger
form for posets.

Corollary 1. Let σ be a sequence of n distinct elements from poset P . If n ≥
wsr + 1, then σ contains an anti-chain of size w + 1, or an ascending subsequence
of length s + 1, or a descending subsequence of length r + 1.

Corollary 1 generalizes the Erdős-Szekeres theorem in an appreciable way. It
leads to easy proofs of some further consequences as well. Recall that the width of
a poset is the size of its largest anti-chain.

Corollary 2. Let P have width at most w, and let σ be a sequence of n distinct
elements from P . Then σ contains a monotone subsequence of length d

√
n
w e.

Proof. Let t = d
√

n
w e−1. The result follows directly from Corollary 1 once we show

that n ≥ wt2 + 1. To prove it, write
√

n
w = a + ε, for integer a and 0 ≤ ε < 1. If

ε = 0, then a ≥ 1 and t = a− 1, hence n = w · a2 ≥ wa2 − 2aw + w + 1 = wt2 + 1.
If ε > 0, then t = a, and n = w(a + ε)2 > w · a2. As n is integer, it follows that
n ≥ w · a2 + 1 = wt2 + 1 again. ut

Corollary 1 also implies Dilworth’s Lemma. The lemma is usually derived from
Dilworth’s Decomposition Theorem [7], but it can also be proved directly [20].

Corollary 3. Let S be any subset of poset P with at least n elements. If n ≥ ws+1,
then S contains an anti-chain of size w + 1 or a chain of length s + 1.

Proof. Assume w.l.o.g. that S has n elements. Sort S topologically, and let the re-
sulting sequence be σ. By construction, σ does not contain decreasing subsequences
of length 2. Now apply Corollary 1 with r = 1. ut

Finally, we note that Theorem 1′ can be proved fully within the theory of posets,
just like the original Erdős-Szekeres theorem. The proof is non-elementary, as it
uses Dilworth’s Decomposition Theorem [7] and the Erdős-Szekeres theorem itself
as prerequisites. We induct on q, with Corollary 1 as the base case.
Alternative proof of Corollary 1. For q = 1, assume σ does not contain anti-chains
of size greater than w. By Dilworth’s Theorem, the elements of σ (viewed as a poset)
can be partitioned into at most w disjoint chains. By the pidgeonhole principle it
follows that σ must contain a subsequence of length at least d 1

w (wsr + 1)e ≥ sr + 1
whose terms all belong to the same chain i.e. a total order. The corollary now follows
by an application of the original Erdős-Szekeres theorem to the latter. ut
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Alternative proof of Theorem 1′. Assume by way of induction that the theorem
holds for up to q − 1 partial orders, for some q > 1. Now consider a sequence σ
of n distinct elements from a domain with q partial orders P1, · · · , Pq−1, Pq, and
assume that n ≥ w · s1 · · · sq · r1 · · · rq + 1. By the induction base (Corollary 1) it
follows that σ contains a subsequence of length n′ ≥ w · s1 · · · sq−1 · r1 · · · rq−1 + 1
whose elements form an anti-chain in Pq, or σ contains an ascending subsequence
of length sq + 1 or a descending subsequence of length rq + 1 in Pq. In the latter
two cases we are done. In the former case, apply the induction hypothesis to the
subsequence of length n′ and notice that any anti-chain in it is also an anti-chain
in Pq. This completes the induction. ut

Theorem 1′ is the general Ramsey version of the Erdős-Szekeres theorem for the
case of sets with multiple partial orders. In Section 6 we will show that it is an
optimal result, in the sense that the bound in it is tight.

3 Kruskal’s Generalization Revisited

In this Section we will show that Kruskal’s second generalization of the Erdős-
Szekeres theorem is equivalent to the Ramsey version (Theorem 1). The result
sheds an interesting light on Kruskal’s generalization, as the Ramsey version does
not require any special constraints.

We prove the equivalence in Section 3.2. In Section 3.3 we show that the equiv-
alence can be extended to several other cases of restricted relation spaces as well.
In Section 3.4 we discuss a further case, based on [37].

3.1 Definitions

Before we can state Kruskal’s generalization, we need some basic concepts. These
concepts all deal with special constraints on the set of relations.

Definition 1. Consider a collection of binary relations {R1, · · · , Rq} over X. The
collection is called
– r-complete: if for every two (distinct) elements x, y ∈ X there is an i (1 ≤ i ≤ q)

such that x Ri y.
– r-total: if for every two (distinct) elements x, y ∈ X there is an i (1 ≤ i ≤ q)

such that x Ri y or y Ri x.
– r-symmetric: if for every R in the collection, also R−1 belongs to it.

Example. Consider the following relations on R2: Ra defined by 〈u, v〉Ra〈x, y〉 iff
u ≤ x and v ≤ y, and Rb defined by 〈u, v〉Rb〈x, y〉 iff u ≤ x and v ≥ y. The
collection {Ra, R−1

a , Rb, R
−1
b } is r-complete, the collection {Ra, Rb} is r-total, and

the collection {Ra, R−1
a } is r-symmetric.

The example shows that the concepts all differ. Observe that a collection of
binary relations that is r-symmetric and r-total, is also r-complete. An r-complete
collection is also r-total.

A collection of binary relations {R1, · · · , Rq} is called strictly r-total if for every
two distinct elements x, y ∈ X there is an i (1 ≤ i ≤ q) such that either x Ri y or
y Ri x. The given example of an r-total collection is in fact strictly r-total.

3.2 Kruskal’s Extended Basic Theorem

In Kruskal’s definition of relation spaces, a collection of relations is required to
be r-complete ([22], p. 272). His generalization of the subsequence theorem is cap-
tured in the following Extended Basic Theorem. We state the theorem for arbitrary
length parameters. (Kruskal only formulated the theorem for the case in which all
parameters are equal.)
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Theorem 2. Let σ be a sequence of n distinct elements from X and {R1, · · · , Rq}
an r-complete collection of binary relations. If n ≥ s1 · · · sq + 1, then there is an i
(1 ≤ i ≤ q) such that σ contains an ascending (descending) subsequence of length
si + 1 according to Ri.

We claim that this generalization of the Erdős-Szekeres theorem is equivalent to
the general Ramsey-version of the result. (By equivalence we mean that one theorem
may be proved from the other by merely manipulating relations.)

Theorem 3. As generalizations of the subsequence theorem, Theorem 1 (Ramsey
version) and Theorem 2 (Kruskal version) are equivalent.

Proof. We show how one theorem can be transformed into the other. We distinguish
the two obvious cases.

(i) Theorem 1 ⇒ Theorem 2. Let σ = σ1, · · · , σn be a sequence of n distinct
elements from X and let {R1, · · · , Rq} be r-complete. Restrict X to the elements
of σ: X = {σi | 1 ≤ i ≤ n}. Restrict the relations accordingly and modify them
further, to obtain the collection {R′

1, · · · , R′
q} where

R′
k = Rk − {(σj , σi) | i < j and σjRkσi} (1 ≤ k ≤ q).

The effect of the modification is that all descending subsequences of length greater
than 1 in any of the relations R1, · · · , Rq are broken. However, the r-completeness
of {R1, · · · , Rq} implies that every two elements σi and σj of X (i 6= j) remain
related under at least one of the relations {R′

1, · · · , R′
q}.

Now apply Theorem 1 to σ and {R′
1, · · · , R′

q} with w = 1, and si = si and
ri = 1 for 1 ≤ i ≤ q. The condition n ≥ s1 · · · sq + 1 exactly matches the re-
quirement of Theorem 1, implying that there must be a k (1 ≤ k ≤ q) such that
σ contains an ascending subsequence of length sk + 1 in R′

k and thus, in Rk. (To
obtain a descending subsequence, modify the relations {R1, · · · , Rq} so as to break
all ascending subsequences of length greater than 1, in a similar way.)

(ii) Theorem 2 ⇒ Theorem 1. Let σ = σ1, · · · , σn be a sequence of n distinct
elements from X and let {R1, · · · , Rq} be an arbitrary collection of q relations.
Restrict X to the elements of σ: X = {σi | 1 ≤ i ≤ n}. Define a further relation
Rq+1 on X by

Rq+1 = {(σi, σj) | i 6= j and there is no 1 ≤ k ≤ q such that σiRkσj or σjRkσi}

Thus, Rq+1 consists precisely of those pairs of elements that are unrelated in any of
the relations R1 to Rq. Observe that the collection {R1, · · · , Rq, R

−1
1 , · · · , R−1

q , Rq+1}
is r-complete. Now apply Theorem 1 to σ and the latter collection with si = si and
sq+i = ri (1 ≤ i ≤ q), and s2q+1 = w. The condition n ≥ w · s1 · · · sq · r1 · · · rq + 1 =
s1 · · · s2q+1 + 1 exactly matches the requirement of Theorem 2, implying the con-
clusions of Theorem 1 by the properties of the relations in the collection. ut

3.3 Further Basic Theorems

The Extended Basic Theorem applies to spaces with r-complete collections of rela-
tions. It is of interest to explore similar ‘restricted’ generalizations. The following
important cases present themselves.

Theorem 2′. Let σ be a sequence of n distinct elements from X and {R1, · · · , Rq}
an r-total collection of binary relations. If n ≥ s1 · · · sq · r1 · · · rq + 1, then there is
an i (1 ≤ i ≤ q) such that σ contains an ascending subsequence of length si + 1 or
a descending subsequence of length ri + 1 in Ri.
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Theorem 2′′. Let σ be a sequence of n distinct elements from X and {R1, · · · , Rq}
an r-symmetric collection of binary relations. If n ≥ w · s1 · · · sq + 1, then σ con-
tains a subsequence of length w + 1 whose elements are unrelated in each of the
relations R1, · · · , Rq or there is an i (1 ≤ i ≤ q) such that σ contains an ascending
(descending) subsequence of length si + 1 in Ri.

We show that the equivalence theorem can be extended to include Theorems 2′

and 2′′ as well. We only indicate the proof ideas.

Theorem 3′. As generalizations of the subsequence theorem, Theorem 1 (Ramsey
version) and Theorems 2′ and 2′′ are equivalent.

Proof. We show that the conditions of the respective theorems can be transformed
to match those of the other theorems.

(i) Theorem 1 ⇒ Theorem 2′. Let {R1, · · · , Rq} be r-total. It follows that no
two distinct elements of X are unrelated in each of the Ri (1 ≤ i ≤ q). Now
apply Theorem 1 with w = 1. Alternatively, notice that r-totality implies that
{R1, · · · , Rq, R

−1
1 , · · · , R−1

q } is r-complete, and apply Theorem 2.
(ii) Theorem 2′ ⇒ Theorem 1. To prove that Theorem 1 can be derived from

Theorem 2′, let {R1, · · · , Rq} be an arbitrary collection of q relations. Define relation
Rq+1 by

Rq+1 = {(σi, σj) | i < j and there is no 1 ≤ k ≤ q such that σiRkσj or σjRkσi}

Observe that {R1, · · · , Rq, Rq+1} is r-total, and that there are no descending sub-
sequences of length greater than 1 in Rq+1. Now apply Theorem 2′ with sq+1 = w
and rq+1 = 1.

(iii) Theorem 1 ⇒ Theorem 2′′. Let {R1, · · · , Rq} be r-symmetric. Define rela-
tion Rq+1 as in the proof of Theorem 3, i.e.

Rq+1 = {(σi, σj) | i 6= j and there is no 1 ≤ k ≤ q such that σiRkσj or σjRkσi}

Notice that {R1, · · · , Rq, Rq+1} is necessarily r-complete. Now apply theorem 2 with
sq+1 = w.

(iv) Theorem 2′′ ⇒ Theorem 1. To prove that Theorem 1 can be derived from
Theorem 2′′, let {R1, · · · , Rq} be an arbitrary collection of q relations. Obviously,
{R1, · · · , Rq, R

−1
1 , · · · , R−1

q } is r-symmetric. Applying Theorem 2′′ to the latter,
immediately gives the result of Theorem 1. ut

Theorems 2 to 2′′ give a powerful range of special cases of Theorem 1. By the
equivalences, the proof of Theorem 1 suffices for all. The proofs of the other theorems
then follow by mere algebraic manipulation.

However, direct proofs of Theorems 2, 2′ and 2′′ may be obtained as well, by
suitably modifying the proof of Theorem 1. We show this for Theorem 2′′.

Alternative proof of Theorem 2′′. If {R1, · · · , Rq} is r-symmetric, a subsequence of
σ that is descending in one relation is ascending in another, and vice versa. Thus, we
can restrict ourselves in the proof of Theorem 1 to tuples that consist of the lengths
of the longest ascending (equivalently, descending) subsequences ending at positions
of σ only. When the proof comes to arguing uniqueness of the tuples, modify the
argument as follows. When considering a t (1 ≤ t ≤ q) and positions ij < ik such
that σij Rtσik

or σik
Rtσij , then by r-symmetry there must be an s (1 ≤ s ≤ q)

such that R−1
t ≡ Rs. Hence we have σij Rtσik

or σij Rsσik
, and the proof can be

completed as for Theorem 1 by just considering the ascending case. ut
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3.4 Subbarao’s Generalization

In the nineteen sixties M.V. Subbarao [37] observed, independently and apparently
unaware of Kruskal’s paper, that the subsequence theorem can be generalized to a
theorem for finite sequences of items from any domain with a binary relation which
is asymmetric and total. Albeit in a different form, he essentially proved Theorem
2′ for the case of a strictly r-total collection consisting of a single relation (q = 1).

In general, the strictly r-total case of Theorem 2′ can be very useful. However,
the following result shows that the strictly r-total case is as general as the other
cases and thus cannot give better bounds, in general.

Corollary 4. As generalizations of the subsequence theorem, Theorem 1 (Ramsey
version) and the strictly r-total case of Theorem 2′ are equivalent.

Proof. We show again how the theorems can be transformed into each other. We
have two cases.

(i) Theorem 1 ⇒ Theorem 2′ for strictly r-total collections. As any strictly r-
total collection is r-total, this follows from the same argument as in Theorem 3′.

(ii) Theorem 2′ for strictly r-total collections ⇒ Theorem 1. Let σ = σ1, · · · , σn

be a sequence of n distinct elements from X, and let {R1, · · · , Rq} be an arbitrary
collection of q binary relations. Define relations R̃k (1 ≤ k ≤ q), R̃q+k (1 ≤ k ≤ q),
and R̃2q+1 as follows:

– R̃k = {(σi, σj) | i < j and σiRkσj},
– R̃q+k = {(σi, σj) | i < j and σjRkσi}, and
– R̃2q+1 = {(σi, σj) | i < j and there is no 1 ≤ k ≤ q such that σiRkσj or σjRkσi}

Observe that the collection {R̃1, · · · , R̃q, R̃q+1, · · · , R̃2q, R̃2q+1} is strictly r-total.
Also notice that in σ, ascending subsequences according to Rk correspond to as-
cending subsequences in R̃k and descending subsequences according to Rk corre-
spond to ascending subsequences in R̃q+k (1 ≤ k ≤ q). Furthermore, R̃k and R̃q+k,
and R̃2q+1, have no descending subsequences of length greater than 1.

Now define s̃k = sk, s̃q+k = rk, r̃k = 1, and r̃q+k = 1 for 1 ≤ k ≤ q, s̃2q+1 = w
and r̃2q+1 = 1. Apply the strictly r-total case of Theorem 2′ to the collection
{R̃1, · · · , R̃q, R̃q+1, · · · , R̃2q, R̃2q+1} with these parameters. Then one sees that for
n ≥ s̃1 · · · s̃2q+1r̃1 · · · r̃2q+1 + 1 = w · s1 · · · sq · r1 · · · rq + 1 the desired conclusion for
Theorem 1 follows. ut

4 Generalizations in Tuple Spaces

Kruskal’s second generalization seems to have been designed especially for dealing
with sequences in tuple spaces like Rd (d ≥ 1). We will argue that most subsequence
theorems for tuple spaces generalize to the broader setting of Sections 2 and 3.

4.1 Basic Generalization

The Erdős-Szekeres theorem has been generalized to higher-dimensional spaces in
several ways. Generalizations of the theorem to Rd are generally presented in terms
of bounds on the cardinality of sets of d-tuples that guarantee the existence of mono-
tone (ascending or descending) sequences in the set. We stay with the framework
of arbitrary subsequences and general tuple spaces.

Consider an arbitrary tuple space X = X1×· · ·Xd, where the component spaces
Xi (1 ≤ i ≤ d) are arbitrary non-empty sets. Tuples x ∈ X are denoted as x =
(x1, · · · , xd).
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Definition 2. For any signature c ∈ {−1, 1}d we define the binary relation Rc on
X by xRcy if and only if for each i (1 ≤ i ≤ d), xiRiyi (if ci = 1) or yiRixi (if
ci = −1).

This gives 2d binary relations on X. (The definition generalizes the corresponding
one for Rd in [33].) Let c1, · · · , c2d be a listing of all signatures c ∈ {−1, 1}d.

Notice that, if all relations Ri are total orders, then every Rc is a partial order
on X. Moreover, the collection of partial orders {Rc | c ∈ {−1, 1}d} in this case is
(r-symmetric and) r-complete.

Theorem 4. Let σ be a sequence of n distinct tuples from X1 × · · · × Xd and let
{Rc | c ∈ {−1, 1}d} be r-complete. Let li ≥ 1 be arbitrary integers, for 1 ≤ i ≤ 2d. If
n ≥ s1 · · · s2d + 1, then there is a i (1 ≤ i ≤ 2d) such that σ contains an ascending
(descending) subsequence of length si + 1 according to Rci .

Proof. The result follows as an instance of Theorem 2. ut

Theorem 4 corresponds to a generalization of the Erdős-Szekeres theorem for
subsets of Rd by Saxton, in the ‘non-strictly monotone’ case ([33], Proposition 3).
He proved the bound on n to be best possible, and also that subsets that satisfy the
bound must contain sequences of the indicated length that are ‘strictly monotone’
in all coordinates. In contrast, Theorem 4 applies to arbitrary given sequences. It
is easy to obtain variants of Theorem 4 for other cases, e.g. for r-total collections.

4.2 De Bruijn’s Theorem

According to [22], a first result for sequences in tuple spaces was obtained by N.G.
de Bruijn (undated). De Bruijn’s theorem is obtained from Theorem 4 by taking
X = Rd and setting all si’s equal, say equal to m.

Generalizing this to arbitrary tuple spaces, Theorem 4 implies that under the
stated conditions, every sequence of n distinct elements from X = X1 × · · · × Xd

with n ≥ m2d

+ 1 must have an ascending (descending) subsequence of length at
least m + 1 according to some relation Rc.

Remark. Kalmanson [21] rediscovered De Bruijn’s theorem in the set version, proved
it best possible, and generalized it to finite-dimensional metric spaces with a poly-
hedral unit sphere. More general results for the set version were obtained in [33].
A proof that the stated bound in De Bruijn’s theorem is best possible was given
earlier also in [2].

The following corollary corresponds to an observation by Heinrich-Litan [17] for
X = Rd in the set case. She proved that her result is essentially best possible, by
constructing an n-element subset S ⊆ Rd which does not contain any monotone
sequences of length greater than dn

1
2d−1 e.

Corollary 5. Let σ be a sequence of n distinct tuples from X1 × · · · ×Xd and let
{Rc | c ∈ {−1, 1}d} be r-complete. Then σ must contain an ascending (descending)
subsequence of length at least dn

1
2d e according to some Rc.

Proof. Consider Theorem 4 with si = m (1 ≤ i ≤ 2d). If m can be chosen such that
n ≥ m2d

+1 and m ≥ dn
1
2d e−1, then the result follows by De Bruijn’s theorem. To

see that it can be done, consider the following two cases. If n
1
2d = a is integer, then

n = a2d

and one can take m = a − 1. If n
1
2d = a + ε for integer a and 0 < ε < 1,

then n ≥ a2d

+ 1 and m = a will do. ut
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As an application of Theorem 4, consider finite sequences of arguments of some
1-1 function f : X1 × · · · ×Xd → Y . Let R be a binary relation on Y , and assume
that {R} is r-total. (For example, Y = R and R the ≤-relation.) We show that
all sufficiently long sequences will contain monotone subsequences on which f is
monotone as well.

Theorem 5. Let σ be a sequence of n distinct tuples from X1 × · · · × Xd and let
{Rc | c ∈ {−1, 1}d} be r-complete. If n ≥ m2d+1

+ 1, then there is an i (1 ≤ i ≤ 2d)
such that σ contains a subsequence σi1 , σi2 , · · · of length m + 1 with the following
property: the subsequence is ascending according to Rci and the image sequence
f(σi1), f(σi2), · · · is monotone according to R.

Proof. Consider the space X1×· · ·×Xd×Y . For each c ∈ {−1, 1}d and c′ ∈ {−1, 1},
let Rc,c′ be defined such that xRc,c′y if and only if (x1, · · · , xd) Rc (y1, · · · , yd) and
furthermore, xd+1 R yd+1 (if c′ = 1) or yd+1 R xd+1 (if c′ = −1). It easily follows
from the assumptions that the collection {Rc,c′ | c ∈ {−1, 1}d and c′ ∈ {−1, 1}} is
r-complete. Let σ = σ1, · · · , σn. The result now follows by applying Theorem 4 to
the sequence σ′ = 〈σ1, f(σ1)〉, 〈σ2, f(σ2)〉, · · · , 〈σn, f(σn)〉. ut

4.3 Generalization of De Bruijn’s Theorem

Kruskal [22] generalized De Bruijn’s theorem to a result for finite sequences in ‘joint
relation spaces’. These spaces are obtained by allowing more than a single relation
to occur in each of the coordinate spaces of a tuple space. We derive a general
formulation which extends Kruskal’s result to a fully parameterized one.

Suppose that for every i (1 ≤ i ≤ d) one is given a finite collection of binary
relations R

(i)
j (1 ≤ j ≤ ki) on Xi. In the tuple space, one can now define joint

relations as follows.

Definition 3. For any h = (h1, · · · , hd) with 1 ≤ hi ≤ ki (1 ≤ i ≤ d), let Rh be the
relation over X1 × · · · ×Xd defined by x Rh y if and only if for each i (1 ≤ i ≤ d),
xiR

(i)
hi

yi.

The definition leads to K = k1 · · · kd binary relations on X = X1 × · · · × Xd.
Denote the index set of the relations by H = {(h1, · · · , hd) | 1 ≤ hi ≤ ki (1 ≤ i ≤
d)}. Let e : {1, · · · ,K} → H be an arbitrary 1-1 enumeration of the index set, i.e.
of the relations Rh.

Theorem 6. Let σ be a sequence of n distinct tuples from X1×· · ·×Xd and let each
of the d collections {R(i)

j | 1 ≤ j ≤ ki} be r-complete (1 ≤ i ≤ d). If n ≥ s1 · · · sK+1,
then there is a t (1 ≤ t ≤ K) such that σ contains a subsequence of length st + 1
that is ascending (descending) according to the joint relation Re(t).

Proof. Observe that {Rh | h ∈ H} is r-complete, by the r-completeness of the
component collections. The result now follows from Theorem 2. ut

Kruskal’s generalization of De Bruijn’s theorem ([22], Theorem 3) is obtained
from Theorem 6 by taking Xi = R for all 1 ≤ i ≤ d and all st equal.

5 Subsequence Theorems in Graph Theory

The Ramsey generalization of the subsequence theorem and its equivalents can be
applied elegantly in graph theory. We show here that various seemingly special
properties have the succinct flavor of the Erdős-Szekeres theorem. We consider this
for a number of different graph classes.
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5.1 Undirected Graphs

Let G = 〈V,E〉 be an arbitrary undirected graph. The set of edges E is a binary
relation, with uEv if and only if (u, v) ∈ E for all u, v ∈ V . The sets of vertices
from V that are ‘unrelated’ in E are precisely the independent sets in G.

General The classical Erdős-Szekeres theorem may be phrased graph-theoretically
as follows. Let σ = σ1, · · · , σn be a sequence of n distinct numbers. Define G〈V,E〉
such that V consists of nodes v1, · · · , vn corresponding to the successive positions
of σ and E satisfies viEvj if σmin(i,j) > σmax(i,j) (1 ≤ i, j ≤ n). G is the inversion
graph associated with σ ([12]).

In the linear layout of G, with nodes from left to right, increasing subsequences
of σ correspond to independent sets in G and decreasing subsequences correspond
to right-going simple paths. (The nodes on a right-going path even form a clique,
as is easily verified.)

Thus, if n ≥ ws + 1, then the Erdős-Szekeres theorem amounts to the claim
that the graph G we constructed must contain an independent set of size w + 1 or
a right-going simple path of length s + 1. This property turns out to hold for all
undirected graphs.

Theorem 7. Let G be an arbitrary undirected graph, and let σ be a sequence of n
distinct vertices of G. If n ≥ ws+1, then σ contains a subsequence whose elements
form an independent set of size w + 1 in G or a subsequence that is a (simple) path
of length s + 1 in G (or both).

Proof. Notice that the collection consisting of the single relation E is r-symmetric.
The result now follows from Theorem 2′′. ut

Note that Theorem 7 differs from the well-known result in Ramsey theory that
any graph with a least R(w + 1, s + 1) vertices contains either an independent set
of size w +1 or a clique of size s+1, for a suitable Ramsey number R(s+1, w +1).
For general graphs, this Ramsey number is considerably larger than the bound in
Theorem 7 [16, 20].

For an application, consider graphs as intersection graphs [12]. Given a set U ,
an intersection graph over U is any finite graph whose vertices x correspond to
non-empty subsets Sx ⊆ U such that there is an edge between x and y if and only
if Sx ∩ Sy 6= ∅. Graph G is said to have intersection number k if k is the minimum
size of any set U such that G is an intersection graph over U [9, 30].

Corollary 6. Let G have intersection number k, and let σ be any sequence of n
distinct vertices of G. Then σ contains a subsequence that is a simple path of length
at least dn

k e in G.

Proof. Consider G as an intersection graph over a set U with |U | = k. Clearly, G
cannot have an independent set of size greater than k. Let s = dn

k e − 1. The result
follows directly from Theorem 7 once we show that n ≥ ks + 1. To see it, write
dn

k e = n
k +ε for some 0 ≤ ε < 1. Now ks+1 = k(n

k +ε−1)+1 = n−(1−ε)k+1 < n+1,
and thus by integrality ks + 1 ≤ n. ut

Rooted Trees The Erdős-Szekeres theorem can also be phrased in terms of rooted
trees, as follows. Let σ be a sequence of n distinct numbers. Without loss of gen-
erality, assume that σ is a permutation of the numbers 1 to n. Let v1, · · · , vn be n
nodes with vi corresponding to i (1 ≤ i ≤ n). Assume that the nodes are laid out
in the given order as a rooted tree T consisting of a single path from leaf node v1

to root node vn.



On the Subsequence Theorem 13

View σ as a sequence of nodes in T , identifying the numbers in σ with the
corresponding nodes in T . (Thus σ jumps up and down in T .) For the ‘one-path’
tree T , the Erdős-Szekeres theorem asserts the following: if n ≥ sr + 1, then σ
contains a subsequence of length s + 1 in which each node is an ancestor of the
node preceding it, or it has a subsequence of length r + 1 in which each node is a
descendant of the node preceding it. This turns out to hold for all rooted trees.

Theorem 8. Let T be an arbitrary rooted tree, and σ a sequence of n distinct nodes
of T . If n ≥ wsr + 1, then σ contains a subsequence of w + 1 nodes that are neither
ancestors nor descendants of each other in T , or a subsequence of length s + 1 in
which each node is an ancestor of the node preceding it, or a subsequence of length
r + 1 in which each node is a descendant of the node preceding it.

Proof. Define the binary relation E by xEy if and only if x is a descendant of y in
T . Now apply Theorem 1 or, alternatively, Theorem 1′. (E is a partial order.) ut

In theorem 8 we may equally well assume that T is an arbitrary forest of rooted
trees.

5.2 Directed Graphs

Tournaments A tournament on n nodes is any directed graph G that is obtained
from the complete graph Kn by giving each edge in it a unique orientation. Tour-
naments are well-studied [25]. Rédei’s theorem learns that all tournaments have a
directed hamiltonian path.

The Erdős-Szekeres theorem can be linked to tournaments as follows. Let σ =
σ1, · · · , σn be a sequence of n distinct numbers. Consider the graph G obtained
from the Kn by identifying the nodes v1, · · · , vn with the respective positions of σ
and orienting edges such that viEvj if and only if σi < σj (1 ≤ i, j ≤ n).

Observe that G is a transitive, i.e. acyclic tournament. Increasing subsequences
of σ correspond to directed paths in G, and decreasing subsequences to ‘reverse
directed’ paths. Thus, if n ≥ sr + 1, then the Erdős-Szekeres theorem implies that,
if we traverse the nodes of G in some arbitrary order π = π1, · · · , πn (a permutation),
then G will include a directed path of length s + 1 or a reverse directed path of
length r + 1, with the nodes on the path occurring in the same order as in π.

As every transitive tournament is the tournament of a set of numbers as we
defined it (cf. [25], Thm. 9), the stated property holds for all acyclic tournaments.
Interestingly, it is a property of all tournaments.

Theorem 9. Let G be an arbitrary tournament, and σ a sequence of n distinct
vertices of G. If n ≥ sr + 1, then σ contains a subsequence that is a directed path
of length s + 1 or a subsequence that is a reverse directed path of length r + 1 in G.

Proof. Define E by uEv if and only 〈u, v〉 is an arc in G (u, v ∈ G). Notice that
the collection just consisting of relation E is r-total. The result now follows from
Theorem 2′. ut

Edge-weighted digraphs An edge-weighted digraph is any directed graph G =
〈V,E, w〉 with V and E as usual, and w : E → R a scalar function that assigns
weights to the edges.

We first introduce some terminology. A forward path with k hops in G is any
sequence of k edges 〈u1, v1〉, · · · , 〈uk, vk〉 such that for each i (1 ≤ i ≤ k−1), there is
directed path from vi to ui+1. A backward path with k hops is any sequence of k edges
〈u1, v1〉, · · · , 〈uk, vk〉 for which 〈uk, vk〉, · · · , 〈u1, v1〉 is a forward path with k hops. A
forward or backward path is called increasing if the weights on the successive edges
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in the path are increasing, and it is called decreasing if the weights are decreasing.
Finally, a pair of distinct arcs 〈u, v〉 and 〈x, y〉 will be called diametric if there is
no directed path from v to x and no directed path from y to u. A diametric set (of
arcs) is any subset of E whose elements are pairwise diametric.

The Erdős-Szekeres theorem can be phrased in terms of edge-weighted graphs
as follows. Let σ = σ1, · · · , σn be a sequence of n distinct numbers. Let G′ be the
graph with vertices v1, · · · , vn+1 and arcs 〈vi, vi+1〉 (1 ≤ i ≤ n). Assign weights
to edges by w(〈vi, vi+1〉) = σi (1 ≤ i ≤ n). Consider the sequence of n edges
κ = 〈v1, v2〉, · · · , 〈vn, vn+1〉 in G′. The theorem of Erdős and Szekeres now amounts
to the claim that, if n ≥ s1s2+1, then κ contains a subsequence that is an increasing
forward path with s1 + 1 hops or a subsequence that is a decreasing forward path
with s2 + 1 hops (or both).

The stated property seems hard to generalize: G′ is a line and thus a very special
graph, and κ lists edges in precisely the right order. However, the property is an
instance of a general one that holds for all edge-weighted graphs.

Theorem 10. Let G be an arbitrary edge-weighted graph, and µ a sequence of n
(distinct) edges from G with distinct weights. If n ≥ ws1s2r1r2 +1, then µ contains
a subsequence µ′ for which at least one of the following holds: (a) the edges of µ′

form a diametric set of size w + 1, (b) µ′ is an increasing forward path with s1 + 1
hops, (c) µ′ is a decreasing forward path with s2 + 1 hops, (d) µ′ is an increasing
backward path with r1 + 1 hops, or (e) µ′ is a decreasing backward path with r2 + 1
hops.

Proof. Define the binary relations E1, E2 over the edges of G as follows. We set
〈u, v〉E1〈x, y〉 if and only if there is a directed path from v to x and w(〈u, v〉) ≤
w(〈x, y〉). Next, we set 〈u, v〉E2〈x, y〉 if and only if there is a directed path from v
to x and w(〈u, v〉) ≥ w(〈x, y〉).

Now apply Theorem 1 to µ and the collection of binary relations {E1, E2}.
Interpreting the theorem, we obtain the result in terms of forward (‘ascending’)
and backward (’descending’) paths. The sets of edges that are ‘unrelated’ in each
of the relations E1, E2 are precisely the diametric sets. ut

Returning to the initial example of the Erdős-Szekeres theorem, it is now clear
why G′ and κ are special: G′ has no diametric sets of size greater than 1, and
κ contains no backward paths, increasing or decreasing. Hence, it is precisely an
instance of Theorem 10 with w = r1 = r2 = 1.

Directed Acyclic Graphs Directed acyclic graphs naturally arise when consid-
ering partial orders. Let G = 〈V,E〉 be an arbitrary directed acyclic graph. Colour
the edges of G using the color set {c1, · · · , cq} arbitrarily with one color per edge.
The following observation can be made, expanding on Corollary 3.

Theorem 11. Let σ be an arbitrary sequence of n distinct vertices from G. If n ≥
w ·hq +1, then G has a monochromatic directed path of length h+1 or G contains a
subset of at least w + 1 vertices of which no two are connected by a monochromatic
directed path.

Proof. Each color ci (1 ≤ i ≤ q) induces a partial order Pi on the nodes of G, with
u �i v if and only if there is a (directed) path from u to v of which the edges (if
any) are colored ci only.

Sort G topologically, and let σ be the resulting sequence of vertices. Clearly
σ has no descending subsequences of length greater than 1, in any of the partial
orders. The result now follows from Theorem 1′, setting s1 = · · · = sq = h and
r1 = · · · = rq = 1. ut
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6 Optimality of the Bound on n

In this section we consider the optimality of the bound on n in Theorems 1, 2, 2′,
and 2′′. By the equivalence, if the bound is best possible for one of the theorems,
then it is for all of them.

Kruskal [22] outlined an argument that Theorem 2 is optimal, i.e. the case of
r-complete collections of relations with s1 = · · · = sq. In this section we focus on
Theorem 1 and give an inductive argument that it is best possible for any choice
of parameters. More precisely, we show that it is already best possible when all
binary relations are restricted to be partial orders on a tuple space, i.e. in the case
of Theorem 1′.

We begin with a self-contained proof that the bound in Corollary 1 is best
possible. Then we give a proof for the general result.

6.1 Optimality of Corollary 1

Consider Corollary 1. We know that the corollary is best possible for any s and r
and w = 1 (i.e. the original theorem). This can be extended for arbitrary w ≥ 1
as follows. Let δ = δ1, · · · , δn be a sequence of distinct integers of length n = sr
in which every monotone increasing subsequence has length at most s and every
monotone decreasing subsequence has length at most r. Such sequences exist (cf.
[20], Ex. 4.13). Now proceed as follows.

Let S be the set of all integers occurring in δ and let p1, · · · , pw be w distinct
prime numbers larger than any integer in S. Let P be the poset of all integers u · pi

with u ∈ S and 1 ≤ i ≤ w. For a, b ∈ P we let a � b if and only if there exist an
i and u, v ∈ S such that a = u · pi, b = v · pi and u ≤ v. One easily sees that the
width of P is w.

Let δp denote the sequence of products δ1 ·p, · · · , δn ·p, and consider the sequence
σ obtained by concatenating all δpi ’s, i.e. σ = δp1 , · · · , δpw . Observe that σ has
length wsr, that every ascending subsequence in it has length at most s and that
every descending subsequence in it has length at most r. This shows that the bound
in Corollary 1 is sharp.

6.2 Optimality of Theorem 2′ for Partial Orders

In order to prove the optimality of Theorem 1′ we will first show that the bound in
Theorem 2′ is best possible for posets, i.e. the case with multiple partial orders and
w = 1. Then we extend this result to multiple partial orders and arbitrary w.

Notation. For arbitrary s, r ≥ 1 we let δ[s, r] = δ[s, r]1, · · · , δ[s, r]sr be any se-
quence of sr integers with the property that every increasing subsequence in it has
length at most s and every decreasing subsequence in it has length at most r.

Notation. Let σ = δ1, · · · , δn be a sequence and i an integer. Then 〈σ, i〉 denotes
the sequence 〈δ1, i〉, · · · , 〈δn, i〉.

In order to show that Theorem 2′ is best possible we prove the following lemma,
which asserts that subsequences can be tightly packed just below the bound.

Lemma 1. Let q ≥ 1 and s1, · · · , sq, r1, · · · , rq ≥ 1 be arbitrary integers, and let
n = s1 · · · sq · r1 · · · rq. Then there are a domain Dq with |Dq| = n and an r-total
set of partial orders P1, · · · , Pq on Dq such that the following holds: there is a
sequence σ = σq consisting of the n distinct elements from Dq such that for every
i (1 ≤ i ≤ q), every ascending subsequence of σ according to Pi has length at most
si and every descending subsequence in σ according to Pi has length ri.
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Proof. The proof proceeds by induction on q, constructing σq+1 by composition
from its ‘q-dimensional’ version.

For q = 1, the lemma trivially holds, by optimality of the original Erdős-Szekeres
theorem. More concretely, given any s1 ≥ 1 and r1 ≥ 1, any sequence σ1 = δ[s1, r1]
will do. Here, D1 consists of the s1 · r1 elements of the sequence, and P1 is the
natural total order between integers (which is r-total by itself).

Assume the lemma holds for q (some q ≥ 1). Now consider the case q + 1. Let
s1, · · · , sq, sq+1, r1, · · · , rq, rq+1 ≥ 1 be arbitrary integers. Set n = s1 · · · sq ·r1 · · · rq.
Let Dq and partial orders P1, · · · , Pq on Dq and sequence σq = δ1, · · · , δn be as
implied by the induction hypothesis for q and s1, · · · , sq, r1, · · · , rq.

Now construct Dq+1 = {〈x, k〉 | x ∈ Dq and 1 ≤ k ≤ sq+1rq+1}. Thus by
induction, the elements of Dq+1 are exactly the tuples 〈δj , k〉 with 1 ≤ j ≤ n and
1 ≤ k ≤ sq+1rq+1. We extend P1, · · · , Pq to partial orders P ′

1, · · · , P ′
q on Dq+1 as

follows, where we use �i and �i′ to denote relationships according to Pi and P ′
i

respectively: 〈x, k〉 �i′ 〈y, l〉 if and only k = l and x �i y.
Define partial order Pq+1 on Dq+1 as follows: 〈x, k〉 �q+1 〈y, l〉 if and only if

〈x, k〉 = 〈y, l〉 or k 6= l and δ[sq+1, rq+1]k < δ[sq+1, rq+1]l. i.e. the partial order-
ing is determined by the ordering of the integers in the ‘Erdős-Szekeres sequence’
δ[sq+1, rq+1]. (The condition k 6= l is not necessary as it is already implied by the
distinctness of the integers in δ[sq+1, rq+1], but we include it for clarity.)

Claim. The set {P ′
1, · · · , P ′

q, Pq+1} is an r-total set of partial orders on Dq+1.

Proof. One easily verifies that P ′
1, · · · , P ′

q, Pq+1 are partial orders on Dq+1, using
that P1, · · · , Pq are partial orders on Dq. By induction the latter form an r-total set
on Dq. We now consider the set P ′

1, · · · , P ′
q, Pq+1.

Consider two arbitrary elements 〈x, k〉, 〈y, l〉 ∈ Dq+1. If k = l then it follows
by the r-totality of {P1, · · · , Pq} that there must be an i (1 ≤ i ≤ q) such that
〈x, k〉 �i′ 〈y, l〉 or 〈y, l〉 �i′ 〈x, k〉. If k 6= l, then the definition of Pq+1 implies that
〈x, k〉 �q+1 〈y, l〉 or 〈y, l〉 �q+1 〈x, k〉. Hence {P ′

1, · · · , P ′
q, Pq+1} is r-total. ut

Finally, define the sequence σ by σ = 〈σq, 1〉, · · · , 〈σq, sq+1rq+1〉. Clearly σ con-
sists of nsq+1rq+1 = s1 · · · sq+1 · r1 · · · rq+1 distinct elements, namely the elements
of Dq+1 in ‘reverse lexicographic order’.

Claim. Sequence σ satisfies all requirements for σq+1.

Proof. We will only show that for every i (1 ≤ i ≤ q) every ascending subsequence
of σ with respect to the partial order P ′

i has length at most si, and that every
ascending subsequence of σ with respect to Pq+1 has length at most sq+1. The
proof of the corresponding statement for descending subsequences and their length
is similar.

First consider the case of ascending subsequences according to P ′
i (1 ≤ i ≤ q).

Let 〈x1, k1〉 �i′ · · · �i′ 〈xt, kt〉 be an ascending subsequence of σ. If t = 1 then
t ≤ si and we are done. Thus assume that t > 1. By the definition of P ′

i we must
have k1 = · · · = kt and hence, that x1, · · · , xt is an ascending subsequence of σq

with respect to Pi. By the induction hypothesis it follows that t ≤ si.
Next consider Pq+1. Let 〈x1, k1〉 �q+1 · · · �q+1 〈xt, kt〉 be an ascending sub-

sequence of σ. If t = 1 then t ≤ sq+1 and we are done again. Thus assume that
t > 1. By the property of being a subsequence we have that k1 < · · · < kt. By the
definition of Pq+1 it then follows that δ[sq+1, rq+1]k1 < · · · < δ[sq+1, rq+1]kt and
hence that δ[sq+1, rq+1]k1 , · · · , δ[sq+1, rq+1]kt is an ascending subsequence of the se-
quence δ[sq+1, rq+1]. It follows that t ≤ sq+1, by the ‘Erdős-Szekeres’ property of
δ[sq+1, rq+1]. ut

It follows that we can set σq+1 = σ for the induction step. This completes the
proof of the induction and thus of the lemma. ut
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6.3 Optimality of Theorem 1′

We now extend Lemma 1 to establish the tightness of the bound on n in Theorem
1′. To this end we show the following.

Theorem 12. Let q ≥ 1 and w, s1, · · · , sq, r1, · · · , rq ≥ 1 be arbitrary integers, and
let n = w · s1 · · · sq · r1 · · · rq. Then there are a domain Eq with |Eq| = n and partial
orders R1, · · · , Rq on Eq such that the following holds: there is a sequence δ = δq

consisting of the n distinct elements from Eq such that every subsequence of δ whose
elements form an anti-chain in each of R1, · · · , Rq has length at most w and for
every i (1 ≤ i ≤ q), every ascending subsequence of δ according to Pi has length at
most si and every descending subsequence in δ according to Pi has length ri.

Proof. Let q ≥ 1 and s1, · · · , sq, r1, · · · , rq ≥ 1 be arbitrary integers and let m =
s1 · · · sq · r1 · · · rq. By Lemma 1 there are a finite Dq and an r-total set of partial
orders P1, · · · , Pq on Dq such that the following holds: there is a sequence σq =
µ1, · · · , µm consisting of m distinct elements from Dq such that for every i (1 ≤
i ≤ q), every ascending subsequence of σ according to Pi has length at most si and
every descending subsequence in σ according to Pi has length ri.

Let w ≥ 1 be an arbitrary integer. If w = 1, then Lemma 1 is actually sufficient
for our purpose, by r-totality of the set of partial orders. Thus, assume from now
on that w > 1. Let Eq = {〈x, k〉 | x ∈ Dq and 1 ≤ k ≤ w}. Thus, the elements
of Eq are exactly the tuples 〈µj , k〉 with 1 ≤ j ≤ m and 1 ≤ k ≤ w. We extend
the P1, · · · , Pq to partial orders R1, · · · , Rq on Eq as follows, where we will use �i

and �i′ to denote relationships according to Pi and Ri respectively: 〈x, k〉 �i′ 〈y, l〉
if and only k = l and x �i y. As in the proof of Lemma 1, it is easily seen that
R1, · · · , Rq are partial orders.

Define the sequence δ by δ = 〈σq, 1〉, · · · , 〈σq, w〉. Clearly σ consists of n = w ·m
distinct elements, namely the elements of Eq in reverse lexicographic order again.
Now consider the properties of δ.

First, let 〈x1, k1〉, · · · , 〈xt, kt〉 be a subsequence of elements which forms an anti-
chain in each of the R1, · · · , Rq. If t = 1, then t ≤ w and we are done. Thus assume
that t > 1. If there are any two indices a, b with 1 ≤ a 6= b ≤ t such that ka = kb,
then notice that by r-totality of P1, · · · , Pq there must be an i such that xa �i xb or
xb �i xa. Hence, by definition of Ri, 〈xa, ka〉 �i′ 〈xb, kb〉 or 〈xb, kb〉 �i′ 〈xa, kb〉. This
contradicts the assumption that all elements in the subsequence were incomparable
under all partial orders. Thus we may assume that all k1, · · · , kt are different. But
then t ≤ w, by the definition of Eq. Thus, any subsequence of elements which forms
an anti-chain in each of the R1, · · · , Rq is of size at most w.

Next, consider any i (1 ≤ i ≤ q). Let 〈x1, k1〉 �i′ · · · �i′ 〈xt, kt〉 be an ascending
subsequence with respect to Ri. Again, if t = 1 we have t ≤ si and we are done.
Thus, assume t > 1. As the elements in the subsequence are all comparable, we must
have k1 = · · · = kt. It follows that x1, · · · , xt must be an ascending subsequence in
Pi. Hence t ≤ si in this case as well. The argument for descending subsequences is
completely similar.

We conclude that δq = δ satisfies the properties required for the theorem. ut

We note that Lemma 1 is a special case of Theorem 12, as is also suggested by
the proof. For, take w = 1 in Theorem 12. Let x, y be any two distinct elements
appearing in δ, say occurring in this order. If x and y are incomparable with respect
to every Ri (1 ≤ i ≤ q), then the subsequence x, y of δ violates the theorem. Thus
the set of partial orders {R1, · · · , Rq} is necessarily r-total when w = 1.

Theorem 12 implies that the bound on n in Theorem 1′, and thus in Theorem
1, is best possible.
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7 Discussion

The classical subsequence theorem of Erdős and Szekeres [10] has been in extended
and generalized in multiple directions, since its inception in the nineteen thirties.
We reflected on an early study by J.B. Kruskal [22] who generalized the result to
sequences in all domains that satisfy the constraints of, what he called, ‘relation
spaces’.

To obtain a proper benchmark, we showed that the subsequence theorem can be
generalized to arbitrary domains with a finite number of binary relations, without
any constraints at all. The key to this result is an application of Ramsey’s theorem
which reveals the elegant, general principle behind the subsequence theorem.

We subsequently showed that Kruskal’s generalization is equivalent to the gen-
eral Ramsey version. We showed several further equivalences, all involving useful
cases of the Ramsey version. Freeing Kruskal’s generalization from the constraint of
relation spaces, the new generalization unifies and extends a variety of results that
all fit the pattern.

The general Ramsey version leads to a wide range of new applications that
all generalize the classical Erdős-Szekeres theorem, from posets to graph theory.
Applications can be imagined in all contexts where large streams of structured data
are at play.

The Erdős-Szekeres theorem has given rise to many further studies concerning
the length of the longest increasing or decreasing subsequences that can occur in
a sequence of n numbers [31]. It would be interesting to study length distributions
for subsequences in the general framework of this paper as well.
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5. V. Chvátal, M. Komlós, Some combinatorial theorems on monotonicity, Canad. Math.

Bull. 14:2 (1971) 151-157.
6. A. Dasgupta, Set Theory - With an Introduction to Real Point Sets, Birkhäuser,
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