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Basic |deasto Approach Metastability in
Probabilistic Cellular Automata

Emilio N.M. Cirillo, Francesca R. Nardi and Cristian Spiton

Abstract Cellular Automata are discrete—time dynamical systems spadially
extended discrete space which provide paradigmatic exesrgfl nonlinear phe-
nomena. Their stochastic generalizations, i.e., ProistéibiCellular Automata, are
discrete time Markov chains on lattice with finite singlel-states whose distin-
guishing feature is thparallel character of the updating rule. We review the some
of the results obtained about the metastable behavior dfaitistic Cellular Au-
tomata and we try to point out difficulties and peculiaritigth respect to standard
Statistical Mechanics Lattice models.

1 Introduction

Cellular Automata are discrete—time dynamical systemsspadally extended dis-

crete space. They are well known for being easy to implemedtfar exhibiting

a rich and complex nonlinear behavior as emphasized foariastin [28] for Cel-

lular Automata on one—dimensional lattice. For the genéiedry of deterministic

Cellular Automata we refer to the recent paper [15] and ezfees therein.
Probabilistic Cellular Automata (PCA) are Cellular Autamatraightforward

generalization where the updating rule is stochastic. Ereyused as models in a
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wide range of applications. From a theoretic perspectivweain challenges con-
cern the non—ergodicity of these dynamics for an infinitdeobion of interacting
cells.

Strong relations exist between PCA and the general equifibstatistical me-
chanics framework [27,-18]. Important issues are relatetth@éointerplay between
disordered global states and ordered phase®(gence of organized global states,
phase transitiop [23]. Although, PCA initial interest arose in the framekarf
Statistical Physics, in the recent literature many diffégplications of PCA have
been proposed. In particular it is notable to remark thattarahcontext in which
the PCA main ideas are of interest is that of evolutionary em[@4].

In this paper we shall consider a particular class of PCAedatversiblePCA,
which are reversible with respect to a Gibbs—like measufmelt via a transla-
tion invariant multi-body potential. In this framework wieadl pose the problem of
metastability and show its peculiarities in the PCA world.

Metastable states are ubiquitous in nature and are cheraci®dy the following
phenomenological properties: (i) the system exhibits glsiphase different from
the equilibrium predicted by thermodynamics. The systeeyslthe usual laws of
thermodynamics if small variations of the thermodynampzslameters (pressure,
temperature, ...) are considered. (ii) If the system isaiwal the equilibrium state
is reached after a very large random time; the life—time efritetastable state is
practically infinite. The exit from the metastable state lbammade easier by forcing
the appearance large fluctuations of the stable state @tsopf liquid inside the
super—cooled vapor, ...). (iii) The exit from the metastgtitase is irreversible.

The problem of the rigorous mathematical description ofasigible states has
long history which started in the 70s, blew up in the 90s, ansitill an impor-
tant topic of mathematical literature. Different theorfiese been proposed and de-
veloped and the pertaining literature is huge. We refer iterésted reader to the
monograph([22]. In this paper we shall focus on the study dfastability in the
framework of PCA.

In [1,[5,[4/6/20] the metastable behavior of a certain classwersible PCA has
been analyzed. In this framework it has been pointed ouetmarkable interest of a
particular reversible PCA (see Sectidn 3) characterizetthdyact that the updating
rule of a cell depends on the status of the five cells formingpasccentered at the
cell itself. In this model, the future state of the spin at\eegicell depends also on
the present value of such a spin. This effect will be cafietl-interactiorand its
weight in the updating rule will be callezklf-interaction intensity

The paper is organized as follows. In Sectidn 2 we introdesensible Prob-
abilistic Cellular Automata and discuss some general pt@e In Sectiol 13 we
introduce the model that will be studied in this paper, ngsrtak nearest neighbor
and the cross PCA, and discuss its Hamiltonian. In SeElioe #oge the problem
of metastability in the framework of Probabilistic Cellulautomata and describe
the main ingredients that are necessary for a full desonpif this phenomenon. In
Sectiorl b we finally state our results.
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Fig. 1 Schematic representa- .
tion of the action of the shift TI
G, defined in[(1).

2 Reversible Probabilistic Celular Automata

We shall first briefly recall the definition of Probabilistiellular Automata and then
introduce the so calleReversible Probabilistic Cellular Automata

Let A c Z9 be a finite cube with periodic boundary conditions. Asseciith
each site € /A (also callectell) the state variable; € X, whereXg is a finite single—
site space and denote bYy:= Xé‘ the state spaceAny o € X is called astateor
configurationof the system.

We introduce the shif®; on the torus, for any € A, defined as the ma@, :
X — X shifting a configuration irX so that the sitéis mapped to the origin 0, more
precisely such that (see figlire 1)

(©10)j = Oiyj. 1)

The configuratioro at site j shifted byi is equal to the configuration at site- j.
For example (see figuté 1) spt= 0, then the value of the spin at the origin O will
be mapped to site

We consider a probability distributiofy : Xo — [0,1] depending on the state
o restricted tol C A. A Probabilistic Cellular Automata is the Markov chain
0(0),0(1),...,0(t) on X with transition matrix

p(o.n) = U fo.o (i) )

for o,n € X. We remark that depends o®,0 only via the neighborhooiH-1.
Note that the character of the evolution is local and pdrdlie probability that the
spin at the sité assumes at time+ 1 the values € Xy depends on the value of the
state variables at time(parallel evolution) associated only with the sites iAl
(locality).

A class ofreversiblePCA can be obtained by choosidg= {—1,+1}", and
probability distribution
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1 .
fo(s) = é{l—i—stanh{ﬁ(jez/\ku)a,+h)” 3)

for all se {—1,4+1} whereT =1/ > 0 andh € R are calledtemperatureand
magnetic field The functionk : Z? — R is such that its suppﬂhs a subset of\
andk(j) =k(j") wheneverj, j’ € A are symmetric with respect to the origin. With
the notation introduced above, the $as the support of the functiok. We shall
denote bypg 1, the corresponding transition matrix defined Bl (2).

Recall thatA is a finite torus, namely, periodic boundary conditions amesid-
ered throughout this paper. It is not difficult to proivel[18] that the above specified
PCA dynamics is reversible with respect to the finite—voluBitebs—like measure

1
Hpn(0) = 5 e POl @)

with Hamiltonian

Gpn(0)=-hY - % 5 |ogcosh[ﬁ(z K(j—i)oj + h)} (5)

ien ien JEN

andpartition function = ¥ ,cx €xp{—BGp (n)}. In other words, in this case
the detailed balance equation

ppn(0,n)e Peenl?) = e PGanMps (n o) (6)

is satisfied thus the probability measyigy, is stationary for the PCA.

Note that different reversible PCA models can be specifiechmpsing different
functionsk. In particular the suppoitof such a function can be varied. In the next
section we shall introduce two common choices,rtkarest neighbor PCJ§] ob-
tained by choosing the supportloés the set of the four sites neighboring the origin
and thecross PCA[6] obtained by choosing the supportlofis the set made of the
origin and its four neighboring sites (see figlte 2).

The stationary measuyg; , introduced above looks like a finite—volume Gibbs
measure with Hamiltoniag (o) (see [(5)). It is worth noting theBg ;, cannot
be thought as a proper statistical mechanics Hamiltoniacesit depends on the
temperature 13. On the other hand the low—temperature behavior of theostaty
measure of the PCA can be guessed by looking ag¢tieegyfunction

Hh(0) = Jim Gpp(0)=—h5 ai— 5

¥ k(i ~i)oj +h 7)
IE

The absolute minima of the functidty, are calledground state®f the stationary
measure for the reversible PCA.

1 Recall that, by definition, the support of the functiois the subset oA where the functiork is
different from zero.
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Fig. 2 Schematic representation of the nearest neighbor (leftcerss (right) models.

3 Thetuned cross PCA

We consider, now, a particular example of reversible PCAréMmrecisely, we set
k(j) =01if j is neither the origin nor one of its nearest neighbors,it.& notin the
five site cross centered at the origh(0) = k € [0,1], andk(j) = 1 if j is one of the
four nearest neighbor of the origin; we shall denotd ltiye set of nearest neighbors
of the origin. With such a choice we have that

1
1+ 672BS(K00+ZJ'EJ O'j+h)

fo(s) = %{1+stanh[3 (KUo—i- ZJU,— +h)]} - ®)
i€

We shall call this model thieined cros$?CA. Theself—interaction intensity tunes
between theearest neighbofk = 0) and thecross(k = 1) PCA.

Note that for this model the Hamiltoni&By \, defining the stationary Gibbs-like
measure is given by

1
Ggn(o)=-hY g——— Y logcosh| B ko + ogj+h 9)
P i;\ I B’hi;\ { ( | jez+J : )}
while the corresponding energy function, dele (7), is

Hn(o)=—h% ai— 3

ien ieA

KO+ Z 0j+h‘ (10)
jer+d
In statistical mechanics lattice systems, the energy ofrdigaration is usually
written in terms of coupling constants. We could write thpaxsion of the energy

Hn in (@0), but, for the sake of simplicity, we consider the msaneighbor PCAT[5],
namely, we sek = 0. We get
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Fig. 3 Schematic representa-
tion of the coupling constants:
from the left to the right and
from the top to the bottom the
couplingsJ., . g Ia.
andJ,, are depicted.

XEN

-J, AZ —J, > ox << g(w)a(2)

Oxywz

Hh(a) =-J Z G(X) _‘]<<>> ; U(X)U(y) _J<<<>>> ;)))O—(X)O—(y)

where the meaning of the symbolg()), ((())) A, and{ is illustrated in figurél3
and the corresponding coupling constants are

5 1 1 1 1 3
J = Eh’ Iy =1- Zh’ iy = 5~ 8h’ J, = 8h andJ, = ~3 + 8h
It is interesting to note that the coupling constagtis negative (antiferromagnetic
coupling), this will give a physical meaning to the appeasaof checkerboard con-
figurations in the study of metastability for the nearesghbor PCA.
The coupling constants can be computed by usihg [9, equa@rand (7)] (see
also [14, equations (3.1) and (3.2)] ahdl [7]). More pregisgvenf : {—1,+1}Y —
R, with V C Z?2 finite, we have that for any € {—1,+1}V

o)= 3 c]o (11)

with the coefficient€;’s given by

1
lof (12)
2V ‘oe{ l+l}V I_|

We refer to [3] for the details. We note that in that paper tbeptings have been
computed for a more general model than the one discussed here

Now, we jump back to the tuned cross PCA and we discuss thetsteuof the
ground states, that is to say, we study the global minimaegtiergy functiory,
given in [I0). Such a function can be rewritten as

Hn(o) =S Hhi(0)

i€

C=—

with
Hhi(o) = — Eh(oi + j€|+J0j) + ‘Kai + jewa,- + hH (13)
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h

Fig. 4 Zero temperature
phase diagram of the station-
ary measure of the tuned cross /_\* P
PCA. On the thick lines the Ko
ground states of the adjacent u d G G
regions coexist. At the origin

the listed four ground states

coexist.

We also note that
Hn(0) = H_n(~0) (14)

foranyh € R ando € X, where—o denotes the configuration obtained by flipping
the sign of all the spins af. By (I14) we can bound our discussion to the dase0
and deduce a posteriori the structure of the ground statés<d.

The natural candidates to be ground states are the folloavainfigurationsu € X
such thatu(i) = +1 for alli € A, d € X such thatd(i) = +1 for all i € A, ce,
andc, with ce the checkerboard configuration with pluses on the even attizd
of A and minuses on its complement, whdg is the corresponding spin—flipped
configuration. Indeed, we can prove that the structure oféine—temperature phase
diagram is that depicted in figure 4.

Case h> 0 and k > 0. The minimum ofHy,; is attained at the cross configuration
having all the spins equal to plus one. Hence the unique atesolinimum ofHy, is
the stateu.

Case h=0and ly > 0. The minimum of

HO,i(U) = —‘KUi—i— Z O'j’
jer+d

is attained at the cross configuration having all the spingktp plus one or all
equal to minus one. Hence the set of ground states is made tfithconfigurations
u andd.

Case h= 0 and k = 0. The minimum ofHo; is attained at the cross configuration
having all the spins equal to plus one or all equal to minusamthe neighbors of
the center and with the spin at the center which can be, in asg,@ither plus or
minus. Hence the set of ground states is made of the four eoafignsu, d, ce,
andc,.

Case h< 0. The set of ground states can be easily discussed ds>dd by using

the property[(T4).
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4 Main ingredients for metastability

At K > 0, the zero temperature phase diagram in fifilire 4 is veryainalthat of
the standard Ising model, which is the prototype for the deson of phase transi-
tions in Statistical Mechanics. So we expect that even ircéise of the tuned cross
PCA the equilibrium behavior could be described as follofjsat positive mag-
netic fieldh there exist a unique phase with positive magnetizBti¢i) the same
it is true at negativén but with negative magnetization; (iii) &= 0 the equilib-
rium behavior is more complicated: there exists a criticdle of the temperature
such that at temperatures larger than such a value thetts exisiique phase with
zero magnetization, while at temperatures smaller thawmritieal one there exists
two equilibrium measures with opposite not zero magnetinatalled theesidual
magnetization

This scenario has proven to be true in the case of the two-+dioeal standard
Ising model, but in the context of the tuned cross PCA the lpralis much more
difficult due to the complicated structure of the energy fiorc(9). The validity of
such a scenario has been checked via a Mean Field computafgin

From now on, for technical reasons, we shall assume that dugnaetic field
satisfies the following conditions

O<h<4 and h#k,2—K,2+K,4—K,4+K (15)

Sinceh > 0, the equilibrium is characterized by positive magneitiratThe ques-
tion is: is it possible to investigate the possibility of theistence of metastable
states? In other words, is it possible to show that there erisequilibrium phases
in which the system is trapped in the sense described in thedunction (see Sec-
tion[d)?

This question has a very long history: in some sense it ardtfethhe van der
Waals theory of liquid—vapor transition and began to find sonathematically rig-
orous answer only in the 80’s. We just quotel[21] for praghwise approachnd [2]
for thepotential theoretione and we refer td [22] for the full story and for complete
references.

According to the rigorous theories of metastability thelppeon has to be ap-
proached from a dynamical point of view. Namely, we shallsider the evolution
of the tuned cross PCA started at the initial configurafion X and study the ran-
dom variable

§ =inf{t >0, o(t) = u} (16)

called thefirst hitting timeto u. The state will be called metastable or not de-
pending on the properties of the random variaﬂ;flén the zero temperature lirit

2 By exploiting the translational invariance of the modelsipossible to define the magnetization
as the mean value of the spin at the origin against the Gitkesedjuilibrium measurg(g p,.

3 The regime outlined in this paper, i.e., finite state spacetamperature tending to zero, is usu-
ally called the Wentzel-Friedlin regime. Different limitan be considered, for instance, volume
tending to infinity.
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(B — ). In the framework of different approaches to metastahdifferent defini-
tions of metastable states have been given, but they arelatiéd to the properties

of the hitting tlmer In particular it has to happen that the mean valug; {ofias to
be large, say diverging exponentially fast wgh— co.

As remarked above, fdi > 0 small, natural candidates to be metastable states
for the tuned cross PCA are the configuratidnge, andc,. But, imagine to start
the chain ad: why should such a state be metastable? Why should the cligen t
a very long time to hit the “stable” statg? The analogous question posed in the
framework of the two—dimensional Ising model with Metrapalynamics has an
immediate qualitative answer: in order to reacstarting fromd the system has to
perform, spin by spin, a sequence of changes against thgyedsit. Indeed, plus
spins have to be created in the starting sea of minuses, asd transitions have a
positive energy cost if the magnetic field is small enougtiead the interaction is
ferromagnetic and pairs of neighboring opposite spins habe created.

But in the case of the tuned cross PCA, redall (10) and recalissumet < 4,
see[(Ib), the starting and the finali configurations have energy

Hn(d) = —|A|(4+k —2h) and Hn(u) = —|A|(4+ K+ 2h)

So thatHp(d) > Hp(u), as it is obvious since is the ground state. Moreover, the
dynamics is allowed to jump in a single step frahto u by reversing all the spins

of the system. A naive (wrong) conclusion would be tdatannot be metastable
because the jump fromh to u can be performed in a single step by decreasing the
energy.

The conclusion is wrong because in reversible PCA the piitityaio perform a
jump is not controlled simply by the difference of energiéthe two configurations
involved in the jump. Indeed, in the example discussed alreeall [2) and[(B), we
have that 1 "

B0 _
pB,h(dvu) _ W e 2|\ |B(4+Kk—h)
which proves that the direct jump frochto u is depressed in probability whehis
large.

This very simple remark shows that the behavior of the PCAotibe analyzed
by simply considering the energy difference between condigpns. It is quite evi-
dent that a suitable cost function has to be introduced.

From [I5) the local fieldkop + ¥ <5 0j + h appearing in[(B) is different from
zero. Thus, fo3 — oo,

1 ifn() KO'|—|— GJ+h >OVI€/\
pgn(a,n) IISEN]

0 otherwise

where we have usel](2). Hence, giverthere exists a unique configuratigrsuch
that pgn(o,n) — 1 for B — o and this configuration is the one such tigdt) is
aligned with the local fielt gi +  ji 5 0j +h for anyi € A. Such a unique config-
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uration will be called thelownhill imageof o. This property explains well in which
sense PCA are the probabilistic generalization of detastiégnCellular Automata:
indeed, in such models each configuration is changed detistioally into a unique
image configuration. This property is recovered in probigtih reversible PCA in
the limit 8 — oo,

We now remark that if is different from the downhill image aof, we have that
Pg.n(0,n) decays exponentially with rate

.1
Ah(G,U):_A|anﬁlogp3,h(a,n): | 2’”*2 0j+h’ (17)
n(i)[K0i+zleEiero'j+h]<0 jertd

Note that ifn is the downhill image ot thenA(o,n) = 0. More precisely we

have
e*BAh(Uﬂ)*BV(B) S pﬁ’h(o"n) S e*BAh(o-,n)JFBV(B)

with y(3) — 0 for B — oo. This property is known in the literature as the Wentzel
and Friedlin condition.
Since from[(6) and(17) it follows that the following revesiity condition

Hh(0) +An(0,n) = Ha(n) +4n(n,0) (18)

is satisfied for any’,n € X, we have that the functiof\,(o,n) can be interpreted
as the the energy cost that must be paid in the transitienn).

We are now ready to give a precise definition of metastabtesta the frame-
work of reversible Probabilistic Cellular Automata. We kfalow the approach in
[19] which is based on the analysis of the energy landscapieafystem. Note that
in our setup the energy landscape is not only given by theggrianctionHy, but it
is also decorated by the energy cost functlgnit is important to remark that, for
the sake of clearness, we shall give the definition havingimdrthe specific case
we are considering, namely, the tuned cross PCA withtO< k, but the definition
we shall can give can be easily generalized to the broad xtoofteeversible PCA.

A sequence of configurations = {wy,...,wn}, withw € X fori=1,....n, is
calledpath Theheightof the pathw is defined as

P,y = max

_may 1[Hh(aa)+Ah(oq,m+1)] (19)

see figuréb for a graphic illustration.
Given two sets of configuratios A’ C X, thecommunication heigh® (A, A')
betweer, A’ is defined as

®O(AA)= min @, (20)

wWwA—A

where the minimum is taken on the set of paths startifgand ending irA'. Given
o € X, we define thestability levelof o as
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Fig. 5 Graphic representation
of the definition of height of a
path.

Vg = @(o, {states with energy smaller thar}) — Hp(0) (21)

That is to say\/y is the height of the most convenient path that one has tovidio
order to decrease the energy starting fram
Finally, we define thenaximal stability levehs the largest among the stability
levels, i.e.,
m= max V>0 22
m = max Vo (22)

and the set ometastablestates

Xm={neX\{u}:V, =rIm} (23)

This definition of metastable states is particularly nite¢s it is based only on
the properties of the energy landscape. In other wordsderdo find the metastable
states of the tuned cross PCA, one “just” has to solve sonaticaral problems on
the energy landscape of the model. This is, unfortunatehgra difficult task that
has been addressed mainly(in([5, 4].

Why is this definition of metastable states satisfying? Bseagiver] € Xp, for
the chain started &f, we can prove properties of the random variabﬁecharac-
terizing { as a metastable state in the physical sense outlined in ttoglirction.
Indeed, if we letP; andE, respectively, the probability and the average computed
along the trajectories of the tuned cross PCA started atX, we can state the
following theorem.

Theorem Let{ € Xny. For anye > 0 we have that

lim P (fm=8) < 1§ < fm+e)) — 1

B0

Moreover, 1
lim E logE, [TS] =Im

(R
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This theorem has been proven(in][19] in the framework of Stiaél Mechanics
lattice systems with Metropolis dynamics. Its generairato the PCA case has
been discussed inl[4].

The physical content of the two statements in the theorehmisthe first hitting
time of the chain started at a metastable sfate X, is of order exgf3m}. The
first of the two statements ensures this convergence in pilitpand the second in
mean.

Itis important to remark that it is possible to give a moreailet description of
the behavior of the chain started at a metastable state.rticydar it can be typi-
cally proven a nucleation property, that is to say, one camgthat before touching
the stable stata the chain has to visit “necessarily” an intermediate comfigan
corresponding to a “critical” droplet of the stable phaskigmne) plunged in the
sea of the metastable one. By necessarily, above, we melamproibability one in
the limit B — . For a wide description of the results that can be proven Ve re
the interested reader, for instance [tol [19, 22].

5 Metastable behavior of the tuned cross PCA

The metastable behavior of the tuned cross PCA has beerdtextiensively in[5]
(nearest neighbor PCA, i.e,= 0), [1,[4] (cross PCA, i.ex = 1), and [6] (tuned
cross PCA with < kK < 1). In the extreme cases, i.&,= 0 andk = 1, rigorous
results were proved, while in the case & < 1 only heuristic arguments have been
provided. In this section we shall review briefly the mairutesreferring the reader
to the quoted papers for details. We shall always assumehtsatisfies[(15) and
2/h not integer; moreover, we note that the result listed belosvoven forA
large enough depending &in

In the cross case(= 1) it has been proveh|[4] that the metastable state is unique,
more precisely, with the notation introduced above, it feetshown thaX,, = {d}.
Moreover, it has also been proven that the maximal stabditgl is given by
Bjoo 16

I'm = Hn(Py,,) + An(Pegy5Peg,) — Hn(d) (24)

wherd 7 = |2/h| +1is calledcritical length, p,_, is a configuration characterized
by alc x (¢c— 1) rectangular droplet of plus spihs in the sea of minuses wsthgle
site protuberance attached to one of the two longest sidé® géctangle, anpigc,2
is a configuration characterized by ax (¢c — 1) rectangular droplet of plus spins
in the sea of minuses with a two site protuberance attachenkeof the two longest
sides of the rectangle (see figlile 6).

Once the model dependent problems have been solved and thstaiée state
found, the properties of such a state are provided by thergkembeorem stated
in Sectiorl 4. We just want to comment that the peculiar exgiwesof the maximal

4 Given a reaf we denote byr | its integer part, namely, the largest integer smaller than
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IR m ey

+ o+ + + + 4+

+ 4+ + o+ + M +H At = (241
+ 4+ +
+ 4+ +

++++ l
++++

Prey H(d) Pre,

Fig. 6 Graphical description dfy, for the cross PCA.

stability level that, we recall, gives the exponential apyatic of the mean exit time,
has a deep physical meaning. Indeed, it is also proven thiaigthe escape from the
metastable staito the stable ona the chain visits with probability tending to one
in the limit B — oo the configuratiorp/gc’1 and, starting from such a configuration,
it performs the jump te, ,. From the physical point of view this property means
that the escape from the metastable state is achieved viatheation of the critical
dropletp,,_,.

In the nearest neighbor case € 0) it has been proveri]5] that the set of
metastable states ¥y, = {d,ce,Co}. It is important to note that the two states
andc, are essentially the same metastable state, indeed, it czasbg seen that,
is the downhill image ot, and vice-versa. So that, when the system is trapped in
such a metastable state, it flip—flops between these two cwafigns. Moreover, it
has also been proven that the maximal stability level isrgwe

B 8

Fim = Hn(Crc) + Bn(Cre: Crey) — Hn(d) "~

(25)
wherel; = |2/h] + 1 is calledcritical length, ¢, is a configuration characterized
by a/: x (¢; — 1) rectangular checkerboard droplet in the sea of minusesp%rlld
is a configuration characterized byax (¢; — 1) rectangular checkerboard droplet
in the sea of minuses with a single site plus protuberanaetzt to one of the two
longest sides of the rectangle (see figdre 7). It is worthngotiat, compard (24)
and [25), the exit from the metastable state is much slowtdrtase of the cross
PCA with respect to the nearest neighbor one.

Even in this case the properties of the metastable statesranemediate conse-
quence of the Theorem stated above. But also for the neasagibor PCA the
nucleation property is proven: during the transition dgrthe escape from the
metastable statd to the stable on@ the chain visits with probability tending to
one in the limit3 — « the configuratiort,, and, starting from such a configuration,
it performs the jump tae, ,. From the physical point of view this property means
that the escape from the metastable state is achieved watheation of the critical
checkerboard droplef, .

Moreover, in the nearest neighbor case it has been proveduhag the escape
from d to u the system has also to visit the checkerboard metastalis §ta, ¢}
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Fig. 7 Graphical description dfy, for the nearest neighbor PCA.

Starting from such a metastable state, the system perfomfaal escape to with
an exit time controlled by the same maximal stability leNgI23).

Finally, we just mention the heuristic results discussefjrior the tuned cross

PCA with 0< k < 1. There is one single metastable state, Xg,—= {d}, but,
depending on the ration/h, the system exhibits different escaping mechanisms.
particular, forh < 2k the systems perform a direct transition frahto u, whereas
for 2k < h the system “necessarily” visits the not metastable chéded state
before touching. In [6] it has been pointed out the analogies between thevigha
of the tuned cross PCA and the Blume—Capel mddel [8]. The stadike character
of the two models is very similar with the role of the self-@raction parametec
played by that of the chemical potential in the Blume—Capediat.
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