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How ecosystem productivity and species richness are interrelated is 
one of the most debated subjects in the history of ecology1. Decades 
of intensive study have yet to discern the actual mechanisms behind 
observed global patterns2,3. Here, by integrating the predictions 
from multiple theories into a single model and using data from 
1,126 grassland plots spanning five continents, we detect the clear 
signals of numerous underlying mechanisms linking productivity 
and richness. We find that an integrative model has substantially 
higher explanatory power than traditional bivariate analyses. In 
addition, the specific results unveil several surprising findings that 
conflict with classical models4–7. These include the isolation of a 
strong and consistent enhancement of productivity by richness, 
an effect in striking contrast with superficial data patterns. Also 
revealed is a consistent importance of competition across the 
full range of productivity values, in direct conflict with some 
(but not all) proposed models. The promotion of local richness 
by macroecological gradients in climatic favourability, generally 
seen as a competing hypothesis8, is also found to be important in 
our analysis. The results demonstrate that an integrative modelling 
approach leads to a major advance in our ability to discern the 
underlying processes operating in ecological systems.

Ecosystem productivity and species diversity are essential to the 
ability of natural systems to provide goods and services. Yet, for dec-
ades there has been debate over their interrelationship. In the 1970s 
and 1980s, conflicting models predicted that elevated productivity 
would lead to reductions in species richness4–7. Beginning in the mid-
1990s, scientists started to seriously debate another possibility: that 
richness could promote productivity9–12. While experimental studies 
generally support a biodiversity enhancement of productivity13,14, 
the precise strength of the effect in natural systems and the relation-
ship of this process to other factors that can influence productiv-
ity remain major questions. Adding to the debate, macroecological 
theories propose that regional diversity is controlled by gradients 
in climatic favourability and evolutionary history15 and that these  
larger-scale effects are important determinants of smaller-scale diver-
sity patterns8.

The search for a canonical bivariate productivity–richness relation-
ship lies at the heart of the debate among ecologists. This pursuit is 
fuelled, in part, by the history of the discussion, which has focused 
on bivariate predictions16. At the same time, it is also seen by some as 
a means of assessing the overall importance of various mechanisms 
operating in natural systems. While many different mechanisms have 
been discussed, the primary competing theories make four main 
conflicting predictions: (1) richness and productivity should increase 
together with increasing resources and environmental favourabil-
ity until limits to coexistence are reached at high productivity and 
richness declines, producing a humped-shape relationship4–7,17;  
(2) richness promotes productivity, leading to a positive relationship6,9; 
(3) richness and productivity increase together because climatic gradi-
ents in productivity lead to increased regional species pools, creating 
a positive relationship but from a separate mechanism8; and (4) the 
richness–productivity relationship will be of inconsistent form because 
the mechanisms controlling them vary in their scale-dependence and 
relative importance18,19.

Empirical tests of the generality of hypothesized bivariate produc-
tivity–richness patterns have reported a wide variety of results and 
have produced substantial discussion20–23. Recent global studies2,3 
have disagreed with regard to whether a coherent pattern exists for 
natural grasslands. What has been agreed upon, however, is that the 
low explanatory power coming from conventional analyses suggests 
the need to pursue an integrative understanding of the causal mecha-
nisms controlling productivity–richness relationships.

One potential explanation for why debate over mechanisms is prov-
ing difficult to resolve is because productivity and richness are jointly 
controlled by a complex network of processes1,21,24–28. Overcoming 
the challenge of evaluating more complex hypotheses requires both 
advanced statistical modelling approaches and large-scale systematic 
data collection efforts. Here, we used structural equation modeling29 to 
integrate key predictions from competing theories into a multi-process 
hypothesis for evaluation. We then evaluated the hypothesis using 
data collected for that purpose by a global consortium, the Nutrient 
Network (http://nutnet.org). The data collected comprise samples 
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from 1,126 plots collected at 39 grass-dominated sites around the 
world. Variables measured include plant species richness, productivity 
(measured as the annual biomass increment), total biomass (the accu-
mulated non-woody biomass, live and dead, including litter), along 
with many of the drivers hypothesized to be important for regulating 
their variations. Additional information is provided in the Methods.

To integrate theoretical expectations from competing theories, we 
mined the productivity–diversity literature to determine the main 
theoretical constructs discussed and the hypothesized interconnec-
tions between constructs (see Methods). We used this information to 
develop a structural equation meta-model that assimilates the essential 
theoretical constructs and hypothesized connections into a network of 
multivariate expectations (Extended Data Fig. 1, Extended Data Table 1  
and Supplementary Information). This meta-model, along with the 
available data, guided our development of a structural equation model 
for empirical evaluation. We evaluated model-data consistency to deter-
mine whether there were missing linkages in the initial model as well as 
to determine the support for proposed links. We further addressed the 
question, ‘what dimension of model (that is, number of parameters and 
linkages) is required to detect the signals in the underlying data?’. For 
this, we evaluated lower-dimensional versions of the model by remov-
ing linkages and re-evaluating against the data. More methodological 
detail is provided in the Methods and Supplementary Information.

A simple bivariate plot of richness against productivity (Fig. 1A) 
reveals little about the underlying mechanisms. Previous analyses of 
such bivariate relations have found it difficult to even detect signif-
icant associations2,30. However, our analysis based on an integrative 

model reveals strong, clear signals consistent with numerous proposed 
mechanisms, including several that are not at all suggested from the 
bivariate data.

First, we found clear evidence that the accumulation of total bio-
mass (hereafter simply ‘biomass’) leads to a negative effect on spe-
cies richness. At the site level, the partial effect (r∂) of biomass on 
richness in the model was strong (Figs 1B, a and 2; r∂ = −0.77). The 
reduction of richness was not found to be mediated by our one-
time measurement of average shading at the ground surface, which 
was subsequently dropped from the model. At the plot level, how-
ever, we found evidence that biomass increases shading (r∂ = 0.56), 
which in turn, decreases richness (Figs 1B, d, e and 2; r∂ = −0.34). 
The negative effects of biomass on richness appear consistent with 
long-standing hypotheses that predict a hump-shaped productivity– 
richness relationship due to competitive dominance at high pro-
ductivity5,17. However, while those hypotheses assume increasing  
competitive intensity with increasing productivity, our results reveal 
a linear effect across the full range of biomass observed in this study  
(Fig. 1B, a).

Second, we found a positive, linear enhancement of productivity 
by richness in the model. This effect was among the strongest found 
at the site-scale (Figs 1B, b and 2; r∂ = 0.67), and was detectable, 
although weak, at the plot-scale (Figs 1B, f and 2; r∂ = 0.02). A surpris-
ing feature of the site-level result is the apparent absence of a levelling 
off of the biodiversity enhancement of productivity at higher levels 
of richness. Such a continuous effect has been theorized for larger- 
scale studies and contrasts with the asymptotic levelling off usually 
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Figure 1 | Comparison between low-dimension 
(top panel) and high-dimension (bottom panel) 
examinations of data. A, Raw bivariate plot of 
above-ground productivity and species richness 
in 1-m2 plots (n = 1,126). Different sites are 
represented in the graphs by different colours, 
assigned by mean site richness from low (yellow) 
to high (red). B, Plots a–c visualize site level partial 
relationships indicated by corresponding letters in 
Fig. 2 (n = 39 sites). Plots d–f visualize plot level 
partial relationships indicated by corresponding 
letters in Fig. 2 (n = 1,126 1-m2 plots). Units are 
standardized residual deviations from predicted 
partial scores.
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found in experimental (smaller-scale) studies13. Previous attempts 
to isolate an effect of richness on productivity with observational 
data using simpler models have failed to do so (see Supplementary  
Information).

Third, we found strong and independent influences of macroclimate 
and soils on richness and productivity. The standardized effect sizes pro-
vide insights into the relative importance of these processes (Table 1).  
At the site level, productivity was most strongly related to soil fertil-
ity, while richness was most strongly related to climate and soil suit-
ability, with heterogeneity and disturbance also important (Fig. 2).  
Rather than being made up of similar environmental factors, the soil 
environmental drivers of richness and productivity were negatively 

correlated at the site level (Table 1, r∂ = −0.56), supporting previous 
claims of their semi-independence21. Thus, theories that presume a 
simultaneous increase in productivity and richness with increasing 
environmental favourability (see Supplementary Information) fail to 
correspond with the independent responses to environmental drivers 
observed in natural systems.

Our results show that failure to account for the variation in richness 
and productivity explained by the environmental drivers would make 
it difficult to detect the reciprocal influences of productivity and rich-
ness on each other. In fact, our capacity to isolate underlying processes 
was highly sensitive to model dimensionality, where dimensionality 
refers to the number of measured determinants of productivity and 

Table 1 | Select standardized partial effect sizes (and standard errors) ranked by magnitude and proposed interpretations
Effect Magnitude Proposed interpretation

Site-scale
Soil fertility → productivity 1.104 (0.220) Productivity variations are most strongly related to spatial variations in site fertility.
Site biomass → richness −0.771 (0.143) High biomass sites have depressed species richness, presumably via some form of competitive dominance.
Site richness → productivity 0.671 (0.214) Increasing richness contributes to higher productivity.
Climate → richness 0.669 (0.113) Richness increases with increasing mean annual precipitation during warmest quarter.
Heterogeneity → richness 0.627 (0.119) Species coexistence strongly regulated by within-site spatial heterogeneity in vegetation cover.
Climate → productivity 0.589 (0.195) Combined effects of macrogradients in temperature and precipitation are moderately important in 

controlling site-to-site variations in productivity.
Soil suitability → richness 0.439 (0.107) Richness increases with decreasing sand and silt content of soils.
Disturbance → richness −0.251 (0.116) Sites subject to strong anthropogenic alteration (for example, pasturing) notably lower in richness.
Disturbance → biomass −0.185 (0.084) Local grazing contributed to some biomass variation.
Correlation between soil fertility 
and soil suitability

−0.56 (0.109) Influences of resources and filters on richness are distinct from those that regulate productivity.

Plot-scale
Biomass → shading 0.559 (0.089) Shading fairly strongly tied to biomass, although morphology and other features probably also important.
Soil suitability → richness 0.404 (0.074) Plot-to-plot variations in richness tied to local variations in environmental edaphic filters.

Shading → richness −0.342 (0.064) Richness variations within site partially controlled by variations in competition via shading.
Soil suitability → shading 0.249 (0.098) Variations in community traits driven by soil resources result in differences in amount of shading per gram.
Richness → productivity 0.017 (0.006) Effects of natural plot-to-plot variations in richness can be discerned as an independent process in this 

sample.
Soil fertility → productivity 0.0 (NS) Plot productivity largely determined by site-level productivity, with no significant local control.

Site-scale and plot-scale effects are presented separately.

Figure 2 | Structural equation model 
representing connections between productivity 
and richness supported by the data. ‘Biomass’ 
refers to total above-ground accumulated 
biomass. Letters correspond to partial plots 
shown in Fig. 1B. Solid arrows represent positive 
effects, dashed arrows represent negative effects. 
For the site-level submodel, test statistic = 13.518, 
with 13 model degrees of freedom and P = 0.409 
(indicating close model-data fit). For the plot-
level submodel, robust test statistic = 21.907, with 
16 model degrees of freedom and P = 0.146 (again 
indicating close model-data fit). Relative effect 
sizes presented in Table 1.
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richness included in the model (Extended Data Table 2). At both site 
and plot levels, models omitting either productivity or biomass (but 
not both) still permitted us to detect the feedback from richness to 
biomass production. Any other simplifications at the site-level, how-
ever, resulted in a failure to detect previously detected pathways and 
resulted in a dramatic loss of signal (as indicated by reduced values 
of R2 in the model).

Regarding scale dependence, plot-level values of productivity, bio-
mass, and richness were strongly related to site-level estimates (Fig. 2),  
as is common with hierarchical data. This should be interpreted as 
meaning much of the overall plot-to-plot variation in productivity, 
biomass, and richness can be ascribed to site-to-site variations in those 
properties. In this case, within-site variations in productivity were 
explained solely by site-level productivity, as there were no predictors 
for remaining among-plot variations. Within-site variations in rich-
ness, however, were additionally explained by within-site variations in 
soil suitability and shading. Also sensitive to scale was the strength of 
the feedback from richness to productivity, which was much stronger 
at the site scale. While multiple factors probably play a role in this 
scale-dependence, the simplest explanation here may be the smaller 
span of conditions sampled within sites compared with across sites.

Finally, in contrast to a bivariate model, which our analyses suggest 
can explain no more than 10% of the observed variation in richness, 
our structural equation model explains 61% of the variation in richness 
among sites, and 65% of the variation in richness among plots. An 
ability to explain a substantial portion of the variation in richness is 
tremendously important for potential conservation applications. Model 
complexity is also important because of its more detailed mapping onto 
nature, as our model can make statements about how both specific 
management actions (such as reduction of biomass through mowing 
or increase in soil fertility through fertilization), as well as shifts in 
climate conditions, may alter both productivity and species richness.

Our findings give reason for optimism about the future of ecology 
as a more precise and less ambiguous science. We show that many of 
the proposed processes connecting productivity and richness offered 
during previous decades operate simultaneously as parts of a whole 
system of effects. Details of the findings, however, refine many of our 
assumptions about how those processes operate. Our field’s previous 
failure to resolve debate about productivity–richness relationships 
stems from a lack of integration of ideas and absence of simultane-
ous tests of their combined implications. By integrating and testing 
those ideas, our approach provides a systems-level understanding and 
improves our chances to foresee the possible consequences of human 
alteration of environmental factors, productivity, and richness now 
occurring worldwide.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MeThODS
Development of meta-model hypothesis. A review and accounting of the history 
of claims and disputed points in the published literature was developed before 
construction of the meta-model that guided this analysis (Extended Data Fig. 1 
and Supplementary Information). During this review, attention was paid to the 
theoretical constructs invoked by various authors, since our goal was to provide a 
framework that had the potential to clarify and resolve disputed points. Attention 
was also paid to types of variable measured by different authors, as the relationship 
between constructs and measurements constitutes one of the several sources of 
ambiguity and confusion31,32. An in-depth description of the literature synthesized 
to generate the meta-model is presented in the Supplementary Information.
Data. Data collected by the Nutrient Network Cooperative33 was used to design 
and evaluate a structural equation model based on the meta-model presented. The 
Nutrient Network is a distributed, coordinated research cooperative. Sites in the 
Network are dominated primarily by herbaceous vegetation and intended to repre-
sent natural/semi-natural grasslands and related ecosystems worldwide. Individual 
sites were selected to accommodate at least a 1,000 m2 study design footprint. Most 
sites sampled vegetation in 2007, although 12 sites sampled in 2008 or 2009. No 
statistical methods were used to predetermine sample size. Samples were collected 
using a completely randomized block design. The standard design has three blocks 
and ten plots per block at each site, although some sites deviate slightly from this 
design. A few sites are grazed or burned before sampling, consistent with their 
traditional management. Further details on site selection and design can be found 
at http://www.nutnet.org/exp_protocol.

In this study, we analysed data from 39 of the 45 sites considered in ref. 2 pos-
sessing a complete set of covariates (Extended Data Table 3). While ref. 2 only 
examined bivariate relations between productivity and richness, our analyses 
brought in many additional variables (Extended Data Table 1) so that we could 
address the many hypotheses embodied in the meta-model. Individual plots with 
greater than 10% woody plant cover were omitted from consideration to maintain 
comparability in total biomass across plots. This step resulted in the removal of  
73 plots, leaving 1,126 plots in the data set analysed. Four plots were omitted owing 
to incomplete plant data and one for incomplete light data. For two of the sites, live 
mass was estimated from total mass using available information on the proportion 
of live to total. One apparent measurement error was detected for light data and 
the associated plot removed from the analysed sample. Random imputation meth-
ods34 were used for cases where there were missing soil measurements at a site. 
The decision to use this approach was based on weighing the demerits of deleting 
nearly complete multivariate data records versus introducing a modest amount of 
random error through the imputation process.

Study plots in this investigation had a perimeter of 5 m × 5 m and were separated 
by 1 m walkways. A single 1 m × 1 m subplot within each plot was permanently 
marked and sampled for species richness during the season of peak biomass. Sites 
with strong seasonal variation in composition were sampled twice during the 
season to assemble a complete list of species. To obtain an estimate of site-level 
richness, we used a jack-knife procedure35. (Because there have been some recent 
advances in the reduction of certain sources of bias in richness estimation36, we 
checked our original results by computing site-level richness using the new iNEXT 
R package. The correlation between the two estimates of richness was found to 
be 0.972.)

Productivity and total above-ground biomass were sampled immediately adja-
cent to the permanent vegetation subplot. Vegetation was sampled destructively 
by clipping at ground level all above-ground biomass of individual plants rooted 
within two 0.1-m2 (10 cm × 100 cm) strips. Harvested plant material was sorted 
into the current year’s live and recently senescent material, and into previous year’s 
growth (including litter). For shrubs and sub-shrubs, the current year’s leaves and 
stems were collected. Plant material was dried at 60 °C to a constant mass and 
weighed to the nearest 0.01 g. We used the current year’s biomass increment as 
our estimate of annual above-ground productivity, which commonly serves as 
a measurable surrogate for total productivity37,38. All sites used this protocol to 
estimate productivity (except for the Sevilleta, New Mexico, site which relied 
on species-specific allometric relationships39). Total above-ground biomass was 
computed as the sum of the current year’s biomass and that from previous years 
and included remaining dead material (litter). Photosynthetically active radiation 
was measured at the time of peak biomass, both above the vegetation and at the 
ground surface, the ratio representing the proportion of available light reaching 
the ground. Degree of shading was computed as 1.0 minus the proportion of light 
reaching the ground.

Within each plot, 250 g of soil were collected and air dried for processing 
and soil archiving. Total soil %C and %N were measured using dry combustion 
gas chromatography analysis (COSTECH ESC 4010 Element Analyzer) at the 
University of Nebraska. All other soil analyses were performed at A&L Analytical 

Laboratory, Memphis, Tennessee, USA; these included the following: extractable 
soil phosphorus and potassium were quantified using the Mehlich-3 extraction 
method, and parts per million concentration estimated using inductively coupled 
plasma-emission spectrometry. Soil pH was quantified with a pH probe (Fisher 
Scientific) in a slurry made from 10 g dry soil and 25 ml of deionized water. Soil 
texture, expressed as the percentage sand, percentage silt, and percentage clay, 
was measured on 100 g dry soil using the Buoycous method. Further details on 
sampling methodology are at http://www.nutnet.org/exp_protocol.

Climatic characteristics were obtained for each site from version 1.4 of BioClim, 
which is part of the WorldClim40 set of global climate layers at 1 km2 spatial reso-
lution. To represent measures of temperature and precipitation with meaningful 
relationships to plant growth in global grasslands, we selected mean temperature of 
the wettest quarter of the year (BIO8) and total precipitation of the warmest quar-
ter of the year (BIO18). Climate values were extracted using universal transverse 
Mercator (UTM) coordinates collected near the centre of each site.

Several derived variables were developed to include in the modelling effort. To 
represent within-site heterogeneity, coefficients of variation were computed for the 
site-level model based on plot-to-plot variation in plot-level measures. This allowed 
us to examine the explanatory value of heterogeneity in soil nitrogen, phosphorus, 
potassium, and pH, as well as heterogeneity in biomass and light interception. 
Indices of total resource supply and resource imbalance were also calculated using 
the method of ref. 27 and evaluated for inclusion in our models.

Disturbance history information for the sites was converted into four binary 
(0,1) variables for analyses; information available included pretreatment history 
of (1) substantial anthropogenic alteration (for example, conversion to pasture), 
(2) grazing history, by wild or domestic animals, (3) active management (typically 
haying or mowing), and (4) fire. Current levels of herbivory were estimated by 
comparing biomass inside and outside exclosure plots located at each site.

Certain variables were constructed within the structural equation modeling 
process using the composite index development methods of ref. 41. Consideration 
of the ideas conveyed by the meta-model (Extended Data Fig. 1) and the specific 
situation being modelled suggested the need to develop index variables for soil 
fertility and soil suitability. Soil fertility indices were developed using all meas-
ured soil properties and were operationally defined as the drivers of productivity, 
controlling for all other effects on productivity in the model. Two indices were 
developed, one for site-to-site variations and another for plot-to-plot variations. 
Similarly, soil suitability indices were developed for the site- and plot-level data 
using all measured soil properties as potential contributors and operationally 
defined as the drivers of richness, controlling for all other effects on richness in 
the model.

Modelling with composites in structural equation models involved a two-step 
process. First, we constructed a fully specified structural equation model (as repre-
sented in Fig. 2), but providing a specific set of soil properties to serve as formative 
indicators for soil fertility and soil suitability. Variables that did not contribute to 
the total model (on the basis of model fit indices) were eliminated individually for 
the two composites being formed. The resulting prediction equations were used to 
compute index scores. Then, the model was reconstructed, substituting the indi-
ces in place of the collection of individual soil properties. Documentation of this 
process is provided in the Supplementary Information computer code (R script).
Analyses. A structural equation model was developed based on the ideas embod-
ied in the meta-model, available data, and the principles and procedures laid out 
in ref. 42. Indicators for constructs were chosen from the set of variables availa-
ble and quantities that could be computed from them (Extended Data Table 1). 
The modelling approach used was semi-exploratory in that while we worked to 
address the general hypothesis embodied in the meta-model, the precise variables 
(for example, mean annual precipitation versus mean annual precipitation in the 
warmest quarter of the year) to use for certain constructs (specifically, resource 
supplies and regulators) were determined empirically. Compositing techniques 
were used to estimate construct-level effects41. For comparative purposes, we ana-
lysed the bivariate pattern in Fig. 1A using a variety of regression models, including 
Ricker-type nonlinear models as well as second- and third-order polynomials.  
A three-parameter Ricker-type model provided the best fit for the data.

Data were screened for distributional properties and nonlinear relations. 
Several variables were log-transformed as a result of evaluations (Extended Data 
Table 1). We used the R software platform43 and the lavaan package44 along 
with the lavaan.survey45 package for our structural equation model analyses. 
For the plot-scale model, robust χ2 tests, as implemented in the lavaan.survey 
package, were used to judge variable inclusion and model adequacy because 
of the nested nature of the plot-level data. Each link in the final model was 
evaluated for significant contribution to the model. Final model fit to data was 
very good for both submodels. Model fit indices were supplemented by using 
additional diagnostic evaluations that involve visualizing residual relationships 
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to evaluate conditional independence29. These residual visualizations allowed, 
among other things, an ability to evaluate linearity assumptions and implement 
curve-fitting procedures if needed (which was only the case for the composite 
relationships in this case). Our structural equation model in this case is non- 
recursive and includes a causal loop. Models of this form are commonplace in 
structural equation model applications, although they come with some additional 
assumptions and requirements. Specifically, there is a requirement for unique 
predictors for the elements involved in loops, a requirement that was met in this 
case. Additional analysis details are documented in the R script used for the 
analysis (Supplementary Information).

Multi-level relations were incorporated into the architecture of our model. 
Several ways to incorporate both site- and plot-level variations in the model were 
considered and multiple approaches evaluated to ensure results are general. In the 
model form presented, we chose to follow modern hierarchical modelling prin-
ciples and allow plot-level observations to depend on site-level parameters, since 
plots were nested within sites. The result of choosing this approach means site-level 
explanatory effects can filter down to the plot level while plot-level explanatory 
variables (for example, pathways from edaphic conditions to plot richness) explain 
additional plot-to-plot variations in responses that are not predicted from site-
level (mean) conditions. Consistent with the capabilities of the structural equation 
model software used in our analyses (described below), we estimated site- and 
plot-level submodels using a two-stage approach, first estimating parameters for 
the site-level component and then using site productivity, biomass, and richness as 
exogenous predictors in the plot-level component. Comparisons with results from 
separate site- and plot-level models led to very similar conclusions, although the 
hierarchical approach used allowed a better integration of processes and greater 
variance explanation.

One of our objectives in this study was to assess the model dimensionality 
needed to detect the hypothesized signals in the data. To do this, we started with 
the most complete model (Fig. 2) and eliminated variables from the model (always 
retaining richness and some measure of biomass production, either productivity 
or total biomass). We then made any modifications needed to ensure adequate 
model-data fit for these reduced-form models. The consequences of model simpli-
fication was judged on the basis of signal retention, in particular a loss of capacity 
to detect signals associated with the remaining parts of the model.

Code availability. The computer script associated with the analyses in this paper 
is available as part of the Supplementary Information.
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Extended Data Figure 1 | Structural equation meta-model showing 
hypothesized probabilistic expectations based on literature related  
to the productivity–diversity debate. Solid lines represent expected 
positive effects, dashed lines represent expected negative effects.  

Literature and meta-model development are discussed in the 
Supplementary Information. Specific implementations of this generalized 
model for particular cases will probably differ in detail as appropriate for 
the situation and available data.
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extended Data Table 1 | Model variables and their indicators*

*The data are provided along with the Supplementary Information.
**Units given are for the raw (untransformed) variables.
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extended Data Table 2 | results of model dimensionality evaluations

Models of different complexity were evaluated to determine the potential for model simplification. The bases for comparison were ‘full models’ for each site, as shown in Fig. 2. The consequences of 
removing various components of the models are summarized under the columns ‘Signals lost’ and ‘R2 for richness’.

© 2016 Macmillan Publishers Limited. All rights reserved



Letter reSeArCH

extended Data Table 3 | Basic information on the study sites included in the final analyses

A total of 39 sites from the Nutrient Network (http://nutnet.org) possessed sufficiently complete multivariate data to be incorporated into this analysis.
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