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a b s t r a c t

The basic reproduction number R0 is, by definition, the expected life time number of offspring of a
newborn individual. An operationalization entails a specification of what events are considered as “re-
production” and what events are considered as “transitions from one individual-state to another”. Thus,
an element of choice can creep into the concretization of the definition. The aim of this note is to clearly
expose this possibility by way of examples from both population dynamics and infectious disease epi-
demiology.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

It may be that two population biologists, while dealing with the
same model, come up with different numbers, or different ex-
pressions in terms of underlying parameters, for the basic re-
production number R0; see e.g. Bani-Yaghoub et al. (2012). It may
happen that both are right. The aim of this short note is to explain
the reason for this and to illustrate it with examples.

The key point is that there is sometimes a certain ambiguity in
the meaning of “reproduction”, in pinpointing what is meant by
“newborns” in the bookkeeping framework. Mathematically this is
reflected in the fact that there are multiple ways to decompose a
positive matrix (in a discrete time model) or positive-off-diagonal
matrix (in a continuous time model) into a sum of two matrices
with certain properties (as specified in the Appendices). As a
consequence, different reproduction numbers, which simply count
different things, can result. It is reassuring to know, however, that
Cushing),
the sign of −R 10 is independent of the decomposition used and
that the prediction of exponential growth or decay is therefore
correctly made by any of the counting schemes.

As a warm up, we consider in the next section a population of
cells that divide into two upon completing the cell cycle. We adopt
a generation perspective, meaning that we do not care about
(variability in) the length of the cell cycle, but concentrate on the
production of offspring. We illustrate how language (in particular,
the assigning of name labels) and counting interconnect.

Discrete time models are often used when seasonality is a re-
lentless driver of the life history. In Section 3 we introduce a model
of a plant population. The life stages seed-seedling-plant form a
cycle, but while both seeds (in the seed bank) and plants (on the
field) may a year later still be in the same stage, “seedling” is a one-
time-only affair. We first show how this feature enables the
straightforward computation of a reproduction number. Next we
briefly touch upon the choice of a census point in the year cycle
and its influence upon the bookkeeping scheme. We introduce the
projection matrix that generates the year-to-year dynamics, i.e.
that “projects” the demographic state vector from one census time
to the next by means of matrix multiplication (Caswell, 2001,
Section 2.5). A decomposition of the projection matrix (satisfying
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certain conditions delineated in Appendix A) yields a next-gen-
eration matrix. R0 is, by definition, the dominant eigenvalue of the
next-generation matrix. Without being exhaustive, we show that
several such decompositions are possible and that the corre-
sponding reproduction numbers need not be the same. We argue
that the biological interpretation underlying one decomposition
may be more natural/convincing than the interpretation of an-
other decomposition. But we stress that this is indeed a matter of
interpretation and not of mathematical (in)correctness.

In Section 4 we turn to a continuous time model of the spread
of an infectious disease. Following Inaba and Nishiura (2008), we
assume that a newly infected individual is immediately infectious
and yet does not show any symptoms. After an exponentially
distributed amount of time, the asymptomatic individual either
loses infectiousness or exhibits symptoms. From the point of view
of the infectious agent, transmission is reproduction. On the other
hand, the public health system of the human host population la-
bels those developing symptoms as a new case. We elaborate both
points of view and explain how the second relates to the control
issues that motivated Roberts and Heesterbeek to introduce their
type reproduction numbers (Heesterbeek and Roberts, 2007; Ro-
berts and Heesterbeek, 2003); also see Bani-Yaghoub et al. (2012).

For other reflections on R0 we refer to Heffernan et al. (2005),
Heesterbeek (2002), Keeling and Grenfell (2000), Li et al. (2011),
and Roberts (2007).
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Fig. 1. Plant life cycle.
2. A play on words and symbols

Consider a population of single cell organisms, e.g. bacteria.
Assume that at the end of the cell cycle, the cell divides into two
cells and that each of these immediately starts a cell cycle. Assume
that a cell completes the cycle with probability ≤p 1.

Let us call the cell that divides the “mother” and let us call both
cells that arise from the division her “daughters”, thus expressing
that we consider these as “newborn” and the mother as having
died at division. The expected number of offspring of new born
individuals is

= ( )R p2 10

since a newborn cell produces with probability p exactly two
offspring and with probability − p1 no offspring at all.

Alternatively, we might keep using the label “mother” for one of
the two cells that exist after the division, while labeling the other
of the two as her “daughter”. Then a mother produces one off-
spring at division, but may produce more offspring in the future.
The expected number of offspring of a newborn individual is

= + + + ⋯R p p p0
2 3

since the newborn cell completes at least n cell cycles with
probability pn and produces one offspring at the end of each
completed cycle. If =p 1 then the “mother” is, in effect, immortal
and produces infinitely many offspring. If we assume

< ( )p 1 2

then the expected number of offspring is finite and

( )= − ( )
−R p p1 . 30

1

Let x(t) denote the expected number of cells at time t. Choose as
the unit of time the duration of one cell cycle. Then

( + ) = ( )x t px t1 2 .

To motivate a certain matrix decomposition in the next section, we
write this as
( + ) = ( + ) ( )x t T F x t1

where T captures survival and F reproduction. So (1) corresponds
to the choice T¼0 and =F p2 while (3) corresponds to the choice
T¼p and F¼p. In both cases we have

= ( − )−R F I T0
1

Since ( − )−I T 1 equals the expected length of life, R0 is indeed the
expected life time offspring production. Note that from a mathe-
matical point of view other decompositions of p2 into +T F are
perfectly alright.

Clearly the two expressions (1) and (3) differ except when p¼0
(when both yield =R 00 ) or =p 1/2 (when both yield =R 10 ).
However, one should not argue about the mathematical correct-
ness of (1) or (3). Either one accepts that there are at least two
sensical ways to use the mother/daughter labels, or else one
should explain why one way is preferred above the other.

Another simple way to derive (3), when (2) holds, is to perform
a first step analysis, i.e. to determine R0 from the consistency
equation

( )= + ( )R p R1 . 40 0

That is to say, the expected number of offspring R0 of a cell is the
probability p that it will complete its first cycle, after which it is
credited with one offspring with certainty plus an expected
number R0 of future offspring. (This assumes the Markov property
that all cells starting the cycle have the same probability to com-
plete it and thus that a mother that survives a cycle is indis-
tinguishable from a newborn cell.)
3. Discrete time models

Consider a plant population with an annual life cycle graph
shown in Fig. 1 The arrow from plant to plant corresponds to
plants successfully overwintering with probability p1 while the
arrow from plant to seed corresponds to a plant's expected pro-
duction of f seeds during the summer or fall. A seed germinates
and produces a seedling during the spring with probability α1

which then survives to become a plant with probability α2 in early
summer. An alternative, with probability α−1 1, is that a seed does
not germinate during the year but instead survives in the seed
bank until next year with probability p2.

Before developing a systematic bookkeeping scheme, let us try
to compute a reproduction number directly from its interpretation.
The three stages ‘plant’, ‘seed’ and ‘seedling’ constitute a cycle. In
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the life cycle graph there are arrows from seed to seed and from
plant to plant, reflecting that both seeds and plants can stay in
their stage for several years. In contrast, the stage ‘seedling’ has
only an incoming and an outgoing arrow. So we can consider one
seedling and compute relatively easily the expected total number
of seedlings that it produces (some after many years). The fol-
lowing algorithm culminates in an explicit formula.

� The expected number of seeds produced by a plant equals (cf.
(3))

( )= + + + ⋯ = − ( )
−E f p f p f f p1 . 51 1

2
1

1

Alternatively we derive this formula from the equation

= +E f p E1

obtained by first step analysis.
� Let Q denote the probability that a newly produced seed de-

velops into a seedling. In Fig. 1, the fact that a seed must survive
at least one winter before it can germinate is not clearly
expressed. Taking this fact into account in a first step analysis,
we obtain the equation

( )( )α α= + −Q p Q12 1 1

and hence

( )
α

α
=

− −
Q

p
p1 1

.1 2

1 2

� A seedling becomes a plant with probability α2. As a result R0,
the expected number of seedlings produced by a seedling, is
α EQ2 , i.e.

( )( )( )
α α

α
=

− − − ( )
R

fp

p p1 1 1
.

6
0

2 1 2

1 1 2

Although simple and efficient, this computation is ad hoc. A
systematic approach requires that we first transform the life cycle
graph into a matrix population model (cf. Caswell, 2001; Cushing,
1998)

( ) ( )+ = ( )x t Px t1 . 7

The time variable t in (7) is an integer and counts the years. The
population state ( )x t is a n-vector and corresponds to a census
taken at a particular time in year t. The ×n n matrix P is called the
projection matrix and its entries should be derived from the life
cycle graph in Fig. 1. Both x and P have non-negative elements.

The season in which the census takes place has a subtle influ-
ence on the formulation of the model. For instance, if the census
occurs in the spring, then we should take n¼3 (so that the vector x
consists of seed, seedling and plant counts), whereas if the census
occurs in the summer, autumn or winter, then n¼2 and the vector
x consists of seed and plant counts. As a rule exactly when the
census takes place will be determined by the possibilities for
gathering data. For the purpose of our exposition, we assume the
census takes place in the summer.

Let the first component of x specify the density of plants and
the second component specify the density of seeds. Then our as-
sumptions produce the projection matrix

( ) ( )
α α α α

α α
=

+

− − ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P

p fp p

fp p1 1
.

8

1 2 1 2 2 1 2

2 1 2 1

In order to define a reproduction number, we need to additively
decompose the projection matrix

= + ( )P T F 9
where F and T are non-negative matrices that, respectively, cap-
ture reproduction and population level consequences of mortality
and changes in the life stage of individuals (as a mathematical
counterpart, inequality (27) should hold).

It makes perfect biological sense to identify reproduction with
seed production. We should realize, however, that some seeds
produced in autumn show up as plants in the next summer's
census. It is helpful to introduce terminology in order to make a
distinction between offspring (seeds) that show up as plants in the
next census and offspring (seeds) that show up as seeds in the
seed bank in the next census. We say that the first have state 1 at
birth and the second state 2. Following Rueffler and Metz (2013)
we might call “seedling” a hidden state that any seed must go
through before becoming a plant that produces seeds. This feature
was exploited when we derived (6).

The definition

( )
α α

α
=

− ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F

fp

fp

0

1 0 10

2 1 2

2 1

reflects that a seed in the seed bank at census does not produce
any offspring in one year, while a plant produces, on average,

α αfp2 1 2 offspring with state 1 at birth and ( )α−fp 12 1 offspring
with state 2 at birth. The transition matrix corresponding to (10),
containing the probabilities that plants survive and either remain
in the seed bank for another year or become a plant, is

( )
α α

α
=

− ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T

p p

p0 1 11

1 2 1 2

2 1

The matrix F describes expected offspring production in one
year. We want to determine the expected life time production of
offspring. To do so we form, starting from F and T and in the spirit
of (3) and the computation of E in (5), the matrix

( )+ + + ⋯ = − ( )
−F FT FT F I T 122 1

which we call the next-generation matrix. Note that the first index
of an element in this matrix specifies the state at birth of the
offspring, while the second index specifies whether we compute
the expected offspring of a plant (index 1) or a seed in the seed
bank (index 2).

As motivated and explained in Appendix A, R0 is defined as the
dominant eigenvalue of the next-generation matrix

( )( )( ) ( )

( )

α α α α

α α
− =

− −

α α
α

α α
α

−
− − − −

− − − −

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
F I T

1 1

fp
p

p
p

fp
p

fp
p

p
p

fp
p

1
1 1 2 1 1 1 1 2

1 1 1 1 1 1

2

1

2 1 2

1 2

2

1

2

1

2 1 2

1 2

2

1

which is singular (its columns are multiples) and hence has ei-
genvalue 0. The other eigenvalue is the trace, which is in complete
agreement with (6).

The following alternative derivation of (6) from F and T puts
more emphasis on the interpretation and saves work when the
dimension is higher than two (when computing the inverse of a
matrix is troublesome). We have

( )− = ( )
−F I T v R v 13

1
0

for a nonnegative vector v. The observation that offspring with
state 1 at birth and offspring with state 2 at birth are produced in
the ratio

α α α−: 11 2 1

translates into the mathematical statement that the range of F is
spanned by the vector
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recovery instead of T (Diekmann et al., 2013). A possible source of confusion is that,
in that literature, the production of new cases (or transmissions) is denoted by T
instead of F.
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α α
α−

⎛
⎝⎜

⎞
⎠⎟1
.

1 2

1

It follows that any relevant eigenvector v is a multiple of this
vector. As a consequence we can compute R0 by substituting this
vector for v in (13). The equation

( ) α α
α− = −

⎛
⎝⎜

⎞
⎠⎟I T y

1
1 2

1

has solution y with component

( )( )( )
α α

α
=

− − −
y

p p

1
1 1 1

.1 1 2
1 1 2

So this substitution results in

( )( )( )
α α

α
=

− − − ( )
R

fp

p p1 1 1 14
0

2 1 2

1 1 2

which is, as noted before, in complete agreement with (6).
In Section 8 of Jin et al. (2015), which is inspired by Eager et al.

(2014), a more complicated nonlinear model of a plant population
with a seed bank is considered. What follows is not a summary of
the analysis in Jin et al. (2015). We expose only a small part of the
analysis in order to make our point here. The decomposition of the
linearized equation adopted in Jin et al. (2015) and Eager et al.
(2014) reduces in our situation to

( )
α α α α

α
=

− ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F

fp p

fp 1 0 15

2 1 2 2 1 2

2 1

( )α
=

− ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T

p

p

0

0 1
.

16

1

2 1

The eigenvalues λ of the next-generation matrix

( )( ) ( )α α

α
− =

−

α α
α− − − −

−

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟F I T
1 0

fp
p

p
p

fp
p

1 1 1 2 1 1

1 1

2

1
2 1 2

1 2

2

1

are the roots of the quadratic equation

( )
( )( )( )

λ
α α

λ
α α α

α
−

−
−

−

− − −
=

fp
p

fp

p p1

1

1 1 1
0.2 2 1 2

1

2
2

1 1 2

1 1 2

The positive root of this equation deserves to be called R0, but
generically it is not given by (6).

The reason for the difference in the values of R0 calculated from
the two decompositions (10)–(11) and (15)–(16) resides in the
notion of “reproduction”, which for (15) is not the same as for (10).
Indeed, in (15) the “upgrading” from seed in the seed bank to plant
is also considered as a reproduction event, even though the pro-
duction of the seed in the seed bank was already a reproduction
event (an analogy for mammals would be to call both conception
and delivery a reproduction event). Admittedly the decomposition
(10)–(11) makes more biological sense than the decomposition
(15)–(16), but from a mathematical perspective they are equally
informative. A slight stretch of the interpretation of the word
“reproduction” is all that is needed to interpret R0 defined by (15)–
(16) in the standard manner. Moreover, some algebra shows that
the sign( )−R 10 is the same for both definitions (also see Jin et al.
(2015)) and, consequently, both determine whether the popula-
tion grows or decays. (Indeed, the general theory presented in
Appendix A shows that sign ( )−R 10 is the same for any feasible
choice of F and T.)
4. Symptomatic versus asymptomatic

We now turn to continuous time and to infectious disease. The
considerations below are inspired by Inaba and Nishiura (2008).

We distinguish two kinds of infected hosts, those who are
asymptomatic and those who are symptomatic. The first we in-
dicate by index 1, the second by index 2. We concentrate on the
initial phase of an epidemic outbreak, meaning that we ignore that
the infection process will reduce the availability of susceptible
hosts. (Mathematically this amounts to linearization at the disease
free steady state. But we shall formulate the linearized problem
directly, bypassing the nonlinear problem. This is possible since
the linearization at the disease free steady state has an epide-
miological interpretation, in contrast to the linearization in an
endemic steady state.)

We assume that a newly infected individual is asymptomatic.
Asymptomatic individuals become symptomatic with probability η
per unit of time. An asymptomatic individual recovers (implying
that infectiousness is permanently lost) at rate γ1 and a sympto-
matic individual recovers at rate γ2. An asymptomatic individual
produces new infections at rate β1 and a symptomatic individual
does so at rate β2 (so βi encodes infectiousness, but the precise
value also depends on the density of susceptible hosts).

These assumptions translate into the differential equations

β β η γ

η γ

= + − −

= −

dI
dt

I I I I

dI
dt

I I

1
1 1 2 2 1 1 1

2
1 2 2

or equivalently

=dI
dt

AI

with

β η γ β
η γ=

− −
−

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

A

I
I
I

.

1 1 2

2

1

2

Here I1 is the density of asymptomatic individuals and I2 is the
density of symptomatic individuals. In order to define a re-
production number that counts the expected number of secondary
cases per primary case, we need to decompose

= +A T F

where F captures the production of new cases while T captures
transitions and removal/recovery.1 But what is our definition of a
“new case”?

The most literal interpretation is to identify “production of a
new case” with “transmission of the infectious agent to another
host individual”. Accordingly we choose

β β
=

⎛
⎝⎜

⎞
⎠⎟F

0 0
1 2

and

η γ
η γ= − −

−
⎛
⎝⎜

⎞
⎠⎟T

0
.1

2

Note that the range of F is spanned by the vector
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⎛
⎝⎜

⎞
⎠⎟

1
0

,

reflecting that a newly infected individual is asymptomatic.
The components of the (defective) probability vector

τ ⎛
⎝⎜

⎞
⎠⎟e 1

0
T

describe the chances that an individual is asymptomatic or
symptomatic at time τ after infection. Hence the components in
the vector

∫ τ = −τ
∞

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟e d T1

0
1
0

T

0

1

give the expected amounts of time the newly infected individual
will spend asymptomatic and symptomatic respectively. If we
multiply the first component by β1 and the second by β2, we ob-
tain a reproduction number. Calling this number R0 we find

β
η γ

β η
η γ γ

=
+

+
+ ( )

R
1 1

.
17

0 1
1

2
1 2

(Indeed, the newly infected individual remains asymptomatic for
an expected time ( )η γ+1/ .1 With probability ( )η η γ+/ 1 it leaves
the asymptomatic phase by developing symptoms. If so, it stays
symptomatic for an expected time γ1/ 2.)

From a public health perspective, asymptomatic individuals are
“invisible”. Taking detectability into account, we might choose to
count the production of symptomatic individuals by an individual
that just developed symptoms. This corresponds to the choice

η
=

( )

⎛
⎝⎜

⎞
⎠⎟F

0 0
0 18

and

β η γ β
γ

=
− −

− ( )

⎛
⎝⎜

⎞
⎠⎟T

0
.

19

1 1 2

2

But if β > 01 , then asymptomatic infectives multiply within their
own category and one wonders whether this can work. Indeed, if

β
η γ+

> 11

1

then an asymptomatic infective produces, on average, more than
one new asymptomatic infective before it either develops symp-
toms or recovers. So, in this case, we get exponential growth of
asymptomatic infectives even if β = 02 , i.e. even if the contribution
of symptomatic individuals to transmission is ignored. To avoid
this, we require

β η γ< + .1 1

This condition also guarantees that T is invertible and that

( )η γ β γ

γ β
η γ β

− =
+ − + −

−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T

1
0

1

1 1 2

2 2

1 1

is a non-negative matrix. After noting that the range of F defined
by (18) is spanned by

⎛
⎝⎜

⎞
⎠⎟

0
1

we define R0 by

− =− ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟FT R0

1
0
1

1
0

from which we compute
( )β η
η γ β γ

=
+ − ( )

R .
20

0 2
1 1 2

In order to illuminate the interpretation of (20), we reformulate
its derivation. An individual that just developed symptoms re-
mains infectious for an expected amount of time γ1/ 2 and hence
produces on average β γ/2 2 asymptomatic individuals. Let E denote
the expected number of individuals that enter the symptomatic
class while being a “descendant” of a newly produced asympto-
matic individual. Then β γ=R E/0 2 2. It remains to calculate E .

With probability ( )η η γ β+ +/ 1 1 a newly produced asympto-
matic individual will develop symptoms before either recovering
or producing, by transmission, another asymptomatic individual.
Similarly, the probability that the first event is recovery equals

( )γ η γ β+ +/1 1 1 (in which case there result no symptomatic in-
dividuals at all), while the probability that the first event is
transmission equals ( )β η γ β+ +/1 1 1 (in which case the expected
number of descendants becomes E2 ). Hence we have

η
η γ β

γ
η γ β

β
η γ β

=
+ +

· +
+ +

· +
+ +

E E1 0 2
1 1

1

1 1

1

1 1

from which we conclude that
η

η γ β
=

+ −
E .

1 1

The issue of detectability (our motivation for the choice (18)–
(19)) is closely related to the issue of control. By targeted control
efforts we might be able to reduce β2 and/or increase γ2. Now
recall that β γ=R E/0 2 2 and note that E is expressed in terms of
parameters pertaining to asymptomatic infectives. So for R0 de-
fined by (20), control efforts targeted on symptomatic infectives
have a multiplicative effect, whereas for R0 defined by (17) such
efforts have a multiplicative effect on one term only. It is exactly
this difference that motivated Roberts and Heesterbeek (2003)
(also see Heesterbeek and Roberts (2007) and Bani-Yaghoub et al.
(2012)) to introduce the type-reproduction number. We refer
again to Inaba and Nishiura (2008) for a detailed elaboration in the
context of a far more general model involving the distinction be-
tween symptomatic and asymptomatic infectives.

According to the general theory presented in Appendix B we
have sign ( − ) =R 10 sign( )r , independently of the decomposition
used to define R0, where r is the spectral bound of the matrix A or,
in more biological jargon, the Malthusian parameter (aka the in-
trinsic rate of natural increase). In particular, our conclusion about
asymptotic stability ( <R 10 ) or instability ( >R 10 ) does not de-
pend on the decomposition used to define R0.
5. Concluding remarks

As noted in the abstract, R0 is defined as the expected life time
number of offspring of a newborn individual. In the appendices,
however, we define R0 as the spectral radius of a next-generation
matrix K . Specifically, in the discrete time population dynamic
setting, ( )= − −K F I T 1 and in the continuous time infectious dis-
ease setting = − −K FT 1. Each is a non-negative matrix and
therefore its spectral radius is a dominant positive eigenvalue
which has a nonnegative eigenvector y (Berman and Plemmons,
1994, Theorem 2.1.1):

= ( )Ky R y. 210

(See Diekmann et al. (2010) for a meaningful way to reduce the
dimension of K that eliminates zero elements of y.) How does the
definition of R0 given in the abstract relate to this more technical
characterization?

In the word “expected” we need to include the distribution of
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type at birth in the following way. Assume the eigenvector y in
(21) is normalized such that its components yi sum to one. Then yi
can be interpreted as the probability that a newborn individual is
of type i. Interpreted this way, the statement (21) indeed amounts
to the statement: a newborn individual produces, on average, R0
offspring. But what if we start with a population that does not
have a distribution of type at birth as described by y? As a rule, R0
is a strictly dominant eigenvalue. As a result, if we iterate K starting
from an arbitrary distribution of types at birth, the resulting vec-
tors become more and more like a multiple of y (i.e., the relative
size of the components is given by y). In other words, the effects of
the particular way in which the population (or the infectious
agent) was introduced die out. So we just need a bit of patience.
(Yet we shouldn't be too patient, as nonlinear effects gain im-
portance when the population grows. We refer to page 175 of
Diekmann et al. (2013) for some more discussion of this aspect.) As
far as we know little can be said in general about the exceptional
case that R0 is not strictly dominant.

The key message of this short note is that there can be multiple
ways to associate a next-generation matrix with a given matrix
that generates the real time dynamics. Accordingly, there are
multiple reproduction numbers that deserve to be denoted by R0,
however confusing that may be. To tell them apart, one has to pay
attention to the decomposition (of the projection matrix or its
continuous time analog) that underlies the next-generation ma-
trix. This decomposition “defines” those events one considers as
reproduction events and hence what exactly is being counted.
Everybody should feel free to argue that one decomposition is
more biologically meaningful than another. Or that one is more
relevant for determining the required control efforts than another.
Such arguments may in fact be illuminating and/or helpful, but
one cannot argue that one is, according to mathematical theory,
the one and only right one.

The paper (Browne and Webb, 2015) (brought to our attention
by Horst Thieme) is a case in point. If, apart from the infection
status of patients, the contamination status of hospital rooms is
also incorporated, a complicated transmission model results. The
matrix resulting from linearization at the disease free state allows
multiple meaningful decompositions (the paper mentions two, but
one can easily come up with arguments leading to yet another
choice). If, as is indeed the case in this paper, the ultimate aim of
the model is to provide insight for control, one may in fact start by
listing the parameters that one hopes to be able to control and
base the choice of F on these. The motivation is provided by the
formulas (30) and (31) in Appendices A and B, which show the
scalar multiplicative reduction of F needed to achieve eradication.
This observation simply repeats the main idea of Heesterbeek and
Roberts (2007); Inaba and Nishiura (2008); Roberts and Hees-
terbeek (2003), but puts it in a wider and, we think, useful context.
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Appendix A. Discrete time models

Matrix iterations of the form

( ) ( )+ = ( )x t Px t1 . 22

describe the discrete time dynamics of populations structured by a
finite number of states at the individual level. The population at
time t is described by the n-vector ( )x t of state densities and P is
an ×n n matrix, called the projection matrix. Both x and P have
non-negative entries.

paper Li and Schneider (2002) provide an excellent concise
introduction to the relevant notions and results concerning the
reproductive number for matrix population models. (For more
detailed accounts see Caswell (2001) and Cushing (1998).)

For any matrix M we denote the spectral radius of M by ( )ρ M
and recall that one can define

ρ λ λ( ) = { } ( )M Mmax : is an eigenvalue of 23

and show that (where k is an integer)

ρ = =
( )≥ →+∞

⎜ ⎟⎛
⎝

⎞
⎠M M Minf lim

24k

k k

k

k k

1

1/ 1/

holds, or conversely define ( )ρ M by (24) and show that (23) holds.
A key point is that whenever ( )ρ <M 1 then −I M is invertible and

( )− = + + + ⋯ ( )
−I M I M M . 25

1 2

In Li and Schneider (2002) (also see Cushing and Yicang (1994))
the projection matrix is additively decomposed

= + ( )P T F 26

where F and T are non-negative matrices that, respectively, cap-
ture reproduction and population level consequences of changes
in the state of individuals. In analogy to (2) it is required that

( )ρ < ( )T 1, 27

which excludes immortality in the sense that it guarantees that
=→∞T xlim 0k

k for all nonnegative vectors x (k is an integer) (Li and
Schneider, 2002). Usually the column sums of T do not exceed one,
with at least one column sum less than one, which implies (27).
The upshot is that (25) holds for M¼T and

( )− −F I T 1

yields a matrix analog of the right side of (3).
We assume the projection matrix P is irreducible. This means

there is a path between any pair of population states by means of
reproduction and transitions. Mathematically, it means that no re-
ordering of the states will bring P into upper triangular block form.
Perron–Frobenius theory (Berman and Plemmons, 1994) guaran-
tees that the population growth rate

( )ρ=r P

is a positive, simple, and dominant eigenvalue of P (in the sense
that λ ≤ r for any eigenvalue λ of P) with associated positive right
and left eigenvectors. If <r 1 the population decays exponentially,
if >r 1 the population grows exponentially, and if r¼1 the po-
pulation is stable. It turns out that the per generation growth rate
(sometimes called the net reproduction number)

( )( )ρ= − ( )
−R F I T 280

1

and r are on the same side of 1 (Cushing and Yicang, 1994) or more
precisely one of the following holds:

≤ ≤ < < ≤ = = ( )R r r R r R0 1or 1 or 1 290 0 0

(Theorem 3.3 in Li and Schneider (2002)). It follows that both r and
R0 can be used to determine the growth or decay of the population.
One important fact is that formulas are sometimes more readily
available for R0 than for r. This is because the number of birth
states is often low (often equal to one) which means that F is low
rank. In addition we have, provided >R 00 ,
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ρ + =
( )

⎛
⎝⎜

⎞
⎠⎟

F
R

T 1
300

which can be interpreted as saying “in order to stop population
growth one has to reduce reproduction by a factor R1/ 0” (Li and
Schneider, 2002, Theorem 3.1). Another often useful fact is that

( ) ( )( ) ( )ρ ρ− = −− −F I T I T F .1 1

This means the calculation of ( )− −I T 1 need be made on only the
range of F , which is what we used to calculate (14).
Appendix B. Continuous time models

The spectral bound ( )s M of a matrix M is defined by

λ λ( ) = { }s M Msup Re : is an eigenvalue of .

Suppose the off-diagonal entries of M are non-negative. Then

( ) < − −−s M M M0 if and only if is invertible and is non negative.1

One way to understand this is to observe that

∫ τ = −τ
∞

−e d MM

0

1

if the integral converges. (Also, one can apply Theorem 2.3, parts
G20 and N38 in Berman and Plemmons (1994) to −M , which is a so-
called M-matrix.)

Assume the coefficient matrix A in the linear ODE system

=dx
dt

Ax

has non-negative off-diagonal entries. Then the system preserves
non-negativity (i.e. ( ) ≥Atexp 0 for all ≥t 0, Theorem 3.12 in
Berman and Plemmons (1994)). Let the decomposition

= +A T F

be such that T has non-negative off-diagonal entries and F is non-
negative. Assume that ( ) <s T 0 (in order to exclude immortality).
Define

( )ρ≔ − −R FT0
1

and

= ( )r s A .

Then

( ) ( )= −sign r sign R 1 .0

See Thieme (2009) and Diekmann et al. (2010), Theorem A1, but be
aware of some notational differences: T there corresponds to F
here, while T here is called Σ there, and “positive” there corres-
ponds to “non-negative” here.

In addition we have, provided >R 00 ,

+ =
( )

⎛
⎝⎜

⎞
⎠⎟s

F
R

T 0
310

which can be interpreted as saying “in order to stop population
growth one has to reduce reproduction by a factor R1/ 0”.
Appendix C. Miscellanea

The aim of this final appendix is to provide some pointers to
the literature concerning aspects of R0 that are not directly related
to the matter of choice in the +T F decomposition.
The generation bookkeeping presupposes that it does not
matter when offspring is produced. If, however, the environmental
conditions vary in the course of time, it does matter when an in-
dividual is born. So does the concept of R0 perish when the en-
vironment is not constant? In Section 7.9 of Diekmann et al. (2013)
it is explained how a simple trick can save us when the environ-
mental conditions are periodic. The idea is to label newborn in-
dividuals with the phase φ in the cycle at the time of their birth.
The next-generation operator then maps functions of φ to func-
tions of φ, so acts on an infinite-dimensional space. That makes it
harder to compute R0, but conceptually nothing changes. See Ba-
caër and Ait Dads (2012), Cushing and Ackleh (2012), and Wang
and Zhao (2008).

There are other contexts in which the individual state space is
infinite dimensional. A prominent example arises when we dis-
tinguish individuals according to their geographical position. Then
it may easily happen that the operator T is unbounded, for in-
stance when T is the Laplace operator describing diffusion. Yet − −T 1

(or in the discrete time case ( − )−I T 1) may be bounded so that R0 is
still the dominant eigenvalue of a bounded positive operator. The
key reference is Thieme (2009).

When derived by using the +F T decomposition, the next-
generation matrix (or operator) naturally is the product of two
matrices (or operators). If we consider the transpose of the matrix
(the adjoint of the operator) the order of the two factors reverses.
The dominant eigenvalue does not change in the process, but the
corresponding eigenvector does change. While the eigenvector of
the next generation matrix provides (when suitably normalized)
the stable distribution of birth states, the adjoint eigenvector
yields Fisher's reproductive value (Caswell, 2001). So both have
meaning, but the meaning differs. In the periodic setting, the order
of the two factors gave rise to a little controversy about the ‘cor-
rect’ definition of R0, see the references in Diekmann et al. (2013),
Section 7.9.

The linear next-generation operator ignores that it might take
two to reproduce. For a mechanistic derivation of an alternative
we refer to Heesterbeek and Metz (1993). For a mathematical
definition of R0 for homogeneous operators we refer to Thieme
et al. (2016) and Jin and Thieme (2016).

From a conceptual biological point of view, it makes sense to
think of R0 as a function of two variables, viz. the type/trait of the
individuals and the condition of the environment. The linear set-
ting assumes that individuals have independent lives, but this
clearly is an idealization if population growth leads to increasing
numbers. Density dependence arises by feedback to the environ-
mental condition (as a concrete example, think of consumption of
food). Often this results in a steady state : the environmental
condition is set such that R0 equals one. One can now introduce in
low quantity another type of individual and ask whether its po-
pulation will grow. Thus consideration of R0 enters in the analysis
of competition models. Often this leads to statements about op-
timization of R0, but the mechanistically more informative for-
mulation is in terms of the pessimization of the environmental
condition (Diekmann, 2004; Smith and Thieme, 2013).

As indicated in the main text, computation of R0 is often fa-
cilitated by identifying the possible states at birth, i.e., by studying
the range of F. A more detailed analysis of the life cycle graph may
help to further reduce the computational burden, see Rueffler and
Metz (2013), de Camino-Beck et al. (2009) and the references gi-
ven there.
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