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Abstract

The moduli space of stable pairs on a local surface X = KS is in general non-compact. The action
of C∗ on the fibres of X induces an action on the moduli space and the stable pair invariants of
X are defined by the virtual localization formula. We study the contribution to these invariants of
stable pairs (scheme theoretically) supported in the zero section S ⊂ X . Sometimes there are no
other contributions, for example, when the curve class β is irreducible.

We relate these surface stable pair invariants to the Poincaré invariants of Dürr–Kabanov–
Okonek. The latter are equal to the Seiberg–Witten invariants of S by the work of Dürr–Kabanov–
Okonek and Chang–Kiem. We give two applications of our result. (1) For irreducible curve classes
the GW/PT correspondence for X = KS implies Taubes’ GW/SW correspondence for S. (2) When
pg(S) = 0, the difference of surface stable pair invariants in class β and KS − β is a universal
topological expression.

1. Introduction

In [21], Pandharipande and Thomas introduce stable pairs on projective 3-folds X and show their
moduli space is a component of the moduli space of all complexes in the bounded derived category
Db(X ). Formally, a stable pair (F, s) on X consists of a pure dimension 1 sheaf F on X and a
section s ∈ H0(F) with zero-dimensional cokernel. The moduli space of stable pairs has a perfect
obstruction theory, which is symmetric in the case where X is Calabi–Yau. The associated invariants
are known as stable pair invariants and are closely related to the Donaldson–Thomas and Gromov–
Witten invariants of X [3, 16–18, 21, 22, 24, 25, 31].

We consider the case where X = KS is the total space of the canonical bundle over a smooth
projective surface S. Let Pχ (X ,β) denote the moduli space of stable pairs (F, s) on X with class
β ∈ H2(S) and χ(F) = χ . The space Pχ (X ,β) carries a perfect obstruction theory, but can be non-
compact. Using the C∗-action on the fibres of X gives an induced obstruction theory on Pχ (X ,β)C

∗
.

The components of this fixed locus are compact. We denote the C∗-equivariant cohomology of X
by H∗

C∗(X , Q). Endowing S with trivial C∗-action, we then have H∗
C∗(X , Q) ∼= H∗

C∗(S, Q). For any
σ1, . . . , σm ∈ H∗

C∗(S, Q) the stable pair invariants of X are defined by the virtual localization formula
of Graber and Pandharipande [12]:

Pχ ,β(X , τα1(σ1) · · · ταm(σm)) :=
∫

[Pχ (X ,β)C∗ ]vir

1

e(Nvir)

m∏
i=1

ταi(σi). (1)

†Corresponding author. E-mail: m.kool1@uu.nl

c© 2016. Published by Oxford University Press. All rights reserved.
For permissions, please email: journals.permissions@oup.com

The Quarterly Journal of Mathematics Advance Access published on May 11, 2016
Quart. J. Math. 67 (2016), 365–386; doi:10.1093/qmath/haw012

365



M. KOOL

Here e(Nvir) is the equivariant Euler class of the virtual normal bundle and τα(σ ) is the descendent
insertion

τα(σ ) := πP∗(π∗
X (σ ) ∩ chC

∗
α+2(F)), (2)

where αi ≥ 0, F is the universal sheaf on Pχ (X ,β)× X and chC
∗

denotes C∗-equivariant Chern
character. Note that these invariants are elements of Q[t, t−1], where t is the equivariant parameter.
In this paper, we will only be concerned with primary point insertions

τ0(pt) := πP∗(π∗
X (pt) ∩ chC

∗
2 (F)),

where pt denotes the (Poincaré dual of) the point class in H4(S, Z).
The easiest component of Pχ (X ,β)C

∗
consists of a stable pairs, which are scheme theoretically

supported on the zero section S ⊂ X , that is Pχ (S,β). Denote the Hilbert scheme of effective divisors
on S with class β by Hβ := Hilbβ(S) and the universal curve by C → Hβ . Let n be determined by
χ = 1 − h + n, where h is the arithmetic genus of curves with class β

2h − 2 = β(β + k), k := c1(O(KS)) ∈ H2(S, Z).

Given a stable pair [s : OS → F] on S, the scheme theoretic support of F is a Gorenstein curve
C ⊂ S. The cokernel Q of s gives rise to a zero-dimensional closed subscheme Z ⊂ C via the
surjection OC � Ext1(Q,OC) obtained by dualizing. This provides an isomorphism [23]

Pχ (S,β) ∼= Hilbn(C/Hβ),

where Hilbn(C/Hβ) is the relative Hilbert scheme of n points on the fibres of C → Hβ . In this paper,
we only consider contributions to (1) of the ‘surface component’ Pχ (S,β), that is,

Pχ ,β(S, τα1(σ1) · · · ταm(σm)) :=
∫

[Pχ (S,β)]vir

1

e(Nvir)

m∏
i=1

ταi(σi). (3)

We group these invariants together into a generating function

ZP
β(S, τα1(σ1) · · · ταm(σm)) :=

∑
χ∈Z

Pχ ,β(S, τα1(σ1) · · · ταm(σm))q
χ .

The following is our main theorem.

Theorem 1.1 For any S,β, and m := β(β − k)/2

ZP
β(S, τ0(pt)m) = tmPS(β)(q

1/2 + q−1/2)2h−2,

where t is the equivariant parameter, 2h − 2 = β(β + k) and PS(β) ∈ Z is the numerical part of
the Poincaré invariant P+

S (β) of Dürr–Kabanov–Okonek.

366



STABLE PAIR AND SEIBERG–WITTEN INVARIANTS

In this theorem
P+

S (β) ∈ �∗H1(S, Z)∗

are the Poincaré invariants of S,β defined by Dürr et al. [6]. These invariants are defined in terms
of a natural virtual cycle on the Hilbert scheme of curves Hβ . They define a corresponding invari-
ant P−

S (β) in terms of a natural virtual cycle on Hk−β . We are only concerned with the numerical
part (degree b1(S) in cohomology), which we denote by PS(β). Dürr–Kabanov–Okonek conjectured
that P±

S (β) are equal to the Seiberg–Witten invariants of S,β. Up to a purely algebraic conjecture,
they prove this using their wall-crossing and blow-up formula. This algebraic conjecture was sub-
sequently proved by Chang and Kiem via a beautiful application of cosection localization [4]. As a
corollary of the ‘Poincaré/PT correspondence’ of Theorem 1.1 and the (much deeper!) Poincaré/SW
correspondence of [4, 6] we obtain the following corollary.

Corollary 1.2 In the notation of Theorem 1.1

ZP
β(S, τ0(pt)m) = tmSW(β)(q1/2 + q−1/2)2h−2,

where SW(β) ∈ Z is the Seiberg–Witten invariant of S,β.

We have two applications of Theorem 1.1 (and its Corollary 1.2). The first is to Gromov–Witten
theory. For any g, let M

′
g,m(X ,β) be the moduli space of stable maps with possibly disconnected

domain curve and no collapsed connected components. Its C∗-fixed locus M
′
g,m(S,β) has an induced

perfect obstruction theory, which is the usual Gromov–Witten theory of S. The Gromov–Witten
invariants of X are defined by virtual localization

Rg,β(X , τα1(σ1) · · · ταm(σm)) :=
∫

[M
′
g,m(S,β)]vir

1

e(Nvir)

m∏
i=1

ταi(σi),

ταi(σi) := ψ
αi
i ev∗

i (σi),

ZGW
β (X , τα1(σ1) · · · ταm(σm)) :=

∑
g

Rg,β(X , τα1(σ1) · · · ταm(σm))u
2g−2,

where ψi are the ψ-classes and evi are the evaluation maps. From Theorem 1.1 (or rather
Corollary 1.2), we will deduce the following theorem, which involves the GW/PT correspondence.
That is, [21, Conjecture 3.3] but for X a non-compact Calabi–Yau 3-fold. See also [19, Section 1.4].

Theorem 1.3 Fix any S,β with β irreducible. Let m := β(β − k)/2 and 2h − 2 = β(β + k).
The GW/PT correspondence for ZGW

β (X , τ0(pt)m) and ZP
β(X , τ0(pt)m) is equivalent to the following

equality:
ZGW
β (X , τ0(pt)m) = tmSW(β)(2 sin(u/2))2h−2.

In particular, setting −q = eiu, the lowest-order terms of ZGW
β (X , τ0(pt)m) and ZP

β(X , τ0(pt)m) in u
coincide if and only if

SW(β) =
∫

[M
′
h,m(S,β)]vir

m∏
i=1

τ0(pt).
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We have a similar result for any S,β with −KS nef and β sufficiently ample (Remark 2.3).
This shows that the GW/PT correspondence implies (a very special case of) Taubes’ GW/SW
correspondence [29, 30].

The second application of Theorem 1.1 is a universal formula for the difference of stable pair
invariants in class β and k − β. Instead of the stable pair invariants (3), one can define reduced
stable pair invariants of X in class β

Pred
χ ,β(X , τα1(σ1) · · · ταm(σm)).

These originate from stable pair theory on Pχ (X ,β) by removing a trivial part of rank pg(S) :=
h0,2(S) from the obstruction bundle. The reduced invariants coincide with the usual invariants when
pg(S) = 0. Reduced stable pair invariants have been studied by many people; see [14] and references
therein. Consider the surface part of these invariants for any number of point insertions m, where m
need not be β(β − k)/2 as in Theorems 1.1 and 1.3

Pred
χ ,β(S, τ0(pt)m).

We recall the definition in Appendix A, where we give a formula for the reduced virtual cycle
(Proposition A.1). This formula is not used in the main body of this text, but is of independent
interest. It extends a formula from [15, Appendix], which was derived under the following condition:

H2(L) = 0 for all line bundles L with c1(L) = β. (4)

When Condition (4) is satisfied, it is shown in [15] that Pred
χ ,β(S, τ0(pt)m) is given by a universal func-

tion in β2, β.c1(S), c1(S)2, c2(S), and certain invariants of the ring structure of H∗(S, Z). The precise
statement is recalled in Theorem A.2 of Appendix A. (This universality result is used in the recent
proof of the Katz–Klemm–Vafa conjecture for all curve classes by Pandharipande and Thomas [26].)
It is natural to ask whether universality holds for all invariants Pred

χ ,β(S, τ0(pt)m), Pχ ,β(S, τ0(pt)m).
We show that this is not the case (Remark A.3). The reason is as follows. Theorem 1.1 relates
Pχ ,β(S, τ0(pt)m) to Poincaré invariants. Using examples of [6], we observe that Poincaré invariants
do not satisfy universality (Examples A.4, A.6, A.8 of Appendix B).

Despite failure of universality, there is an interesting ‘duality’ for surfaces with pg(S) = 0. If β
or k − β satisfies Condition (4), then one of

Pχ ,β(S, τ0(pt)m), Pχ ,k−β(S, τ0(pt)m)

is given by a universal expression and the other is zero. These cases are covered by [15]. The new
case is when neither β nor k − β satisfies (4). Then universality can fail for the individual invariants
Pχ ,β(S, τ0(pt)m), Pχ ,k−β(S, τ0(pt)m) (Examples A.4, A.6, A.8 of Appendix B), but their difference
satisfies a nice duality formula. Combining Theorem 1.1 and the wall-crossing formula of Dürr–
Kabanov–Okonek will lead to the following theorem.

Theorem 1.4 Fix S,β such that pg(S) = 0 and neither β nor k − β satisfies Condition (4). If
β(β − k) < 0, then

Pχ ,β(S, τ0(pt)m) = Pχ ,k−β(S, τ0(pt)m) = 0.
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If β(β − k) ≥ 0, then β(β − k) = 0, q(S) := h0,1(S) = 1 and

Pχ ,β(S, τ0(pt)m) = Pχ ,k−β(S, τ0(pt)m) = 0 for m > 0

ZP
β(S)

(q1/2 + q−1/2)2β
2 − ZP

k−β(S)

(q1/2 + q−1/2)2(k−β)2 = 1

2
[β] − 1

2
[k − β] for m = 0.

(The fact that β(β − k) ≥ 0 implies β(β − k) = 0 and q(S) = 1 is a non-trivial result of Dürr
et al. [6]. This fact and its proof are recalled in Section 3 (Proposition 3.1). The number [γ ] ∈ Z for
any γ ∈ H2(S, Z) on a surface with q(S) = 1 is defined as follows. The class γ determines an ele-
ment

∫
S γ ∧ · ∈ �2H1(S, Z)∗. Since q(S) = 1, we have a canonical isomorphism �2H1(S, Z)∗ ∼= Z

induced by choosing an integral basis of H1(S, Z) ⊂ H1(S, R) compatible with the orientation com-
ing from the complex structure. The integer obtained in this way is denoted by [γ ].) Examples of
S,β with pg(S) = 0, β(β − k) ≥ 0, and neither β nor k − β satisfying Condition (4) are given in
Remark A.10 of Appendix B. Such surfaces are necessarily elliptic fibrations or blow-ups thereof.
The results of this paper make heavy use of the work of Dürr et al. [6]. For the purposes of readability,
we take the opportunity to survey part of their work along the way.

2. Poincaré/PT correspondence

In this section, we give a formula for the virtual cycle [Hilbn(C/Hβ)]vir (Proposition 2.1). We
then exploit the ‘product structure’ of this formula to prove Main Theorem 1.1, Corollary 1.2 and
Theorem 1.3.

2.1. Virtual cycle

Let C ⊂ Hβ × S → Hβ be the universal curve over the Hilbert scheme Hβ = Hilbβ(S) of effective
divisors in class β. Recall from the introduction that Hilbn(C/Hβ) ∼= Pχ (S,β) is a component of the
C∗-fixed locus of the full 3-fold stable pair space Pχ (X ,β). Also recall that χ = 1 − h + n, where h
is the genus of curves in class β. We start with the natural embedding

ι : Hilbn(C/Hβ) ↪→ S[n] × Hβ ,

where S[n] is the Hilbert scheme of n points on S. A point (Z, C) lies in Hilbn(C/Hβ) if and only if

sC|Z = 0 ∈ H0(OZ(C)),

where sC is the section cutting out C ⊂ S. The family version of this goes as follows. Let
Z ⊂ S[n] × S be the universal subscheme and let

π : S[n] × S × Hβ → S[n] × Hβ

denote projection. Then
O(C)[n] := π∗(O(S[n] × C)|Z×Hβ

) (5)

is a rank n vector bundle on S[n] × Hβ . It has a tautological section σ with zero locus Hilbn(C/Hβ).
This provides Hilbn(C/Hβ) with a relative perfect obstruction theory over Hβ . This construction
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does not provide an absolute perfect obstruction theory because Hβ can be singular. The notation (5)
is chosen for the following reason. Consider projections

Z
p

����
��

��
�� q

���
��

��
��

�

S S[n]

Then, for any line bundle L on S,
L[n] := q∗p∗L

is a rank n vector bundle on S[n] known as a tautological bundle (for example, see [7]). It is not hard
to see from the definitions that, for any point p = [C] ∈ Hβ ,

O(C)[n]|S[n]×{p} ∼= O(C)[n]. (6)

Dürr et al. [6] constructed a natural perfect obstruction theory on Hβ of the form

(Rπ∗OC(C))∨ → LHβ
.

In [14, Appendix], this perfect obstruction theory on Hβ and the relative perfect obstruction theory on
Hilbn(C/Hβ) are combined to construct an absolute perfect obstruction theory on Hilbn(C/Hβ). See
diagram (89) of [14, Appendix] for details. We denote the corresponding virtual cycles on Hβ and
Hilbn(C/Hβ) by [Hβ]vir and [Hilbn(C/Hβ)]vir. It is shown in [14, Appendix] that [Hilbn(C/Hβ)]vir

coincides with the virtual cycle induced by C∗-localization of stable pair theory on X = KS to the
component Hilbn(C/Hβ) of the C∗-fixed locus. Although Hβ can be singular, we still have the
following proposition.

Proposition 2.1 For any S,β

ι∗[Hilbn(C/Hβ)]
vir = (S[n] × [Hβ]vir).cn(O(C)[n])

and its virtual dimension is v = β(β − k)/2 + n.

For the proof of this proposition, we need the following lemma.

Lemma 2.2 Let π : M → B be a flat morphism of C-schemes of finite type with B projective. Let
E• → LB, F• → LM be perfect obstruction theories. Suppose that there exists a smooth projective
variety A and a rank r vector bundle V on A × B with regular (as in [9, B.3.4]) section s such that
M = s−1(0) ⊂ A × B and π : M → B commutes with projection πB : A × B → B. This induces a
canonical relative perfect obstruction theory G• → LM/B of the form G• = {V ∗|M → π∗

A(A)|M }.
Suppose that there exists an exact triangle

π∗E• −→ F• −→ G•. (7)

Denote inclusion by ι : M ↪→ A × B. Then

ι∗[M ]vir = (A × [B]vir).cr(V ). (8)
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Proof . The content of the lemma is formula (8). For any perfect obstruction theory F• → LM with
M projective, the following formula holds [28, Theorem 4.6] (see also [27])

[M ]vir = {s•(F
•∨)cF(M )}v. (9)

Here s•(·) is the total Segre class, v is the virtual dimension of M and cF(M ) is Fulton’s canonical
class which is defined as follows. Take any embedding M ⊂ A into a smooth variety A; then

cF(M ) := c•(TA|M )s•(CM/A),

where CM/A is the normal cone of M ⊂ A. This definition is independent of the choice of
embedding [9, Ex. 4.2.6]. Take an embedding B ⊂ C into a smooth variety and consider

M ⊂ A × B ⊂ A × C =: A.

By (7), we have

s•(F
•∨) = π∗(s•(E

•∨))
c•(V |M )

π∗
A(c•(TA))|M .

Since M ⊂ A × B is cut out by a regular section of V , we have

CM/A×B
∼= NM/A×B

∼= V |M .

Consider the following short exact sequence of cones

NM/A×B −→ CM/A×C −→ CA×B/A×C|M .

We deduce

cF(M ) = π∗
A(c•(TA))|Mπ∗(c•(TC|B))π

∗s•(CB/C)

c•(V |M ) .

Formula (9) therefore implies

[M ]vir = {π∗(s•(E
•∨)c•(TC|B)s•(CB/C))}v = π∗[B]vir,

where the second equality follows from applying (9) to E• → LB. The projection formula gives

ι∗[M ]vir = (A × [B]vir).ι∗[M ].

Since M ⊂ A × B is cut out by a regular section of V , we have ι∗[M ] = cr(V ) [9, Proposition 14.1]
and the proposition is proved. �
Proof of Proposition 2.1. Diagram (89) of [14, Appendix] provides the required exact triangle. It
is left to show Hilbn(C/Hβ) → Hβ is flat and the tautological section σ of O(C)[n] is regular. The
fibre of the morphism Hilbn(C/Hβ) → Hβ over C ∈ Hβ is C[n], that is, the Hilbert scheme of n
points on the effective divisor C. The scheme C[n] is cut out by a tautological section of L[n], where
L := O(C). Moreover, C[n] ⊂ S[n] has codimension n (see [14, Footnote 18], which uses [1, 13]).
Therefore, σ |S[n]×{C} is regular for all C ∈ Hβ . From this, one can deduce that Hilbn(C/Hβ) → Hβ is
flat and σ is regular. �
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2.2. Relation to Poincaré invariants

In Section 1, we introduced the stable pair invariants (1)

Pχ ,β(X , τα1(σ1) · · · ταm(σm))

and the contribution to these invariants of the component Pχ (S,β) ∼= Hilbn(C/Hβ) of the C∗-fixed
locus

Pχ ,β(S, τα1(σ1) · · · ταm(σm)).

We only consider the case of primary point insertions

Pχ ,β(S, τ0(pt)m) =
∫

[Pχ (S,β)]vir

1

e(Nvir)
τ0(pt)m.

In the case n = 0, Hilbn(C/Hβ) ∼= Hβ and [Hβ]vir was introduced many years ago by Dürr et al.
[6, Definition 3.1]. They used this virtual cycle to define Poincaré invariants. We recall their
definition. Consider the two Abel–Jacobi maps

AJ+ : Hβ → Picβ(S),

AJ− : Hk−β → Pick−β(S) ∼= Picβ(S),

where Pick−β(S) ∼= Picβ(S), L → L∗ ⊗ KS . Then the Poincaré invariants are

P+
S (β) := AJ+

∗

(∑
i

c1(O(C)|Hβ×{pt})i ∩ [Hβ]vir

)
, (10)

P−
S (β) := (−1)χ(OS)+β(β−k)/2AJ−

∗

(∑
i

(−1)ic1(O(C)|Hk−β×{pt})i ∩ [Hk−β ]vir

)
.

In the first line, C denotes the universal curve over Hβ and, in the second line, the universal curve over
Hk−β . Note that P±

S (β) ∈ �∗H1(S, Z)∗. (From the construction the Poincaré invariants take values
in homology H∗(Picβ(S)) ∼= �∗H1(S, Z). We use Poincaré duality, so the invariants take values in
cohomology�∗H1(S, Z)∗.) We write the (numerical) degree 2q(S) part of P+

S (β) ∈ �∗H1(S, Z)∗ by

PS(β) ∈ Z.

The product structure of the virtual cycle of Proposition 2.1 leads to Main Theorem 1.1 of the
introduction.
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Proof of Theorem 1.1 We want to calculate the invariant

Pχ ,β(S, τ0(pt)m) := 1

e(Nvir)
τ0(pt)m ∩ [Hilbn(C/Hβ)]

vir, (11)

where Hilbn(C/Hβ) ∼= Pχ (S,β), and χ and n are related by χ = 1 − h + n (Section 1). Let � :
Hilbn(C/Hβ) → Hβ denote projection; then we claim

τ0(pt) = � ∗c1(O(C)|Hβ×{pt}). (12)

The proof can be found in [15, Proof of corollary 4.2], but we quickly reproduce it here. Consider
the Cartesian diagram

S Hilbn(C/Hβ)× S
πP ��

��

πS�� Hilbn(C/Hβ)

��
Hβ × S �� Hβ

By the definition (2), τ0(pt) = πP∗(π∗
S [pt] · c1(F)), where F is the universal sheaf on Hilbn(C/Hβ)×

S. Hence (12) follows from the fact that c1(F) is the pull-back of c1(O(C)) from Hβ × S and going
around the Cartesian diagram.

In order to calculate e(Nvir), we use a formula for the C∗-equivariant K-theory class of Nvir

from [15]. Consider the projections

S[n] × Hβ

p1

����
��

��
��

� p2

���
��������

S[n] Hβ

Then [15, Equation (12)] reads

[Nvir] = [(O(C)[n])∗ − p∗
1S[n] − p∗

2(Rπ∗OC(C))∨]|Hilbn(C/Hβ ) ⊗ t, (13)

where t is the irreducible representation of C∗ of weight 1. Recall from (5) that O(C)[n] is a vector
bundle on S[n] × Hβ , Rπ∗OC(C) is a complex on Hβ and π denotes projection Hβ × S → Hβ . By
pushing forward along the inclusion ι : Hilbn(C/Hβ) ↪→ S[n] × Hβ and using (11), (12), (13), we see
that Pχ ,β(S, τ0(pt)m) equals

e(p∗
1S[n] ⊗ t) · e(p∗

2(Rπ∗OC(C))∨ ⊗ t)

e((O(C)[n])∗ ⊗ t)
·� ∗c1(O(C)|Hβ×{pt})m ∩ ι∗[Hilbn(C/Hβ)]

vir.

Next we want to use the formula for ι∗[Hilbn(C/Hβ)]vir from Proposition 2.1. Recall from the
assumptions of the theorem that m := β(β − k)/2. Since the virtual dimension of [Hβ]vir is also
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β(β − k)/2, the cycle
c1(O(C)|Hβ×{pt})m ∩ [Hβ]vir

is zero-dimensional and can be written as
∑

i μipi, where μi are integers and pi = [Ci] ∈ Hβ are
points. Then

PS(β) =
∑

i

μi

by definition of the Poincaré invariants (10). Therefore, Pχ ,β(S, τ0(pt)m) equals

∑
i

μi

∫
S[n]

e(p∗
1S[n] ⊗ t) · e(p∗

2(Rπ∗OC(C))∨ ⊗ t)

e((O(C)[n])∗ ⊗ t)
cn(O(C)[n])|S[n]×{pi}.

In order to go from equivariant Euler classes to Chern classes, we use the following formula (e.g. [15,
Equation (16)]). For any complex E of rank r,

e(E ⊗ t) = trc−1/t(E
∨), (14)

where cx(E) = 1 + c1(E)x + c2(E)x2 + · · · is the total Chern class and t := c1(t) is the equivariant
parameter. Define Li := OS(Ci), where pi = [Ci] ∈ Hβ was introduced earlier in the proof. Then (6)
implies

O(C)[n]|S[n]×{pi} ∼= L[n]
i . (15)

Similarly,
p∗

2Rπ∗OC(C)|S[n]×{pi} ∼= R�(OCi(Ci))⊗ O. (16)

Using (14), (15), (16) shows that Pχ ,β(S, τ0(pt)m) equals

∑
i

μi

∫
S[n]

t2nc−1/t(TS[n]) · t1−h+β2
c−1/t(R�(OCi(Ci))⊗ O)

tnc−1/t(L
[n]
i )

cn(L
[n]
i )

=
∑

i

μi

∫
S[n]

tn+m

(−1

t

)n c•(TS[n])

c•(L
[n]
i )

cn(L
[n]
i )

= (−1)ntm
∑

i

μi

∫
S[n]

c•(TS[n])

c•(L
[n]
i )

cn(L
[n]
i ), (17)

where the second equality uses m := β(β − k)/2 and the factor (−1/t)n arises from the fact that
cn(L

[n]
i ) has degree n and S[n] has dimension 2n.

By [7], for each n there exists a universal polynomial Pn(x1, x2, x3, x4) such that, for all i, we have

Pn(c1(Li)
2, c1(Li).k, k2, c2(S)) =

∫
S[n]

cn(L
[n]
i )

c•(TS[n])

c•(L
[n]
i )

.

Since c1(Li) = β for all i, all these integrals are the same. Using PS(β) = ∑
i μi, formula (17)

becomes

Pχ ,β(S, τ0(pt)m) = (−1)ntmPS(β)

∫
S[n]

cn(L
[n])

c•(TS[n])

c•(L[n])
, (18)

where L := Li for arbitrary choice of i.
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For any S, L, the integral in (18) is given by Pn(c1(L)2, c1(L).k, k2, c2(S)). For any S, L with the
additional property that L is globally generated, we can compute the integral in (18). If L is globally
generated, we can write L = O(C) for a smooth curve C ⊂ S. Then the Hilbert scheme C[n] of n
points on C is cut out smoothly and transversally by a tautological section of L[n]. Hence

∫
S[n]

cn(L
[n])

c•(TS[n])

c•(L[n])
=
∫

C[n]
cn(TC[n]) = e(C[n]).

These Euler characteristics are given by the well-known expression

∞∑
n=0

e(C[n])qn = (1 − q)2g−2,

where g is the genus of C. We conclude that

Pn(c1(L)
2, c1(L).k, k2, c2(S)) =

∫
S[n]

cn(L
[n])

c•(TS[n])

c•(L[n])
= (−1)n

(
2g − 2

n

)
,

where 2g − 2 = c1(L)
2 + c1(L).k. (19)

Since (19) holds for any S, L with L globally generated and Pn is polynomial, it holds for any S, L.
The theorem follows by combining (18) and (19). �

2.3. Application to Seiberg–Witten invariants

Dürr–Kabanov–Okonek conjectured that Poincaré invariants (10) are equal to Seiberg–Witten
invariants from 4-manifold theory [6, Conjecture 5.3]. Using a wall-crossing formula and blow-
up formula for P±

S (β), they reduced their conjecture to a purely algebraic statement about Hk, which
was proved by Chang–Kiem [4]. By these (non-trivial!) results, we can write the degree 2q(S) part
of P+

S (β) as
PS(β) = SW(β) ∈ Z,

where SW(β) are the original Seiberg–Witten invariant of S,β (see [20, 32]). Combining the
Poincaré/PT correspondence of Theorem 1.1 with the (much deeper!) Poincaré/SW correspondence
of [4, 6] gives Corollary 1.2. An application of this corollary is that for S,β with β irreducible
and m = β(β − k)/2 point insertions the GW/PT correspondence encodes (a very special case of)
Taubes’ GW/SW correspondence [29, 30]. This is the content of Theorem 1.3 of the introduction.

Proof of Theorem 1.3. Since β is irreducible, Pχ (X ,β)C
∗ ∼= Pχ (S,β) for all χ . Hence Pβ(X ,

τ0(pt)m) = Pβ(S, τ0(pt)m) and the result follows from Theorem 1.1. Note that the equivariant
parameter t of the leading term of both generating functions match by [14, Lemma 3.3]. �

Remark 2.3 The following is a variation on Theorem 1.3. Fix any S,β such that −KS is nef and
β is sufficiently ample. (More precisely, here β sufficiently ample means h ≥ 1 and β is (4h − 3)-
very ample [15, Proposition 5.1].) Assume the GW/PT correspondence holds for ZGW

β (X , τ0(pt)m),
ZP
β(X , τ0(pt)m). (The GW/PT correspondence has been proved in many cases [18, 19, 24, 25].) Also

375



M. KOOL

assume that the BPS spectrum of X is finite. (That is, after writing ZGW
β (X , τ0(pt)m) in BPS form

[10, 11], [21, Equation (3.13)], we assume that there are only finitely many non-zero ng,β ′ .) Then

ZGW
β (X , τ0(pt)m) = tmSW(β)(2 sin(u/2))2h−2,

SW(β) =
∫

[M
′
h,m(S,β)]vir

m∏
i=1

ev∗
i [pt].

The proof goes as follows. Since h ≥ 1 and the BPS spectrum is assumed finite, applying the
coordinate transformation −q = eiu to ZGW

β (X , τ0(pt)m) gives a Laurent polynomial in q. Moreover,
it is symmetric under q ↔ q−1, so of the form

abq−b + ab−1q−(b−1) + · · · + ab−1qb−1 + abqb, (20)

for some b ≥ 0. By [14, Proposition 5.1], we have Pχ (X ,β)C
∗ ∼= Pχ (S,β) for all χ ≤ h − 1.

Combining this with Theorem 1.1 and (20) gives the result.

Remark 2.4 One can speculate that, for any algebraic S,β, Taubes’ GW/SW correspondence fol-
lows from the GW/PT correspondence. This requires dealing with other components of Pχ (X ,β)C

∗
.

Conversely, one can try to derive cases of the GW/PT correspondence for X = KS from Taubes’
GW/SW correspondence as is done in Theorem 1.3. These are interesting questions for future
research.

3. Wall-crossing and duality

In this section, we study the stable pair invariants Pχ ,β(S, τ0(pt)m) for any m and any surface S with
pg(S) = 0. The results of [15] (recalled in Theorem A.2 of Appendix A) suggest that these invariants
are always given by universal functions in the topological numbers β2, β.c1(S), c1(S)2, c2(S) and
certain invariants of the ring structure of H1(S, Z). In Appendix B, we show that this is not the case.
The reason is that Pχ ,β(S, τ0(pt)m) is related to a Poincaré invariant by Main Theorem 1.1, and it
is easy to cook up surfaces S with pg(S) = 0 whose Poincaré invariants are not given by universal
functions (Examples A.4, A.6, A.8 of Appendix B).

However, Dürr–Kabanov–Okonek prove that when pg(S) = 0, the difference of Poincaré invari-
ants in class β and k − β satisfies a universal formula. Combining their formula with Main
Theorem 1.1 gives an expression for the difference of Pχ ,β(S, τ0(pt)m) and Pχ ,k−β(S, τ0(pt)m). This
is Theorem 1.4 of the introduction and the second application of Main Theorem 1.1.

3.1. Dürr–Kabanov–Okonek’s wall-crossing

We recall the wall-crossing formula for Poincaré invariants [6, Theorem 3.16]. Since we use this for-
mula to establish Theorem 1.4, and for the sake of completeness, we recall Dürr–Kabanov–Okonek’s
interesting argument. Moreover, their results lead to a nice observation about the reduced virtual
cycle for stable pairs, which is of independent interest (Proposition A.1 in Appendix A). The results
and arguments presented in this section come entirely from their paper [6].

The following is contained in [6, Lemma 2.17] and its proof (see also [6, Corollary 3.15]).
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Proposition 3.1 (Dürr–Kabanov–Okonek) Let S be any surface. Suppose that β satisfies the
following conditions:

(i) for any effective L ∈ Picβ(S) with c1(L) = β we have H2(L) = 0 (this is automatic when
pg(S) = 0);

(ii) β(β − k) ≥ 0;
(iii) Hβ and Hk−β are both non-empty.

Then β(β − k) = 0 and χ(OS) = 0 (χ(ØS) = 0 is equivalent to q(S) = 1 when pg(S) = 0).

Proof . The result follows by showing

β(β − k)
2

+ χ(OS) = 0 and χ(OS) ≥ 0.

Let p : Picβ(S)× S → Picβ(S) denote projection and let P be a choice of Poincaré bundle on
Picβ(S)× S.

Condition (i) is equivalent to the statement that the images (Brill–Noether loci) of the two maps
Hk−β → Pick−β(S) ∼= Picβ(S) and Hβ → Picβ(S) are disjoint. In other words, their complements U
and V satisfy Picβ(S) = U ∪ V . Moreover, for any L ∈ Picβ(S), we have H2(L) = 0 when L ∈ U
and H0(L) = 0 when L ∈ V . In other words,

R2p∗P|U = 0, R0p∗P|V = 0.

This implies

rkRp∗P = β(β − k)
2

+ χ(OS) ≤ 0.

Since Hβ and Hk−β are both non-empty (Condition (iii)), S cannot be rational because otherwise
we get a section of KS . Moreover, S cannot be ruled: for F the class of a fibre either β.[F] < 0 in
which case Hβ = ∅ or β.[F] ≥ 0 in which case (k − β).[F] < 0, so Hk−β = ∅. Similarly, S cannot
be the blow-up of a ruled surface. We conclude that the Kodaira dimension of S is ≥ 0. Therefore
χ(OS) ≥ 0 and

β(β − k)
2

+ χ(OS) ≥ 0.

�

Theorem 3.2 (Dürr–Kabanov–Okonek) Let S be a surface with pg(S) = 0. Let P be a choice
of normalized Poincaré bundle on Picβ(S), that is P|Picβ (S)×{pt} ∼= O. Denote projection by p :

Picβ(S)× S → Picβ(S). Then

P+
S (β)− P−

S (β) =
∑

i≥1−χ(β)
si(p!P),

where 1 − χ(β) = q(S)− β(β − k)/2.

Proof . We first note that β satisfies Condition (4) of the introduction if and only if Hk−β = ∅.
Indeed, if β satisfies Condition (4), we clearly have Hk−β = 0. Conversely, Hk−β = P(R2p∗P)
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by [6, Lemma 2.15], so if Hk−β = ∅, we have R2p∗P = 0 and hence β satisfies Condition (4) by
cohomology and base change. Similarly k − β satisfies Condition (4) if and only if Hβ = ∅ (using
Hβ = P(R2p∗P∗(KS)) [6, Lemma 2.15]).

The rest of the proof of [6] runs as follows. If β(β − k)/2 < 0, then the virtual dimension of Hβ

and Hk−β are negative, so the LHS is zero. Moreover, the RHS is zero because of degree reasons
(Picβ(S) has dimension q(S)). For the remainder of the proof assume β(β − k)/2 ≥ 0.

Let P be a choice of Poincaré bundle on Picβ(S)× S and let

p : Picβ(S)× S → Picβ(S)

denote projection. In Appendix A, we describe a construction, which embeds Hβ into a smooth
ambient space in a natural way. For sufficiently ample divisor A ⊂ S define γ := [A] + β and let Q
be a choice of Poincaré bundle on Picγ (S)× S. Again we denote projection by p : Picγ (S)× S →
Picγ (S). By sufficient ampleness of A, the Abel–Jacobi map

AJ : Hγ −→ Picγ (S)

is a projective bundle and Hγ
∼= P(p∗Q). Moreover, we can embed Hβ ↪→ Hγ by adding the divisor

A. There exists a natural sheaf F on Hγ with tautological section cutting out Hβ ↪→ Hγ . Since
pg(S) = 0, the sheaf F is a vector bundle on a Zariski open neighbourhood of Hβ . See Appendix A
for the details. Let r be the rank of F and let h := c1(O(1)) on P(p∗Q). If Hβ �= ∅, then

ι∗[Hβ]vir = cr(F)

on Hγ (Proposition A.1 of Appendix A for n = 0) and

AJ∗(c1(O(C)|Hβ×{pt})i ∩ [Hβ]vir) = AJ∗(cr(F)h
i). (21)

A similar formula holds for [Hk−β ]vir when Hk−β �= ∅. Moreover, by [6, Proposition 2.18] (or [15,
Lemma 4.3])

AJ∗(cr(F)h
i) = si−χ(β)+1(τ≤1p!P), (22)

where χ(β) denotes the holomorphic Euler characteristic of β. Equation (22) also holds when
Hβ = ∅.

If β satisfies Condition (4) (that is, Hk−β = ∅), then F is a vector bundle on Hγ , and si(p!P) =
si(τ≤1p!P). The formula follows from (22) and (21). If k − β satisfies Condition (4) (that is, Hβ =
∅), then the formula follows similarly using Serre duality Rp∗P∗(KS) ∼= (Rp∗P[2])∨.

We are left with the case where neither β nor k − β satisfies Condition (4), that is Hβ and Hk−β
are both non-empty. The wall-crossing formula is equivalent to

∑
i≥1−χ(β)

(si(τ≤1p!P)+ (−1)isi(τ≤1p!P
∗(KS))) =

∑
i≥1−χ(β)

si(p!P).

By Proposition 3.1, β(β − k) ≥ 0 and Hβ , Hk−β are both non-empty implies χ(OS) = 0 and
β(β − k) = 0. Since pg(S) = 0, we have q(S) = 1. Since s1(τ≤1p!P) = c1(R1p∗P)− c1(p∗P), it
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suffices to show
s1(τ≤1p!P

∗(KS)) = c1(R
2p∗P).

Take a locally free resolution [E0 d0→ E1 d1→ E2] of Rp∗P. Then Serre duality Rp∗P∗(KS) ∼=
(Rp∗P[2])∨ implies

s1(τ≤1p!P
∗(KS)) = c1(ker(d0∗))− c1(E

2∗) = c1(E
2)+ c1((cokerd0)∗),

c1(R
2p∗P) = c1(E

2)− c1(im d1) = c1(E
2)+ c1((E

1/ ker d1)∗).

In the proof of Proposition 3.1, we saw that R1p∗P is torsion. Dualizing the short exact sequence

0 → R1p∗P → coker d0 → E1/ ker d1 → 0

shows (cokerd0)∗ ∼= (E1/ ker d1)∗. This proves the desired result. �
Proof of Theorem 1.4. Fix S,β such that pg(S) = 0 and neither β nor k − β satisfies Condition (4) of
the introduction. If β(β − k) < 0, the virtual dimensions of [Hβ]vir and [Hk−β ]vir are zero and we use
Proposition 2.1. Assume β(β − k) ≥ 0. By Proposition 3.1, this implies q(S) = 1 and β(β − k) = 0.
By Proposition 2.1, the invariants are zero when point insertions are present (m > 0). In the case
m = 0, Theorem 1.1 implies

ZP
β(S) = P+

S (β)(q
1/2 + q−1/2)2β

2
,

ZP
k−β(S) = P+

S (k − β)(q1/2 + q−1/2)2(k−β)2 = P−
S (β)(q

1/2 + q−1/2)2(k−β)2 .

The result follows from Dürr–Kabanov–Okonek’s wall-crossing formula Theorem 3.2 and a
Grothendieck–Riemann–Roch computation giving s1(p!P) = 1

2 [2β − k]. �
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Appendix A. Reduced stable pair invariants

Recall from Section 2.1 that the natural embedding

Hilbn(C/Hβ) ↪→ S[n] × Hβ

can be realized as the zero locus of a tautological section of the vector bundle O(C)[n] on S[n] × Hβ (see (5)).
As we discussed, this induces a relative perfect obstruction theory on Hilbn(C/Hβ). We mentioned how the
absolute perfect obstruction theory on Hβ of Dürr–Kabanov–Okonek was used in [14] to construct an absolute
perfect obstruction theory on Hilbn(C/Hβ).

The Hilbert scheme Hβ has another perfect obstruction theory also originally discovered by Dürr et al. [6].
This perfect obstruction theory comes from embedding Hβ in a compact smooth ambient space as follows.
Let A be a sufficiently ample divisor and define γ := [A] + β. (It suffices to pick A such that H1(L(A)) =
H2(L(A)) = 0 for all L ∈ Picβ(S).). Then the Abel–Jacobi map makes Hγ := Hilbγ (S) into a projective bundle
over the Picard variety Picγ (S). In particular, Hγ is smooth. Consider the closed embedding

Hβ ↪→ Hγ , C → A ∪ C.

A point D lies in the image of this map if and only if it contains A, that is,

sD|A = 0 ∈ H0(OA(D)),

where sD denotes the section cutting out D ⊂ S. The family version of this goes as follows. Let D → Hγ be
the universal curve and π : Hγ × S → Hγ projection. Then the sheaf

F := π∗(O(D)|Hγ×A) (A.1)

has a tautological section with zero locus Hβ . Suppose that β satisfies the following condition (Condition (i) of
Proposition 3.1):

H2(L) = 0 for all effective line bundles L with c1(L) = β. (A.2)

Note that this condition is weaker than Condition (4) of the introduction. Then H1(OA(A + C)) = 0 for any
C ∈ Hβ . By semicontinuity and base change, R1π∗(O(D)|Hγ×A) is zero on a Zariski open neighbourhood of
Hβ . Hence F is a vector bundle on a Zariski open neighbourhood of Hβ . This construction gives a perfect
obstruction theory on Hβ which we refer to as the reduced perfect obstruction theory (this terminology was not
used by Dürr–Kabanov–Okonek). We denote the corresponding virtual cycle by [Hβ ]red. The reduced perfect
obstruction theory on Hβ can be combined with the relative perfect obstruction theory on Hilbn(C/Hβ) to give
another absolute perfect obstruction theory on Hilbn(C/Hβ). This was carried out in [15, Appendix]. It turns
out that the resulting virtual cycle [Hilbn(C/Hβ)]red coincides with the one coming from C∗-localization of
reduced stable pair theory of X = KS to the component Hilbn(C/Hβ) of the C∗-fixed locus [15, Appendix].
Note that Condition (A.2) is automatic when pg(S) = 0. In this case, one can show that [Hβ ]red = [Hβ ]vir and
[Hilbn(C/Hβ)]red = [Hilbn(C/Hβ)]vir.
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If β satisfies the stronger condition

H2(L) = 0 for all line bundles L with c1(L) = β,

that is, Condition (4) of the introduction, then R1π∗(O(D)|Hγ×A) = 0 on Hγ and F is a vector bundle on Hγ .
Denote the embedding

Hilbn(C/Hβ) ↪→ S[n] × Hγ
by ι. Similarly to (5), define

O(D − A)[n] := π∗(O(S[n] × D − S[n] × A × Hγ )|Z×Hγ
),

where π : S[n] × S × Hγ → S[n] × Hγ denotes projection. When Condition (4) holds, one can compute the
virtual cycle as follows [14, Theorem A.7]

ι∗[Hilbn(C/Hβ)]red = cr(F).cn(O(D − A)[n]), (A.3)

where r := χ(β(A))− χ(β). Here χ(β) is the holomorphic Euler characteristic of curves in Hβ

2χ(β) = β(β − k)+ 2χ(OS)

and χ(β(A)) is defined similarly. The virtual dimension of [Hilbn(C/Hβ)]red is

v = β(β − k)
2

+ pg(S)+ n,

which is pg(S) larger than the virtual dimension of [Hilbn(C/Hβ)]vir.
When only the weaker Condition (A.2) is satisfied, we make the following somewhat surprising observation,

which is more or less an immediate corollary of [6, Lemma 2.17].

Proposition A.1 Fix S,β such that Condition (A.2) is satisfied, Hβ �= ∅, and β(β − k) ≥ 0. Then F is a
vector bundle on Hγ even though R1π∗(O(D)|Hγ×A) is in general non-zero. Consequently

ι∗[Hilbn(C/Hβ)]red = cr(F).cn(O(D − A)[n])

and its virtual dimension is v = β(β − k)/2 + pg(S)+ n.

Proof . Let p : Picβ(S)× S → Picβ(S) be projection and let P be a choice of Poincaré bundle on
Picβ(S)× S. Let

E := [E0 d0

−→ E1 d1

−→ E2]

be a resolution of Rp∗P by locally free sheaves. Then Dürr–Kabanov–Okonek found out that ker d1 is
locally free (Claim). The reason for Claim is the following. If Hk−β = ∅, then R2p∗P = 0 because Hk−β =
P(R2p∗P) [6, Lemma 2.15]. In this case d1 is surjective and ker d1 is locally free. Suppose Hβ , Hk−β are both
non-empty. Then we saw in Proposition 3.1 and its proof (i.e. [6, Lemma 2.17] and its proof) that

R2p∗P|U = 0, R0p∗P|V = 0,

Picβ(S) = U ∪ V , rkRp∗P = 0,

where U , V are the complements of the images of Hk−β → Pick−β(S) ∼= Picβ(S), Hβ → Picβ(S). We see at
once that R1p∗P is torsion. Moreover, R1p∗P|V is a subsheaf of E1/im d0|V . Also E1/im d0|V is locally free
because (d0)∗|V is surjective. This implies R1p∗P|V is zero. Therefore, ker d1|V = im d0|V = E0|V is locally
free. Since we already know ker d1|U is locally free (because d1|U is surjective), this establishes Claim.

Back to the resolution E of Rp∗P. Take E of the following form. Let [E1 d1

→ E2] be a resolution of
Rp∗PA(A) by locally free sheaves and set E0 := p∗P(A). Note that p∗P(A) is locally free by choice of A.
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We define E by the following diagram of exact triangles:

E �������

���
�
� E0 ������

[E1 d1

→ E2]

∼=
��

Rp∗P �� p∗P(A) �� Rp∗PA(A)

Here PA is short hand for P|Hβ×A. By Claim, p∗PA(A) ∼= ker d1 is locally free. Next, let Q be a choice of
Poincaré bundle on Picγ (S). The Abel–Jacobi map

AJ : Hγ = P(p∗Q) → Picγ (S)

is a projective bundle with tautological bundle O(1). Note that Q(1) ∼= O(D) on Hγ × S, therefore (A.1)

F = π∗O(D|Hγ×A) ∼= AJ∗(p∗QA)(1).

Since Picβ(S) ∼= Picγ (S) sends p∗PA(A) to p∗QA, we indeed see that F is locally free. Finally, the proposition
states that R1π∗(O(D)|Hγ×A) is in general non-zero. This is proved in Remark A.3. �

If S,β satisfies Condition (4), then the invariants Pred
χ ,β(S, τ0(pt)m) are calculated in [15] in the following

sense. Via wedging together and integrating over S, the classes β, k ∈ H2(S, Z), and 1 ∈ H4(S, Z) give elements

[β], [k] ∈ �2H1(S, Z)∗, and [1] ∈ �4H1(S, Z)∗.

Wedging together any combination produces an element

�a[β] ∧�b[k] ∧�c[1] ∈ �2q(S)H1(S, Z)∗ ∼= Z, where a + b + 2c = q(S).

Here the canonical isomorphism with Z comes from choosing any integral basis of H1(S, Z) ⊂ H1(S, R)
compatible with the orientation coming from the complex structure. We then have the following theorem.

Theorem A.2 [15, Theorem 1.2] Fixing q, pg, m, n, there exists a universal function Fq,pg ,m,n(x) with vari-

ables x := (x1, x2, x3, x4, {xabc}a+b+2c=q, t) such that, for any S with q(S) = q, pg(S) = pg, and β ∈ H2(S, Z)
satisfying Condition (4), Pred

χ ,β(S, τ0(pt)m) is equal to

Fq,pg ,m,n(β
2,β.k, k2, c2(S), {�a[β] ∧�b[k] ∧�c[1]}a+b+2c=q, t),

where χ = 1 − h + n and 2h − 2 = β(β + k) is the arithmetic genus of β.

Remark A.3 Suppose the setting is as in Proposition A.1. We now explain why R1π∗(O(D)|Hγ×A) is in
general non-zero. In Proposition A.1, we show that F is a vector bundle, and the reduced virtual cycle is given
by (A.3) when the weaker Condition (A.2) is satisfied. If R1π∗(O(D)|Hγ×A) were zero, then the invariants

Pred
χ ,β(S, τ0(pt)m) satisfy the same universal formula as Theorem A.2 by the calculation of [15]. However, we

show by explicit examples in Appendix B that some invariants Pred
χ ,β(S, τ0(pt)m) do not satisfy universality

(Examples A.4, A.6 and A.8).

Appendix B. Failure of universality: examples

In this appendix, we show that Theorem A.2 does not hold for all stable pair invariants Pred
χ ,β(S, τ0(pt)m),

Pχ ,β(S, τ0(pt)m). By Main Theorem 1.1, it suffices to prove that PS(β) is not given by universal functions.
We show this on elliptic surfaces with pg(S) = 0 using calculations of Dürr et al. [6].
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Let π : S → C be an elliptic fibration over a curve of genus g [2, Chapter V.6]. We are only interested in the
case where S, C are algebraic. The generic fibre F is a smooth elliptic curve and we denote by m1F1, . . ., mrFr

the multiple fibres. The canonical divisor is given by

KS = π∗D +
r∑

i=1

(mi − 1)Fi, (A.4)

for some divisor D of degree 2g − 2 + χ(OS) on C [2, Corollary 12.3]. In this section, we will make frequent
use of logarithmic transformations [2, Chapter V.13]. Given a generic point x ∈ C, a logarithmic transformation
replaces the fibre F over x by a multiple mF, m > 1. The new elliptic fibration π ′ : S′ → C has fibre mF over
x ∈ C and the restrictions π−1(C \ {x}), π ′−1(C \ {x}) are biholomorphic as fibre bundles over C \ {x}. One
should not think of a logarithmic transformation as a sort of birational transformation. The topology of S can
change and S can even become non-algebraic [2, Chapter V.13].

Example A.4 Let P1 ⊂ |O(3)| be a generic pencil of cubics on P2 and let S → P1 be the universal curve. This
is a rational elliptic fibration, so q(S) = pg(S) = 0 and KS = −F (Equation (A.4)). We take β = 6k. Clearly
|6KS | = ∅, so PS(β) = 0. Let S′ be obtained from S by replacing one general fibre F by a double fibre 2F1
and another by a triple fibre 3F2. Then S′ is one of the famous Dolgachev surfaces. (The surfaces S, S′ provide
homeomorphic compact simply connected 4-manifolds. Donaldson famously proved their C∞-structures are
different [5]. One can also establish this by showing their Seiberg–Witten invariants are distinct (see [20]).)
The surface S′ is known to be algebraic satisfying q(S′) = pg(S′) = 0 and KS′ = −F + F1 + 2F2 (Equation
(A.4)). In the Chow group, one has relations 2F1 = 3F2 = F, so k′ = 1

6 [F] in H2(S′, Q). Taking β ′ = 6k′,
we see that |6KS′ | = |F| �= ∅, whereas |KS′ − 6KS′ | = |− 5KS′ | = ∅. Consequently, PS′(k′ − β ′) = 0. Dürr–
Kabanov–Okonek’s wall-crossing formula (Theorem 3.2) states PS′(β ′)− PS′(k′ − β ′) = 1, so PS′(β ′) = 1.
Since the Chern numbers of S,β and S′,β ′ are the same, this is a counter-example to universality. Note that this
does not contradict Theorem A.2. Indeed

H2(O(6KS)) = H0(O(−5KS)) = H0(O(5F)) �= 0,

so β ′ satisfies Condition (4), but β only satisfies the weaker Condition (A.2). �

In order to find more counter-examples to universality, we use the following result [6, Proposition 4.8] (see
also Friedman and Morgan [8, Proposition 4.4]).

Proposition A.5 (Dürr–Kabanov–Okonek) Suppose β ∈ H2(S, Z) satisfies β2 = β.[F] = 0. Then

PS(β) =
∑

d[F]+∑i ai[Fi]=β
d≥0, 0≤ai<mi

(−1)d
(

2g − 2 + χ(OS)

d

)
.

Here we should recall the usual conventions on binomial coefficients. For each b ≥ 0, define(
a
b

)
= 1

b!
a(a − 1) · · · (a − b + 1).

In particular,
( a

b

) = 1 for b = 0,
( a

b

) = 0 for 0 ≤ a < b, and
(−a

b

) = (−1)b
(

a+b−1
b

)
.

Example A.6 Let S be an hyper-elliptic surface and β = d[F] for any d ≥ 0. Note that q(S) = 1 and pg(S) =
0. Proposition A.5 implies PS(β) = 0 for d > 0 and PS(β) = 1 for d = 0. Since β2 = β.k = k2 = c2(S) =
[β] = [k] = 0 for any d ≥ 0, this also provides a counter-example to universality. Although KS is a non-trivial
torsion element of A1(S), its class k = 0 ∈ H2(S, Q). The class β = 0 satisfies Condition (A.2), but not the
stronger Condition (4) since H2(O(KS)) �= 0. Hence, there is no contradiction with Theorem A.2.
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Finally, we apply Proposition A.5 to a special class of logarithmic transformations discussed in [6,
Section 4.2]. They will provide more interesting counter-examples to universality. We recall their construc-
tion. Fix an elliptic curve F = C/� with lattice � = 〈1,ω〉 ⊂ C. We apply logarithmic transformations to
P1 × F → P1 as follows. Fix a point t1 ∈ P1 and an m1-torsion point ζ1 ∈ F, m1 > 0. The logarithmic trans-
formation Lt1(m1, ζ1)(P

1 × F) replaces the fibre over t1 by m1F1. Continuing in this fashion with other distinct
points t2, . . . , tr ∈ P1, one obtains a smooth compact complex surface

S := Lt(m, ζ )(P1 × F),

which is an elliptic fibration over P1. It has generic fibre F and multiple fibres m1F1, . . ., mrFr. The following
proposition [6, Section 4.2] summarizes the relevant geometry.

Proposition A.7 (Dürr–Kabanov–Okonek) Suppose ζ1, . . . , ζr are of the form ζi = (ui + viω)/mi for
integers ui, vi satisfying gcd(mi, ui, vi) = 1.

(1) The surface S is projective if and only if
∑r

i=1 ζi = 0.
(2) Suppose (1) is satisfied. Then H2(S, Z) ∼= Z ⊕ G, where G is the free abelian group generated by

[F], [F1], . . . , [Fr] modulo the relations

m1[F1] = · · · = mr[Fr] = [F],

u1[F1] + · · · + ur[Fr] = 0, v1[F1] + · · · + vr[Fr] = 0.

(3) Suppose (1) is satisfied. Let �′ ⊂ C be the lattice generated by the elements 1,ω, ζ1, . . . , ζr and consider
the Albanese map Alb : S → Alb(S). Then there exists an isomorphism Alb(S) ∼= C/�′ such that the
following diagram commutes:

F
Alb|F �� Alb(S)

∼=
��

C/� �� C/�′

where the bottom map is induced by � ⊂ �′.

The following example is used in [6, Ex. 4.14] to provide a surface S with pg(S) = 0 and PS(k) �= 0. We
use it to give an interesting example where universality fails.

Example A.8 Take ζ1 = (1 + ω)/3, ζ2 = 1
3 , ζ3 = 1

3 , and ζ4 = −(3 + ω)/3. By Proposition A.7, S is
projective, [F] = 3[F1], [F4] = [F1], [F3] = 2[F1] − [F2] and

H2(S, Z) ∼= Z ⊕ 〈[F1], [F2] | 3[F1] = 3[F2]〉Z
∼= Z⊕2 ⊕ Z/3Z.

By Equation (A.4), KS = 2F1 and k = 2
3 [F] ∈ H2(S, Q). We fix β = n[F1] + ε[F2] with n ∈ Z≥0 and ε =

0, 1, 2. The surface S satisfies q(S) = 1 and pg(S) = 0. Clearly, β2 = β.k = k2 = c2(S) = 0. Let E be the
class of the fibre of S → Alb(S). Then Proposition A.7(3) implies E.F = 9. Hence [β] = β.E = 3(n + ε).
By Proposition A.5,

PS(β) =
∑

(3d+a1+2a3+a4)[F1]+(a2−a3)[F2]=n[F1]+ε[F2]
d≥0, ai=0,1,2

(d + 1).

For all (n, ε) �∈ {(0, 0), (1, 0), (2, 0), (0, 1)}, this is equal to

PS(β) = [β] − 3.
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For (n, ε) = (0, 0), (1, 0), (2, 0), (0, 1), we get the sporadic values

PS(β) = 1, 2, 4, 1.

This gives another counter-example to universality.

Remark A.9 One can consider reduced stable pair invariants with other insertion classes such as

Pred
χ ,β(S, τ0(pt)mτ0(γ1) . . . τ0(γ2q(S))), (A.5)

where γ1, . . . , γ2q(S) ∈ H1(S)/torsion is an integral oriented basis [15, Section 3]. The H1-insertions cut Hβ
down to a linear system |L| ⊂ Hβ . Fix any S,β with β satisfying Condition (A.2), but not necessarily the
stronger Condition (4). Suppose Hβ �= ∅ and β(β − k) ≥ 0. Using Proposition A.1, it is easy to see that [15,
Section 3] continues to hold. Therefore (A.5) is given by a universal polynomial in β2, β.k, k2, c2(S) exactly
as in [15, Theorem 1.1]. Note that this does not contradict Example A.4, where |6KS | = ∅. �

Remark A.10 The conditions for the duality formula of Theorem 1.4 are: pg(S) = 0, Hβ , Hk−β are both
non-empty, and β(β − k) ≥ 0. Proposition 3.1 implies β(β − k) = 0, q(S) = 1, and S is not a ruled surface
or a blow-up of a ruled surface. Therefore S is hyper-elliptic, minimal properly elliptic or a blow-up thereof.
Conversely, any hyper-elliptic surface S or blow-up thereof with β = k satisfies the conditions of Theorem 1.4.
These examples are boring because P±

S (k) = 1 (by Example A.6 and the blow-up formula [6, Theorem 3.12]).
More exciting examples are provided by S as in Proposition A.7 and β = k. From Theorem 3.2, it follows
that these surfaces generally have Hk �= ∅. Blowing up these surfaces, one obtains examples with Hk �= ∅ and
k2 �= 0. �
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