
Formal Frameworks for Verifying Normative
Multi-agent Systems

Max Knobbout, Mehdi Dastani, and John-Jules Ch. Meyer(B)

Department of Information and Computing Sciences, Utrecht University,
P.O. Box: 80.089, 3508 TB Utrecht, The Netherlands

{M.Knobbout,J.J.C.Meyer}@uu.nl

Abstract. In this paper we concern ourselves with normative multi-
agent systems, which are multi-agent systems governed by a set of norms.
In these systems, the internals and architecture of the participating
agents may be unknown to us, which disables us to make any strong
assumption on the possible behaviour that these agents may exhibit.
Thus, we cannot simply assume that the agents are aware of the norms,
or that they are compliant with respect to the norms. In other words,
a crucial problem that needs to be solved is how we can verify these
systems if we have no idea whether the agents will be norm-obedient.
This paper investigates two distinct formal frameworks which allow us
to tackle this problem, namely in the first part of this paper we pro-
pose a logic-based framework which uses compliance types, and in the
second part we propose a framework which tackles the problem from a
mechanism-design perspective.

1 Introduction

A lot of work has contributed to the on-going field of (run-time and offline)
verification of programs and systems, such as the verification of object-oriented
programs [2] or the verification of agent programming with declarative goals
[6]. The field we are interested in are normative multi-agent systems, which are
multi-agent systems governed by a set of norms. In the spirit of this work, we
are going to explore frameworks for the verification of normative multi-agent
systems.

A multi-agent system is a computerized system that is composed of multiple
interacting agents within an environment [16]. These systems are generally com-
posed or designed with a specific goal in mind, and depending on the behaviour
of the participating agents these goals may, or may not, be achieved. In order to
regulate, coordinate and control these systems, norms have been proposed, lead-
ing to the field of research called normative multi-agent systems [5]. However,
since the internals and architecture of the participating agents may be unknown
to us, we cannot simply assume that the agents are aware of the norms, or that
they are compliant with respect to the norms. In other words, a crucial problem
that needs to be solved is how we can verify these systems if we have no idea
whether the agents will be norm-obedient. This paper investigates two distinct
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 294–308, 2016.
DOI: 10.1007/978-3-319-30734-3 20

Formal Frameworks for Verifying Normative Multi-agent Systems 295

formal frameworks which allow us to verify these systems. Formal verification is
the act of rigorously proving (or disproving) that the system works as intended.
Formal verification is of crucial importance if we are looking for a guarantee that
the system is correct. Whenever the cost of defection is high, it is of importance
that we know that a system is correct without actually having to run it.

In Sect. 2 we briefly introduce the model we use for normative multi-agent
systems. In Sect. 3 we consider our first framework that uses compliance types.
However, this framework does not take into account why the agents would behave
norm-compliant, we just assume it is the case. In Sect. 4 we consider our second
framework that does take these motives into account. Particularly, we assume
the agents have some preferences (which are possibly unknown to us), and use
solution concepts to predict what the agents will play. This approach tackles
the problem from a mechanism design perspective. For a general overview of
mechanism design we direct the reader to [13]. In Sect. 5 we discuss the paper.

2 Preliminaries

In this section we briefly introduce the model of execution we consider for multi-
agent systems. We consider simple transition systems, consisting of states of the
world, and a complete labelling of joint-actions over the transitions connecting
these states. Moreover, we assume a set of atomic (negative or positive) sanctions,
which represent certain fines and rewards we can give to the agents. They will
play a role later, when we will introduce the notion of state-based norms.

Definition 1 (Multi-agent System). A multi-agent system M is a tuple (Q,
q0, S, Ags, act, δ) such that:

– Q is a finite set of states.
– q0 ∈ Q the initial state.
– S is a finite set of atomic sanction propositions.
– Ags = {1, ..., n} is a finite non-empty set of agents.
– act : Ags × Q �→ N>0 is a function that assigns to each agent and each state

the number of available actions. We identify the actions of agent i ∈ Ags
in state q ∈ Q with the numbers 1 . . . act(i, q). For each state q ∈ Q, a
joint action is a vector α = (α1, . . . , α|Ags|) such that 1 ≤ αi ≤ act(i, q)
for every agent i ∈ Ags. Given a state q ∈ Q, we write Act(q) for the set
{1, . . . , act(1, q)} × · · · × {1, . . . , act(|Ags|, q)} of all possible joint actions.

– δ is a transition function which maps a state q ∈ Q and joint action α =
(α1, . . . , α|Ags|) ∈ Act(q) to the resulting next state δ(q,α) ∈ Q.

This model is thus concurrent, synchronous, decentralized, discrete and deter-
ministic, and is similar to the notion of concurrent game structures found in [1].
Note that for the sake of simplicity, we only consider sanction propositions; in a
more elaborate model states contain facts of the environment, which are assigned
by a valuation function. A state-based norm can be modelled as a function that
assigns sanctions to states. Note that a sanction can be a fine (e.g. pay x amount

296 M. Knobbout et al.

of money), but it can also be a reward. A state can then be considered ‘desired’
if the norm merely assigns positive sanctions (rewards) to this state and can be
considered ‘undesired’ if the norm merely assigns negative sanctions (fines) to
this state, but in general a norm can assign both positive and negative sanc-
tions. Note This approach is closely related to the approach of [15], who defines
‘red’ and ‘green’ states as the desired/undesired states of a system. Formally, we
define them as follows.

Definition 2 (State-Based Norm, Normative Multi-agent System).
Given a multi-agent system M = (Q, q0, S, Ags, act, δ), a state-based norm γ
is a function γ : Q �→ P(S) that maps a state of the multi-agent system to a set
of sanction propositions. We write (M,γ) for the multi-agent system in which
state-based norm γ is implemented and refer to such a tuple as a normative
multi-agent system, and we write ΓM for the set of all possible norms given M .

As usual, a multi-agent system gives rise to a set of possible runs (alterna-
tively computations) that can occur. A run, together with a state-based norm,
gives rise to an infinite sequence of sanction-sets that occurs along such a run.
We call such a sequence an outcome of a normative multi-agent system.

Definition 3 (Runs, Outcomes). Given a multi-agent system M = (Q, q0, S,
Ags, act, δ), a run is defined as an infinite sequence r = q0q1q2 · · · ∈ Qω starting
from initial state q0 such that ∀j ∈ N0 there exists a joint action α ∈ Act(qj)
such that δ(qj ,α) = qj+1. The set of all possible runs over M is denoted by RM .
A run r = q0q1q2 . . . and a state-based norm γ gives rise to an outcome γ(r) =
γ(q0)γ(q1)γ(q2) · · · ∈ P(S)ω. We write OM = {γ(r) | r ∈ RM and γ ∈ ΓM} for
the set of all possible outcomes given multi-agent system M .

Thus, a run r and norm γ give rise to an outcome γ(r). In this system agents
can adopt strategies, which are mappings from finite sequences of states to an
action of the respective agent. A strategy for each agent, referred to as a strategy
profile, gives rise to a unique outcome of the normative multi-agent system.

Definition 4 (Strategies). Given a multi-agent system M = (Q, q0, S, Ags,
act, δ), a strategy for an agent i ∈ Ags is a mapping σi, mapping a finite
sequence of states q0, ..., qk ∈ Q+ to an element of act(i, qk). A strategy profile
σ = (σ1, . . . , σ|Ags|) is a tuple containing a strategy for each agent. A strategy
profile σ, when executed in M , gives rise to a unique run from RM , and we write
run(σ) to denote this run.

Thus, a multi-agent system M , a norm γ and a strategy profile σ give rise to
a unique outcome γ(run(σ)) ∈ OM . Using these concepts, in the next section we
provide a verification framework that allows us to verify normative multi-agent
system using compliance types.

3 Verification Framework Using Compliance Types

Traditional offline verification of a multi-agent system typically takes on the
following form. We are given a normative multi-agent system (M,γ) together

Formal Frameworks for Verifying Normative Multi-agent Systems 297

with a set of desired outcomes Odesired ⊆ OM , the latter depicting the set of
outcomes that are desired by the designer of the system. The objective now is to
verify whether the Odesired is guaranteed, i.e., whether it is the case that for all
runs r ∈ RM we have that γ(r) ∈ Odesired. Such a set Odesired usually is specified
by some temporal property of the system, for example “�¬bad” stating that
always nothing bad happens, or “♦good” stating that somewhere in the future
something good will happen. Linear Temporal Logic (LTL) as proposed in [14]
is a logic that allows assertions of this form. An LTL formula ϕ can be evaluated
along an outcome o ∈ OM (remember that an outcome is an infinite sequence
of sanction-sets). We will write o |= ϕ whenever an outcome o satisfies an LTL
formula ϕ, and assume the reader is familiar with the basics of LTL without
explicitly defining the semantics. Verification then asks whether an LTL formula
ϕ is valid in a normative multi-agent system (M,γ), i.e. whether for all runs
r ∈ RM we have that γ(r) |= ϕ.

Several refinements of LTL have been proposed to extend the possible veri-
fication questions one might ask. For example, Computation Tree Logic (CTL),
as shown in [8], is a logic that allows explicit (universal and existential) quan-
tification over the set of runs within a logical formula. Later, Alternating-time
Temporal Logic (ATL), as introduced in [1], was introduced as an extension of
CTL to reason about the possible runs that agents can enforce. This language
allows even more refined assertions of the form 〈〈i〉〉ϕ, where i ∈ Ags is an agent
and ϕ is a temporal formula (in actuality the language allows to reason about
what coalitions of agents can enforce, but we do not need to go into such detail).
Such a formula can be read as “agent i can enforce ϕ to be true”, and such a
formula can be evaluated along a normative multi-agent system. We say that
M,γ |= 〈〈i〉〉ϕ is true if and only if there exists a strategy σi for agent i such
that for all strategies σ−i it is the case that γ(run((σi, σ−i))) |= ϕ. Observe
that we use notation σ−i to denote the strategies of all the other agents apart
from i, which together with σi gives rise to the strategy profile (σi, σ−i).

Although these logics allow us to express complex temporal properties, in
order to verify normative multi-agent systems an even more refined approach
should arguably be taken. In this work, we do not assume that implementing a
system of norms enforces every agent to be perfectly norm-obedient. However, a
lot of strategy profiles the agents can adopt would be very implausible to occur.
For example, in a smart road multi-agent system, it would be very implausible to
consider a situation where all the agents would neglect all the norms (i.e. drive on
the wrong side of the road). However, it might be plausible to consider that some
of the agents are neglectful with respect to the norms, while the other agents
are obedient. In other words, in order to verify these systems, it is important to
consider more refined quantifications over the possible strategies that can occur.
For example, is it the case that we are guaranteed that an outcome from Odesired

is reached if all of the agents adopt a norm-obedient strategy? And, is this still
the case if one of the agents adopts a strategy which breaks some of the norms?
Related to the approach we have taken in [9], in order to express these kinds of
properties, we introduce the notion of a compliance type.

298 M. Knobbout et al.

Definition 5 (Compliance Types, Compliance Profile). Given a multi-
agent system M giving rise to a set of possible outcomes OM , we define a com-
pliance type as a function τ : OM �→ {0, 1} mapping outcomes to either 0 or
1. We say that an outcome o ∈ OM is τ -compliant if and only if τ(o) = 1. A
compliance profile τ̂ = (τ1, . . . , τ|Ags|) is a tuple containing a compliance type τi

for each agent i.

In other words, different notions of compliance can be constructed, and a
verifier of the system can choose these freely. A compliance type thus relates
state-based norms with compliant behaviour. As an example, suppose we have
a sanction atom v denoting some violation in the system. Then, we could define
a compliance type τ”never v” stating that v should never occur along an outcome
as follows:

τ”never v”(o) =

{
1 if o |= �¬v

0 otherwise.

Depending on our verification needs, more elaborate compliance types can also
be defined, for example “sometimes v”, or “at most n times v”. We can lift the
notion of compliant runs to compliant strategies as follows.

Definition 6 (Compliant Strategies). Given a normative multi-agent sys-
tem (M,γ) and compliance type τ , we say that a strategy σi for agent i is τ -
compliant if and only if for all strategies σ−i it is the case that γ(run((σi, σ−i)))
is τ -compliant.

Intuitively, a strategy σi for agent i is τ -compliant if and only if all the
outcomes that can occur if agent i would play this strategy are τ -compliant.
Since we do not know what the actual compliance behaviour of the agents will
be, we verify the system with respect to a set of possible compliance profiles.
Using these concepts, we can state a version of the verification problem as follows.

Verification Problem 1. The verification problem asks, given a normative
system (M,γ) and a set of compliance profiles T , whether it is the case that
for all τ̂ = (τi, τ−i) ∈ T and for all agents i ∈ Ags there exists a τi-compliant
strategy σifor agent i such that for all τ−i-compliant strategies σ−i it is the case
that:

γ(run((σi, σ−i))) ∈ Odesired

In words, this verification problem asks to verify whether for each compli-
ance type, each agent individually has a strategy aligned with this compliance
type such that for all strategies of the other agents that are aligned with this
compliance type, if the agents would adopt these strategies a desired outcome
is reached. We can extend the language of ATL even further to give a logical
characterization of the verification questions. Let ϕ be a formula characterizing
Odesired and let τ̂ = (τi, τ−i) be a compliance profile. We say that

M,γ |= 〈〈i | τ̂〉〉ϕ
is valid if and only if there exists a τi-compliant strategy σi for agent i such that
for all τ−i-compliant strategies σ−i it is the case that γ(run((σi, σ−i))) |= ϕ

Formal Frameworks for Verifying Normative Multi-agent Systems 299

(again, we do not concern ourselves with a formal definition of the underlying
semantics). Such a logical language allows us to specify whether certain tempo-
ral properties (specified by ϕ) are true if the agents would behave according to
certain compliant strategies (specified by τ̂). We can then logically characterize
our verification task as follows. Given a normative system (M,γ), a set of com-
pliance profiles T and a temporal formula ϕ representing the desired outcomes,
verify whether:

∀i ∈ Ags,∀τ̂ ∈ T : M,γ |= 〈〈i | τ̂〉〉ϕ
This is related to the approach we take in [9]. In the next section we will look
at an example to get some more intuition on how we can use these assertions to
solve the verification problem.

3.1 Example

We consider the multi-agent system M and norm γ depicted in Fig. 1.

∅
q0

{fine} q3{∅}q1

{fine} q2{goal}q4

(go, go)(wait, go)

(go,wait)(go,wait)

(wait, go)

(wait,wait)

(∗, ∗)

(∗, ∗)

Fig. 1. Multi-agent system and norm consisting of two agents each controlling a train
at opposite ends of a tunnel. The agents need to coordinate their actions to not perform
action ‘go’ at the same time.

This system consists of two agents who, starting from initial state q0 (middle
bottom), can either perform a ‘wait’ or ‘go’ action. If they both wait, nothing
happens, and if they both go, a dangerous situation occurs. If one of them goes
and one of them waits, no dangerous situation occurs. The scenario corresponds
to two agents controlling a train at opposite ends of the tunnels, and they must
coordinate their actions to not end up in the tunnel at the same time. We have
the state-based norm γ that assigns a positive sanction goal to state q4, i.e.
γ(q4) = {goal}, a negative sanction fine to state q2 and q3, i.e. γ(q2) = γ(q3) =
{fine}, and does not assign any (positive or negative) sanction to the remaining
states. Note that these sanctions in some way reflect that we want the agents to
choose the computation q0q1(q4)ω, since this is the only computation for which
positive sanction goal holds, while containing no negative sanction fine. It is our
job to predict whether the agents will indeed, under reasonable assumptions,

300 M. Knobbout et al.

choose this computation, using our framework of compliance types. We define
the following compliance types, τobedient and τneglectful using temporal logic:

τobedient(o) =

{
1 if o |= �¬fine
0 otherwise.

And:
τneglectful(o) = 1

Thus, every possible outcome o ∈ OM is τneglectful-compliant, and this compli-
ance type corresponds to a run in which the agents do not care about the norms.
Moreover, given an outcome o ∈ OM , we have that o is τobedient-compliant if and
only if o |= �¬fine. In words, an outcome o is τobedient-compliant if it is never
the case that sanction fine holds somewhere along o. For example, the outcome
γ(q0(q3)ω) is not τobedient-compliant, because:

γ(q0(q3)ω)
|= �¬fine

As another example, the outcome γ((q0)ω) is τobedient-compliant, because:

γ((q0)ω) |= �¬fine

We have for agent 1 that the strategy that always adopts action w at state q0 is
τobedient-compliant, while all the remaining strategies are not τobedient-compliant.
To see why this is the case, observe that if agent 1 would adopt go at state q0,
then agent 2 could for example play action go to end up in state q3, at which
fine is the case. For agent 2, none of the strategies are τobedient-compliant. To see
why this is the case, observe that for every strategy σ2 agent 2 can select, there
exists a strategy σ1 for agent 1 such that γ(run((σ1, σ2))) |= ♦fine. Particularly,
whatever agent 2 plays at initial state q0, whenever agent 1 play go at this state,
we either go to state q2 or state q3, both at which sanction fine is the case.

Now consider the following set T = {(τobedient, τneglectful)} containing a single
compliance profile (τobedient, τneglectful). Let ϕ = ♦goal be an LTL-formula that
characterizes the set of desired runs of the system. Our verification problem now
asks whether the following is the case:

∀i ∈ {1, 2} : M,γ |= 〈〈i | (τobedient, τneglectful)〉〉♦goal

In order to show whether this is the case, observe that there exists a τneglectful-
strategy σ2 for agent 2, particularly the strategy that plays action go at state
q0, such that for all τobedient-strategies σ1 for agent 1, particularly the strategy
mentioned earlier that always plays w at state q0, such that ♦goal is the case.
In formula:

M,γ |= 〈〈2 | (τobedient, τneglectful)〉〉♦goal

However, we do not have that there exists a τobedient-strategy σ1 for agent 1 such
for all τneglectful-strategies σ2 for agent 2 it is the case that ♦goal. To see this, the
only strategy for agent 1 we have to consider is again the one that always plays

Formal Frameworks for Verifying Normative Multi-agent Systems 301

w at state q0. However, agent 2 can also play w forever in state q0, resulting in
outcome γ((q0)ω), for which we have that γ((q0)ω)
|= ♦goal. Thus, in formula,
we have:

M,γ
|= 〈〈1 | (τobedient, τneglectful)〉〉♦goal

In other words, the norm γ does not pass our verification test. In particular, this
example highlights that the strategic capabilities for the agents may differ given
a particular compliance profile.

3.2 Framework Discussion

In this section we have given a basic logic-based framework in which normative
multi-agent systems can be verified. The logic we briefly described allowed us
to assert the verification question, but we have not yet discussed the complexity
of such a logic (or the existence of a proof system). However, in [9] we used a
similar approach of verifying normative systems by introducing an extension of
ATL called an-ATL (abstract normative ATL), but instead of state-based norms
we considered transition-based norms, and the compliance types we considered
were related to the violation of such norms. We showed that verifying an-ATL
formulas remains close to the complexity of ATL, and is thus a suitable candidate
logic not only to express, but also to perform the verification task.

4 Verification Framework Using Mechanism Design

In the previous section, the verification problem we were concerned with was
whether certain (compliant or non-compliant) behaviours of the agents can lead
to desired outcomes of the normative multi-agent system. However, this approach
does not take into account why the agents would behave in such a manner. The
agents might have personal preferences that decide how they will behave, and
our approach in the previous section does not take these motives into account.
Moreover, these preferences might not be known to the designer of the system.
Once we make the assumption that the agents have some preference, and we
are interested in how the agents will behave, we enter the field of game theory.
Game theory, in the broad sense, is the study of strategic decision making in
the presence of (one or more) rational agents, which has its roots in [11]. For an
elaborate introduction to the field of game theory, we direct the reader to [13].

Since we have state-based norms that, once implemented, can change the
environment of the system, these norms can act as a mechanism that can change
the underlying game. If we are interested in whether we can design a norm such
that the predicted outcomes (using game theory) coincides with the desired out-
comes, we enter the field of mechanism design. In mechanism design, a mech-
anism is, in the general sense, an institution, procedure, protocol or game for
generating outcomes. For a general overview of mechanism design we direct the
reader to [13], or for an overview that relates mechanism design to computer
science, we direct the reader to [12]. In this paper, we consider that the state-
based norms are the indirect mechanisms that can change the environment, and

302 M. Knobbout et al.

can thus lead to different outcomes. In order to predict the outcomes that will
occur, we need to have some notion of what the agents know and what the
agents value, which is referred to as an agent type. Note however, that a mecha-
nism designer might not know the true types of the agents. In this paper we are
not concerned with knowledge of the agents, i.e., we will just assume the agents
have complete and perfect knowledge of the system and participating agents.
Thus, an agent type is simply a preference over outcomes of the system, which
we define as follows.

Definition 7 (Preference). Given a multi-agent system M , a preference of an
agent i ∈ Ags, denoted by �i, is a complete reflexive transitive binary relation
over outcomes OM . If for two outcomes o, o′ ∈ OM it holds that o �i o′ and
o′ �i o, we write o ∼i o′, and when o �i o′ and o′
�i o, we write o �i o′. A
preference profile �= (�1, . . . ,�|Ags|) consists of a preference of each agent.

The reading of o �i o′ should be that agent i prefers outcome o at least as
much as outcome o′. Thus, given a norm γ and two runs r and r′ of the system,
agent i prefers r at least as much as r′ whenever γ(r) �i γ(r′). It is thus already
apparent that norms can influence the runs that can occur by making some runs
more attractive than other runs for an agent. We can use the preferences to
predict the outcomes that will occur, and we can derive these by using concepts
from game theory. Whenever we consider a certain type, in order to make a final
prediction of the outcomes that will be achieved, we need certain rules that tell
us which outcomes will be rationally optimal. In game theory, these formal rules
are called the solution concepts that can be used for making these predictions. A
multitude of these solution concepts exist, but the one we consider in this paper
is that of a Nash Equilibrium, see e.g. [13].

Definition 8 (Nash Equilibrium). Given a multi-agent system M , a norm
γ, a preference profile � and a strategy profile σ = (σ1, . . . , σ|Ags|), we say
that σ constitutes a Nash Equilibrium in M if and only if for all i ∈ Ags and
strategies σ′

i, it holds that γ(run((σi, σ−i))) �i γ(run((σ′
i, σ−i))). We define

NEγ(�) = {γ(run(σ)) | σconstitutes a Nash Equilibrium in M} ⊆ OM as the
set of all NE outcomes given M , γ and �.

In words, a strategy profile constitutes a Nash Equilibrium if and only if no
agent individually can gain something from deviating from their own respective
strategy. Again, for a more detailed introduction to this concept, we refer the
reader to [13]. The desired outcomes are the outcomes we want to have occur.
In the context of normative systems, the desired outcomes are the ones that
maintain order in society. For example, a typical criterion one may adopt in
an utilitarian society is that wrong-doers should be punished. Because we do
not know the true incentives of the agents (remember, the preferences of the
agents might be unknown to us), we consider a set of possible preference profiles
Θ. A social choice rule takes a possible preference profile, and combines these
individual preference of the agents to give a set of desired outcomes of the system.
In this paper, we assume that such a function is already specified to us, and are

Formal Frameworks for Verifying Normative Multi-agent Systems 303

not concerned with whether such a rule can be specified given the criteria that
we set on such a function (see for example Arrow’s impossibility theorem [3]).
This is the domain of social choice theory, which concerns itself with combining
individual preference in order to reach social welfare [4].

Definition 9 (Social Choice Rule). Given a multi-agent system M and a
set of possible preference profiles Θ, a social choice rule f : Θ �→ P(OM) is a
function that maps a preference profile � ∈ Θ to a set of outcomes f(�) ⊆ OM .

Thus, given a social-choice rule f and preference profile �, we say that f(�)
are the set of social optimal outcome, which are the outcomes we want to have
occur. Because mechanism designers do not know which outcomes are optimal
beforehand (the preferences are initially unknown to us), a more cautious app-
roach has to be employed. This information must slowly be generated as the
system is executed. The problem here is the fact that the agents in the system
may have their own objectives, and may try to behave in a way that hides the
truth. A typical goal of a mechanism designer is thus to develop mechanisms that
are incentive compatible, meaning that the optimal strategy of the participants is
to reveal the truth. An example of such a truth-revealing mechanism is Solomon’s
dilemma, which we will discuss in the next section. Formally, using such a social
choice rule, mechanism design defines the following implementability relation.

Definition 10 (Nash Implementability). Given a multi-agent system M
and set of possible preference profiles Θ, we say that a norm γ NE-implements
social choice rule f if and only if for all � ∈ Θ it holds that NEγ(�) ⊆ f(�).

Note that in actuality, the above relation defines that of weak implementation.
Weak implementation demands that all the predicted outcomes NEγ(�) are
desired, i.e. are in the set f(�). In full implementation, we additionally demand
that all desired outcomes are predicted, i.e. NEγ(�) = f(�) for all � ∈ Θ.
However, when considering state-based norms, demanding full implementation
might be too strong, since usually a single state-based norm can only generate a
small subset of the possible outcomes. The verification problem we consider in
this section can now be stated as follows.

Verification Problem 2. The verification problem asks, given a normative
system (M,γ), a set of possible preference profiles Θ and a social choice rule f ,
whether it is the case that γ NE-implements social choice rule f .

Let us again look at an example to get some more intuition for the various
complex notions introduced in this section.

4.1 Example

Solomon’s dilemma is often used in literature to describe the idea of implemen-
tation theory and mechanism design. In this dilemma two women come before
him, both claiming to be the mother of a child, and Solomon has to find out who
is lying. In this paper we consider the version discussed in [10] where Solomon is

304 M. Knobbout et al.

able to give the mothers a fine. Let us first informally explain the problem and
its relation to mechanism design. Solomon (the mechanism designer) initially
does not know who the real mother is. Based on this he considers two preference
profiles, one preference profile that represents the case in which mother 1 would
be the real mother, and one preference profile that represents the case in which
mother 2 is the real mother (how he constructs these possible preference profiles
will be discussed below). But, as we already mentioned, Solomon does not know
which of these preference profiles is the true one. Through a state-based norm,
he can give the mothers fines in some states, and he can assign the child to one
of the mothers in a state. It is clear that if mother 1 is the true mother, then the
optimal outcome would be that mother 1 eventually gets the child forever, and
that both mothers never receive any fine. If mother 2 is the true mother, then
the optimal outcome would be that mother 2 eventually gets the child forever,
and again that both mothers never receive any fine. This example makes it clear
why a social choice rule is dependent on the preference profile: since we do not
know who the real mother is, we cannot simply say that there exists one unique
optimal outcome. It is Solomon’s job to construct a norm such that the child is
eventually given to the true mother forever without any fines given. We assume
that Solomon can give a small fine to mother 1 (represented by sanction propo-
sition fine1) and a big fine to mother 2 (represented by sanction proposition
fine2). Note that fine2 is tweaked precisely by Solomon such that this sanction
is low enough that if mother 2 would be the real mother, she would care more
about the child, while if mother 2 would not be the real mother, she would care
more about the sanction. Of course this requires some accurate and knowledge-
able estimations by Solomon, but we assume that he is wise enough to do this.
Moreover, since the situation is symmetric, Solomon could have chosen fine1 and
fine2 the other way around, but this is beyond the point of example. If childi

represents that the child is given to mother i, and if � represents the preference
profile in which mother 1 is the true mother and �′ the preference profile in
which mother 2 is the real mother, then it is Solomon’s job to implement the
following social choice rule f :

f(�) = {o ∈ OM | o |= ♦�(child1 ∧ ¬child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2)}
f(�′) = {o ∈ OM | o |= ♦�(¬child1 ∧ child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2)}

Solomon assumes that mother 1 always prefers any outcome over any other
outcome if in that outcome she receives the child forever. However, if she does not
receive the child forever, Solomon assumes that mother 1 prefers any outcome
over any other outcome if this outcome does not contain fine fine1. In order
to represent such a preference, we can use the idea presented in [7] of using
a preference order over LTL formulas. This preference can then formally be
described as follows:

(♦�child1) �1 (�¬fine1) �1 �
Such a list gives rise to a preference over outcomes in multi-agent system as
follows. Given two arbitrary outcomes o, o′ ∈ OM , we determine from left to

Formal Frameworks for Verifying Normative Multi-agent Systems 305

right the first LTL formula that satisfies the outcome. Let us assume that for
o this is the formula �¬fine1 (thus we have that o
|= ♦�child1) and o′ this is
the formula � (thus we have that o′
|= ♦�child1 and o′
|= �¬fine1). Then,
since (�¬fine1) �1 �, this would imply that o �1 o′. If two outcomes o and o′

satisfy the same formula, we say that o ∼1 o′. If the last formula in such a list is
�, we know that such a list gives rise to a complete preference over all possible
outcomes since this implies that for every possible outcome we can find at least
one formula that is satisfied. This particular preference exactly states what we
mentioned earlier: mother 1 always prefers any outcome over any other outcome
if in that outcome she receives the child forever. However, if this is not the case,
mother 1 prefers any outcome over any other outcome if this outcome does not
contain fine fine1.

For mother 2, king Solomon is in doubt about the following two preferences:

(♦�(child2 ∧ ¬fine2)) �2 (�¬fine2) �2 �
(♦�child2) �′

2 (�¬fine2) �′
2 �

The first preference �2 states that mother 2 prefers an outcome over any other
outcome if she is assigned the child without a fine given. If this is not the case, she
would rather not receive a fine. Moreover, she does not care about the remaining
outcomes. The second preference �′

2 states that mother 2 prefers an outcome in
which she is assigned the child, regardless of whether this outcome contains a fine
or not, while the rest remains the same. In other words, he either considers that
mother 2 cares more about the fine than the child, or more about the child than the
fine; the first case represents the case in which mother 1 is the real mother, while
the second case represents the case in which mother 2 is the real mother. Thus
preference profile �= (�1,�2) represents the profile in which mother 1 is the
real mother, and preference profile �′ = (�1,�′

2) represents the profile in which
mother 2 is the real mother.

Now we are ready to give the solution to the problem, which is drawn in Fig. 2.
Consider the multi-agent system M and norm γ depicted here. This system
consists of two agents who, starting from initial state q0 (below left), can claim to

{child2, fine1, fine2}
q4

∅
q0

∅
q1

{child1} q3{child2}q2

(mine, ∗)

(hers, ∗) (∗, agree)

(∗, disagree)

(∗, ∗) (∗, ∗)

(∗, ∗)

Fig. 2. Multi-agent system and norm consisting of two agents claiming whether they
are the real mother.

306 M. Knobbout et al.

be the real mother or not. Mother 1 can claim in q0 that the child either belongs
to her (action ‘mine’), or that it belongs to the other mother (action ‘hers’). If
she performs action ‘hers’, mother 2 can either agree with this (action ‘agree’)
or disagree with this (action ‘disagree’). As can be seen in the figure, Solomon
has implemented the state-based norm γ that assigns the child to mother 2
in q2, i.e. γ(q2) = {child2}, assigns the child to mother 1 in q3, i.e. γ(q3) =
{child1}, and assigns the child to mother 2 while giving a small fine to mother
1 (sanction fine1) and a big fine to mother 2 (sanction fine2) in state q4, i.e.
γ(q4) = {child2,fine1,fine2}. But, is it indeed true that for Θ = {�,�′} we have
that γ NE-implements social choice rule f? We will show that this is indeed the
case in the remainder of this section.

Observe that in the normative multi-agent system, there exists only two
possible strategies for each agent, which we refer to as σhers and σmine for mother
1, and σagree and σdisagree for mother 2. The corresponding outcomes are the
following:

γ σagree σdisagree

σhers γ(q0(q2)
ω) γ(q0(q2)

ω)

σmine γ(q0q1(q3)
ω) γ(q0q1(q4)

ω)

Consider preference profile (�1,�2). We have that (σmine, σagree) consti-
tutes a Nash Equilibrium. To see why, observe that γ(run((σmine, σagree))) �1

γ(run((σhers, σagree))) because:

γ(run((σmine, σagree))) |= ♦�child1,and,
γ(run((σhers, σagree))) |= ¬♦�child1

Moreover, observe that γ(run((σmine, σagree))) �2 γ(run((σmine, σdisagree)))
because:

γ(run((σmine, σagree))) |= ¬♦�(child2 ∧ ¬fine2) ∧ �¬fine2,and,
γ(run((σmine, σdisagree))) |= ¬♦�(child2 ∧ ¬fine2) ∧ ¬�¬fine2

It is also not hard to verify that (σmine, σagree) is the only NE strategy profile,
implying that NEγ((�1,�2)) = {γ(run((σmine, σagree)))}. Now consider strategy
profile (�1,�′

2). We have that (σhers, σdisagree) constitutes a Nash Equilibrium.
To see why, observe that γ(run((σhers, σdisagree))) �1 γ(run((σmine, σdisagree)))
because:

γ(run((σhers, σdisagree))) |= ¬♦�child1 ∧ �¬fine1,and,
γ(run((σmine, σdisagree))) |= ¬♦�child1 ∧ ¬�¬fine1

Moreover, observe that γ(run((σhers, σdisagree))) ∼′
2 γ(run((σhers, σagree)))

because:
γ(run((σhers, σdisagree))) |= ♦�(child2 ∧ ¬fine2),and,

γ(run((σhers, σagree))) |= ♦�(child2 ∧ ¬fine2)

Formal Frameworks for Verifying Normative Multi-agent Systems 307

It is again also not hard to verify that (σhers, σdisagree) is the only NE strat-
egy profile, implying that NEγ((�1,�′

2)) = {γ(run((σhers, σdisagree)))}. Since we
have that:

γ(run((σmine, σagree))) |= ♦�(child1 ∧ ¬child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2),and,
γ(run((σhers, σdisagree))) |= ♦�(¬child1 ∧ child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2)

We can conclude that NEγ(�) ⊆ f(�′) and NEγ(�′) ⊆ f(�′) as needed. In other
words, we have verified that it is indeed the case that, given possible preference
profiles Θ = {�,�′},we have that γ NE-implements social choice rule f : the
normative multi-agent system ensures that the child is eventually given to the
real mother forever without any fines given.

4.2 Framework Discussion

In this section, we discussed how we can frame the verification problem of an
multi-agent system using concepts from mechanism design. This idea is related to
the work in [7], in which they call this “normative mechanism design”. We believe
that this field of research is an exciting new way in which normative systems
can be studied: norms are viewed as a mechanism constituting a game, allowing
us to state the verification problems (in the context of formal verification) as
implementation problems (in the context of mechanism design).

5 Discussion

In this paper we have presented two distinct verification frameworks in which
the correctness of normative multi-agent systems can be (dis)proven. In the first
part we used compliance types, and showed how properties of a system can be
expressed (and to marginal extent proven) using these types. In the second part
we used mechanism design, and showed how implementability questions can be
expressed (and to a marginal extend proven). Although both these approaches
use norms as a mechanism to steer agents away (or towards) certain outcomes
of the system, the main difference is the following:

– With compliance types, we assume certain compliance behaviour of the
agents with respect to the norm. We do not know what the actual com-
pliance behaviour of the agents will be, so we verify the system with respect
to a set of possible compliance profiles.

– With mechanism design, we assume a certain preference relation over out-
comes of the system. We do not know what the true preference of the agents
are, so we verify the system with respect to a social choice rule, a solution
concept and set of possible preference profiles.

These different approaches offer a generic starting point for which the verifi-
cation task of normative multi-agent systems can be tackled. As we already
mentioned in the introduction, normative systems are making their way into our

308 M. Knobbout et al.

everyday life. Formal verification is of crucial importance if we are looking for
a guarantee that the system is correct. Whenever the cost of defection is high,
it is of importance that we know that a system is correct without actually hav-
ing to run it. Verification gives us this guarantee. Development of such methods
and tools play an important role in the advancement of normative multi-agent
systems and Artificial Intelligence in general.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Apt, K.R., de Boer, F.S., Olderog, E., de Gouw, S.: Verification of object-oriented
programs: a transformational approach. J. Comput. Syst. Sci. 78(3), 823–852
(2012)

3. Arrow, K.J.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4),
328–346 (1950)

4. Arrow, K.J.: Social Choice and Individual Values. Yale University Press, New
Haven (1951)

5. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent
systems. Comput. Math. Organ. Theor. 12(2–3), 71–79 (2006)

6. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.J.C.: A verification
framework for agent programming with declarative goals. J. Appl. Logic 5(2),
277–302 (2007)

7. Bulling, N., Dastani, M.: Verifying normative behaviour via normative mechanism
design. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI 2011), pp. 103–108 (2011)

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs Workshop, pp. 52–71
(1982)

9. Knobbout, M., Dastani, M.: Reasoning under compliance assumptions in normative
multiagent systems. In: Proceedings of the 11th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 331–340 (2012)

10. Moore, J.: Implementation, contracts and renegotiation in environments with com-
plete information. Adv. Econ. Theor 1, 182–282 (1992)

11. Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton University Press, Princeton (1944)

12. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan,
N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory,
pp. 209–242. Cambridge University Press, New York (2007)

13. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

14. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57 (1977)

15. Sergot, M.J.: Action and agency in norm-governed multi-agent systems. In: Artikis,
A., O’Hare, G.M.P., Stathis, K., Vouros, G. (eds.) ESAW 2007. LNCS (LNAI), vol.
4995, pp. 1–54. Springer, Heidelberg (2008)

16. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley
Publishing, Chichester (2009)

	Formal Frameworks for Verifying Normative Multi-agent Systems
	1 Introduction
	2 Preliminaries
	3 Verification Framework Using Compliance Types
	3.1 Example
	3.2 Framework Discussion

	4 Verification Framework Using Mechanism Design
	4.1 Example
	4.2 Framework Discussion

	5 Discussion
	References

