
CÒIR: Verifying Normative Specifications
of Complex Systems

Luca Gasparini1(B), Timothy J. Norman1, Martin J. Kollingbaum1,
Liang Chen1, and John-Jules C. Meyer2

1 Department of Computing Science, University of Aberdeen, Aberdeen, UK
{l.gasparini,t.j.norman,m.j.kollingbaum}@abdn.ac.uk

2 Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
j.j.c.meyer@uu.nl

Abstract. Existing approaches for the verification of normative sys-
tems consider limited representations of norms, often neglecting collec-
tive imperatives, deadlines and contrary-to-duty obligations. In order to
capture the requirements of real-world scenarios, these structures are
important. In this paper we propose methods for the specification and
formal verification of complex normative systems that include contrary-
to-duty, collective and event-driven imperatives with deadlines. We pro-
pose an operational syntax and semantics for the specification of such
systems. Using Maude and its linear temporal logic model checker, we
show how important properties can be verified for such systems, and
provide some experimental results for both bounded and unbounded
verification.

Keywords: Model checking · Normative systems · Collective
imperatives

1 Introduction

The specification and verification of properties of normative systems is an impor-
tant consideration for the design of complex distributed systems [1,6]. Motivated
by the need to capture the requirements of real world scenarios, research on the
specification of normative systems has explored conditional [18], event-governed
(e.g. activation/expiration condition) norms [16], collective imperatives [9,14],
imperatives with deadlines [7], and contrary-to-duty (CTD) norms [18]. A fur-
ther focus has explored mechanisms for the analysis of systems of norms for
the purpose of identifying and resolving conflicts between norms and plans [19].
Although such analyses are of benefit, for safety critical systems it is important
to analyse the interactions between normative constraints and agents’ actions
as a system evolves. For these reasons the use of model checking [3] techniques
to analyse liveness and safety properties of norm-governed systems has been
explored [1,6,8]. To date, however, this research has focussed on restricted rep-
resentations of norms such as labelling states or transitions as compliant/non-
compliant. Ågotnes et al. [1], for example, study the complexity of this model
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 134–153, 2016.
DOI: 10.1007/978-3-319-42691-4 8

CÒIR: Verifying Normative Specifications of Complex Systems 135

checking problem for different robustness-related properties; e.g. whether a cer-
tain property is guaranteed in the event of a subset of agents violating a norm.

The focus of this paper is on how to efficiently apply model checking to
analyse properties of normative systems specifications with richer representations
of norms. In particular, we consider event-governed conditional norms, deadlines
for the fulfilment of obligations, and contrary to duty and group imperatives. The
contributions we claim are as follows: (i) We propose a norm specification lan-
guage that is sufficiently expressive to capture all the features discussed above,
namely còir 1; (ii) a Structural Operational Semantics (SOS) [15] for a mon-
itoring component that, given a description of the environment, keeps track of
activation, expiration, fulfilment, and violations of norms; and (iii) a realisation
of this component using the Maude [4] rewriting logic framework, which allows
us to perform formal analysis of normative systems specifications. A particular
challenge is that representing time explicitly (in order to reason about temporal
deadlines) makes the problem undecidable. For these reasons we explore both
the use of bounded model checking and model abstraction to obtain a finite
Kripke structure for unbounded model checking. We present some results of
both these approaches in an example domain that motivates the requirements
for us considering such a rich representation of norms.

2 Motivating Example

Consider a coalition of agents of the sea-guard, consisting of a set of Unmanned
aerial vehicles (UAVs), helicopters, and boats. Their goal is to monitor and inter-
cept unauthorized boats trying to access a restricted area. The norms that guide
the behaviour of the coalition are: (1) At any moment at least one member of
the coalition must monitor the area. Moreover, we prefer having UAVs moni-
toring the area over helicopters. We assume that only helicopters and UAVs are
capable of monitoring. (2) Whenever an unauthorized boat enters the area, a
member of the coalition must intercept it before a certain deadline expires. (3) If
no one intercepts the boat, then at least one member of the coalition must send a
report to head-quarters before a certain deadline expires. These are all examples
of collective imperatives: they require at least one member of the coalition to
act. Norm 3 is also a CTD obligation that is activated in the event of a violation
of the obligation 2. Moreover, norms 2 and 3 require the agents to perform an
action before a certain deadline (a liveness property), while norm 1 requires that
at any given moment someone is monitoring the area (a safety property).

3 CÒIR Norm Specification

We now introduce a formalism for representing norms that satisfies our require-
ments, which we call còir. We allow for the definition of obligations with dead-
lines and prohibitions and we assume that everything that is not prohibited is

1 còir is Scottish Gaelic for obligation.

136 L. Gasparini et al.

permitted. Compliance with norms is evaluated against a knowledge base KB
that is dynamically updated to represent the environment and the observable
properties of the agents acting within it. We rely on the closed-world assump-
tion, which we believe to be reasonable in a verification setting. We include
the description of previous violations in the knowledge base. These can then be
used to activate CTD norms. An issue that has been discussed, for example,
by Dignum et al. [7] is whether an obligation with a deadline should persist or
be deactivated after a violation; i.e. after the deadline has expired without the
obligation being fulfilled. còir supports the specification of either of these alter-
natives. By default obligations do not expire when violated, but, thanks to the
fact that violations are represented in KB , it is always possible to specify the
expiration condition as being triggered by a violation of the current instance.

3.1 Syntax

A norm ndi is defined as a tuple 〈idi,modi, acti, expi, goali, ddli〉 where: idi is a
unique identifier; modi ∈ {O,F} specifies whether the norm is an obligation with
deadline or a prohibition; acti (activation condition) describes a pattern that,
when matched in KB , causes a norm instance to be detached; goali represents
the situation that needs to be brought about (for an obligation) or avoided (for
a prohibition); expi (expiration condition) is a condition that, when met, causes
the expiration of the instance; and the deadline for the fulfilment of the norm
(ddli) can be temporal or symbolic and is defined only for obligations.

Figure 1 shows the EBNF grammar of the operational language used to rep-
resent the components of a norm specification. functor and strTerm are iden-
tified by strings that start with a letter, numTerm by numbers and varTerm by
strings that start with a ? character. ?actTime, ?violTime, ?tick, ?this-id,
?violated and ?flag are reserved terms. The description of the environment,
KB , consists of a set of ground predicates; i.e. predicates with no varTerm. Intu-
itively, a boolExpr represents a condition that is evaluated against KB returning
a boolean result, while a formula is a pattern with a set of variables that is eval-
uated by returning the set of substitutions that make the pattern match a subset
of KB . In a norm description, acti is represented by a formula, while expi, goali,
and ddli are boolExprs.

The formula VIOLATION-OF(n, s) is matched when there is a violation of
norm n and is used for the activation of CTD obligations. The meaning of the
parameter s will be explained in Sect. 4. The meanings of EQUALS, EXISTS and
the usual boolean operators are intuitive. TEMPORAL(n) is evaluated to true if a
temporal deadline has expired, while VIOLATED can be used in expi and returns
true if the instance being evaluated has been violated. COUNT (v IN {f}) > n
evaluates to true if the number of different assignments of the variable v that
matches the pattern f is higher than the number n.

CÒIR: Verifying Normative Specifications of Complex Systems 137

Fig. 1. EBNF grammar for the COIR language.

3.2 Representing Collective Obligations

We now discuss how our formalism allows us to represent different types of
collective obligations [14]. In contrast to Tinnemeier et al. [17], we allow goali,
expi, and ddli to include variables that have not been bound at activation time.
Through the use of the patterns EXISTS{fi} and NOT EXISTS{fi} we are able to
express existential and universal quantification on these variables. Inspired by
Norman and Reed [14] we discuss some common patterns of collective obligations
and show how they can be expressed in our language (See [9,14] for discussions
of responsibility in collective obligations). In order to ease the presentation, we
assume that agents are organized in groups, group membership is represented
by predicates of the type memberOf(agent,group), and an agent’s performance
of an action by perform(agent,action).

Joint distributive obligations are obligations where all the members of group
g are responsible for all the members of the group performing the action a. This
can be expressed by an obligation where:

acti = memberOf(?add,g)

goali =NOT EXISTS {IN {memberOf(?ag,g)}
FILTER NOT EXISTS {perform(?ag,a)}}

goali is met when there is no member of g that has not performed a; i.e. when
all the members of g have performed a. As a result, if any of the members of
the group do not perform the task, all the members will be responsible for the
violation. Alternatively we could consider the group as an entity to be responsible
for the fulfilment of the obligation by specifying the activation condition as:

acti = BIND(?add,g)

138 L. Gasparini et al.

and referring to the group as ?add in the goal. Note that if a group has no
members, such an obligation would be trivially fulfilled. It might be appropriate
to add the constraint EXISTS{memberOf(?add,g)} in acti or in goali.

Joint collective obligations specify that all the members of a group g are
responsible for at least one member of the group performing the action a.

acti = memberOf(?add,g)

goali = EXISTS{ memberOf(?ag,g) /\ perform(?ag,a)}

4 CÒIR Semantics

We define the semantics of còir through a Structural Operational Semantics
(SOS) [15], a framework for the description of the semantics of programming
and specification languages. SOS consists of a set of transition rules that gener-
ate a transition system whose states are called configurations. Transition rules
are of the form P

C→C′ meaning that, whenever P holds, a transition from the
configuration C to C ′ is applicable. We use SOS to describe how the active norm
instances and violations are updated every time we detect a change in KB .

In formalising these semantics we assume two functions that evaluate
formula and boolExpr; these will be summarised below. We define a substi-
tution θj ∈ Θ as a set of assignments [v/c] where c is a constTerm and v a
varTerm. Formulae are evaluated by means of a function match : 2P × Q → 2Θ,
where P is the set of all predicates, Q the set of all formulae, and Θ the set of
all substitutions. Intuitively, match(KB , f) returns all the substitutions θi such
that f · θi is entailed by KB . Boolean expressions (boolExpr) are evaluated by
means of a function eval : 2P ×E ×Θ → bool where E is the set of all boolExpr
and bool ∈ { true, false }. A norm instance [idi, θj , at] is detached at time
at for each substitution θj ∈ match(KB , acti). Then eval(KB , e, θj) is used to
evaluate expi, goali, and ddli. The addressee of the norm, identified by the value
assigned to ?add in θj , is responsible for complying with the obligation (reaching
a state where eval(KB , goali, θj) = true before the deadline) or with the pro-
hibition (avoiding states where eval(KB , goali, θj) = true until the prohibition
expires).

A further issue to address prior to detailing the transition rules of our opera-
tional semantics is that of “duplicate activations”. Consider a simplified version
of norm 3 from Sect. 2. We specify its activation condition as follows:

type(?add,coalition) /\ type(?boat,unBoat)
/\ type(?area,rArea) /\ inArea(?boat,?area)

In other words, an instance of the obligation to send a report should be detached
when an unauthorized boat is in the restricted area. Intuitively, if the same boat
remains in the restricted area for more than one consecutive instant of time,

CÒIR: Verifying Normative Specifications of Complex Systems 139

we do not want the coalition members to send more than one report. However,
if the boat exits and then re-enters the area, we would expect the coalition
to be obliged to send another report. Formally, if we denote by KB t the state
of the knowledge base at time t, we capture this distinction by activating an
instance of a norm ndi, associated with a substitution θj , at an instant of time
t whenever θj ∈ match(KB t, acti) and θj �∈ match(KB t−1, acti); i.e. when we
find a substitution such that acti goes from “unmatched” to “matched” in two
subsequent instants of time. To do that we keep record of the instances [idi, θj , at]
such that the acti was matched in the previous instant of time.

Following Dennis et al. [6], in order to enforce an order of execution among
the transitions of the operational semantics, we organize the reasoning cycle in
three stages: (A) Deactivate instances for which the expiration condition holds
or the obligation has been fulfilled; (B) Check for violations of active obligations
(if the deadline has passed, but the goal has not been achieved) and prohibitions
(if the state to avoid is achieved). (C) Check for the activation of new norms
and update the list of previously matched instances.

In the following we denote by a1 : a2 : . . . a list of elements and we use ε
to indicate the end of a list. Moreover, we assume that KB contains a predicate
cT(n), where n is a numTerm that represents the current time of the system and
we denote by time(KB) the value n such that cT(n) ∈ KB . A configuration
Conf is defined as 〈KB ,Δ, I,Π, Φ,Σ, r〉 where KB is the current state of the
knowledge base, Δ is a list of norm descriptions, I is the list of active norm
instances and Π the list of previously matched instances, which, as discussed
above, is needed to avoid the problem of multiple activations. Φ is the set of
violations detected in the current reasoning cycle2, and a violation is represented
as v = [idi, θ, t], where t corresponds to the violation time. Σ is the stage of the
computation and r is a flag that is set initially to false, and changed to true if
we need to loop again through the reasoning cycle. This is necessary because,
whenever we activate a new instance (stage C), we need to check whether this
is instantly fulfilled or violated (A and B). Moreover, detecting a violation (B)
could trigger an expiration or an activation (A and C).

The initial configuration is 〈KB0,Δ, ε, ε, ε,A, false〉, where KB0 describes
the initial state and Δ the normative specification. We now illustrate the key
rules of the operational semantics. For each rule we include only the components
of the configuration that are involved in it.

Rule R1 applies when the first instance in I is such that its expiration con-
dition holds. In this case we simply remove the instance from the list. Similarly
another rule (not included) is defined for the case of a fulfilled obligation. Rule
R2 accounts for the case where the first instance in the list is a prohibition and
the expiration condition is not met. In this case we move the instance to the
end of the list, after the ε symbol. We write a similar rule (not included) for an
obligation instance that it is neither fulfilled nor expired. Rule R3 represents the
end of stage A, which occurs when the first instance is ε.

2 We refer to the whole updating procedure as a reasoning cycle, while A, B and C
are the stages of a cycle.

140 L. Gasparini et al.

〈KB ,Δ, [idi, θj , at] : I,A〉, ndi ∈ Δ,
eval(KB , expi, θj) = true

〈KB ,Δ, [idi, θj , at] : I,A〉 → 〈KB ,Δ, I,A〉
(R1)

ndi ∈ Δ, modi = F, eval(KB , expi, θj) = false
〈KB ,Δ, [idi, θj , at] : I,A〉 → 〈KB ,Δ, I : [idi, θj , at],A〉 (R2)

true
〈ε : I,A〉 → 〈I : ε,B〉 (R3)

Rule R4 detects violated obligations; i.e. obligations whose deadline has expired
before the goal is satisfied. Since fulfilled obligations have been deleted in stage
A, we just need to check whether the deadline has expired. When we detect a
violation we update the violations list, add the violation description (denoted by
d([idi, θj , τ])) to KB and we set the flag r to true since the violation predicate
might trigger the expiration condition of that instance. d([idi, θj , τ]) consists of a
predicate v(idi, p(θj), τ) where p(θj) is a representation of the substitution in
the form of a predicate. In rule R5 if the first obligation in the list is not violated
we move it at the end of the list. Similarly we add two rules (not included) for
prohibitions, where we consider a prohibition to be violated if its goal condition
evaluates to true. Φ is included to avoid infinite loops. In fact, since rule R4
sets r to true, detecting the same violation in each loop would cause infinite
iteration. Rule R6, together with the condition [idi, θj , τ] �∈ Φ of rule R4 ensures
that each violation is detected only once for each reasoning cycle. Another rule
similar to rule R3 (not included) is defined for the end of stage B.

modi = O, [idi, θj , τ] �∈ Φ,
eval(KB , ddli, θj) = true, KB∗ = KB ∪ d([idi, θj , τ])

〈KB ,Δ, [idi, θj , at] : I, Φ,B, r〉 →
〈KB∗,Δ, I : [idi, θj , at], [idi, θj , τ] : Φ,B, true〉

(R4)

nd.mod = O, eval(KB , ddli, θj) = false
〈KB ,Δ, [idi, θj , at] : I,B〉 → 〈KB ,Δ, I : [idi, θj , at],B〉 (R5)

[idi, θj , τ] ∈ Φ
〈[idi, θj , at] : I, Φ,B〉 → 〈I : [idi, θj , at], Φ,B〉 (R6)

Rule R7 checks for the activation of new instances of the first norm ndi in Δ. Let
τ = time(KB), for each θj ∈ match(KB , acti), we add a new instance [idi, θj , τ]
at the end of Π (list Π2), while we add to I only those instances that are not in
Π (list I2). The substitutions of the instances added to I2 are integrated with
the assignment of the variables ?actTime and ?this-id which are needed to
evaluate the TEMPORAL and the VIOLATED conditions as we will show below. If
we activate at least one new instance we set r = true. By adding new instances
at the end of Π, we ensure that, at the end of the reasoning process, the instances
added to Π during the current reasoning cycle will be those after ε. Formally the
pattern Π3 : ε : Π4 identifies with Π4 all the instances added in the current step

CÒIR: Verifying Normative Specifications of Complex Systems 141

and with Π3 all the instances added during the previous reasoning cycle. This
is exploited in rule R8, where, at the end of stage C, if r is equal to false, we
end the reasoning cycle (stage end) and discard Π3 and Φ. We define another
rule (not included) for the case where r is equal to true. In this case we move
ε at the end of Δ and go back to stage A. In rule R7, when we check if a new
instance is not in Π, we consider also instances added in previous loops of the
current reasoning cycle. In this way it is guaranteed that we do not reactivate
the same instances in each loop.

θk = [?actTime/τ] ∪ [?this-id/idi] and
I2 = 〈[idi, (θj ∪ θk), τ] : . . . 〉 s.t. θj ∈ match(KB , acti) and

eval(KB , expi, θj) = false and [idi, θj , τ − 1] �∈ Π,
Π2 = 〈[idi, θj , τ] : . . . 〉 s.t. θj ∈ match(KB , acti),

r∗ = true iff (I2 �= ∅) or (r = true)
〈KB , ndi : Δ, I,Π,C, r〉 →

〈KB ,Δ : ndi, I2 : I,Π : Π2,C, r∗〉

(R7)

true
〈ε : Δ,Π3 : ε : Π4, Φ,C, false〉 → 〈Δ : ε,Π4 : ε, ε, end, false〉 (R8)

With these transition rules in place, we now provide further details of the
match and eval functions for querying KB . We denote by θi[v] the value c
assigned by θi to the variable v. Given a formula f , f · θi denotes the formula
obtained by substituting, for each varTerm v with an assignment in θi, each
occurrence of v in f with θi[v]. Moreover we say that two substitutions θ1 and
θ2 are compatible if and only if there is no variable v that is bound in both the
substitutions such that its assigned values are different. Formally:

compatible(θ1, θ2) = true iff � v, ([v/c1] ∈ θ1 and [v/c2] ∈ θ2 and c2 �= c1)

Let p denote a predicate, e a boolExpr, fi a formula, vi a varTerm, n and a
numTerm, si a strTerm and t a constTerm. We denote by s1.θk the substitution
obtained by adding the string s1 as a prefix to all varTerms in θk. Figure 2
summarizes the semantics of match and eval.

The construct TEMPORAL(n), where n is a numTerm, will be used to evaluate a
temporal deadline of n steps relative to the activation time of a norm instance.
In defining its semantics we assume that the variable ?actTime is bound in θj to
the activation time (see Rule R7 of above). The construct VIOLATION-OF(n, s)
presented in Sect. 3.1, can be used in the activation condition of a CTD norm to
return the description of a detected violation of a norm with id n. For a violation
[idj , θj], with n = idj , it returns the substitution obtained by adding the prefix
s to all the variable names of θj . The prefix is added in order to allow the
norm designer to distinguish between variables bound by the substitution of the
violation and variables bound by the activation condition, even when they have

142 L. Gasparini et al.

Fig. 2. Semantics of match and eval

the same variable name. The construct VIOLATED is used when we want to ask
whether the current instance has been violated (e.g. for the expiration condition
of an obligation). It is evaluated to true if KB contains the description of a
violation of the instance being evaluated. Note that, since, for each instance,
we bind the activation time in the substitution, VIOLATED is able to distinguish
between violations of different instances associated with the same pair (ndj, θj).

Figure 3 illustrates the life-cycle of an obligation (left) and a prohibition
(right) instance in còir. Circles represent states and arrows represent transitions
and are labeled with the condition that triggers the transition. A norm instance
is activated when the activation condition (act) holds and an equivalent instance
(an instance of the same norm associated with the same substitution) is not in
the previous matches (Π) list. An active obligation becomes fulfilled when the
goal (goal) condition holds, it expires if the expiration condition (exp) but not
the goal holds, and it becomes violated if the deadline (ddl) condition holds
true before the expiration or the goal condition. Once an obligation instance
is violated, it remains so until the expiration condition holds (in which case it
becomes expired) or the goal condition holds (in which case it becomes fulfilled).
Once an obligation is fulfilled or expired it will remain so for the remainder of
the execution. An active prohibition expires when the expiration condition holds,
and becomes violated if the goal holds, but the expiration condition does not.
A violated prohibition becomes expired if the expiration condition holds. It is
important to notice that, when a previously violated norm becomes expired it
will not be detected as a current violation. A norm designer, however, can specify
the clause NOT VIOLATED in the expiration condition in order to avoid this. The
same applies to violated obligations that becomes fulfilled.

CÒIR: Verifying Normative Specifications of Complex Systems 143

Fig. 3. Norm instance life-cycle

5 The Seaguard Example

We now show how we can capture the norms described in our motivating example
(Sect. 2) using the còir formalism. Norm 1 states that at any instant of time, at
least one agent must monitor the area. This may be captured by a prohibition
from achieving a state where no agent is monitoring the area (a safety property).
The fact that a UAV monitoring the area is preferred to a helicopter can be
represented by separating the norm in two as shown in Fig. 4 (nd1 and nd4).
Norm nd1 is a prohibition that is violated if no UAV is monitoring the area.
Norm nd4 is violated if neither a UAV nor a helicopter is monitoring the area.
Therefore, a situation where a UAV is monitoring the area would comply with
both the norms, while having a helicopter monitoring would violate only nd1.

Norms nd2 and nd3 capture the specification of norms 2 and 3 from our
motivating example respectively. An instance of the obligation nd2 is activated,
for a coalition, every time an unauthorized boat ?ag1 enters the restricted area
?ar. The obligation is fulfilled if one member of the coalition ?ag2 intercepts
?ag1 before a deadline of three time steps, while it expires if ?ag1 exits ?ar
or the obligation is violated. Obligation nd3 is activated by a violation of norm
nd2, and is addressed to the same coalition. It requires at least one member of
the coalition to report the unauthorized access.

144 L. Gasparini et al.

Fig. 4. Specification of norms nd1, nd2 and nd3.

6 Formal Verification

In this section we explore the problem of verifying properties of multi-agent
systems specified using còir. Firstly we discuss our implementation of the oper-
ational semantics in Maude [4], a rewriting logic framework that allows us to
specify the semantics of a system by means of rewriting rules. We chose Maude
because its syntax for specifying rewriting rules is very close to that for SOS.
Moreover, by implementing our system in Maude, we obtain a specification which
is executable and on which we can perform formal verification using the Maude
Linear Temporal Logic (LTL) model checker. In this way we can: (i) Validate
our normative specification; for example by verifying that a specified non compli-
ant behaviour always results in a detected violation; and (ii) Verify how robust a
multi-agent system is to violations; for example by verifying if a certain property
is guaranteed under certain compliance assumptions [1,8].

We discuss the reasons why, by representing our model as explained in Sect. 4,
we obtain an infinite state model. We show how we can use the LTL model
checker to perform bounded model checking of the infinite state system, and
then show how we can modify our model in order to make the state space finite
and apply unbounded model checking.

6.1 Maude Implementation

Maude modules can contain conditional equations: simplification rules used to
define data-types and language constructs and to specify how they are evaluated
by the system. Modules may also contain conditional rewriting rules: transition
rules that describe how the state of a system can evolve over time. We defined
the còir language (Fig. 1) and we implemented the match and eval functions.
We then implemented our operational semantics by means of an operator reason
that takes as arguments a configuration and returns the configuration resulting
from the application of the reasoning cycle. The reasoning process is described
by a set of conditional equations, which are a direct (syntactical) translation

CÒIR: Verifying Normative Specifications of Complex Systems 145

of the rules of Sect. 4 into the Maude syntax. The dynamics of the system is
specified by a set of rules that follow the pattern:

crl C => reason(tick(C’, n)) if condition.

where C and C’ are two configurations and the only component that can change
from C to C’ is the knowledge base. tick is a function that takes a configuration
C and an integer n as parameters and increases the time in C by n units. The
meaning of this rule pattern is that, at each step, after applying the changes in
the description of the environment, we invoke the reason operator to update the
list of active instances, previous matches and violations accordingly. The Maude
model checker, given one initial state i, and a set of transition rules T , generates
a Kripke structure containing all the states that are reachable from i.

6.2 Bounded Model Checking

Properties of a norm-governed multi-agent system can be verified using the
Maude LTL model checker. In order to do so we need to define a labelling
function λ, specifying the set of atomic propositions q ∈ Q that hold in some
state s ∈ S [4, Chap. 13]. We denote by ((s |=λ q) = true) the fact q holds in
s and by ((s |=λ q) = false) the fact that q does not hold in s. The state of a
multi-agent system is represented by the configuration Conf of the monitoring
component. Let Q be the set of all predicates as defined in Fig. 1. Equations 1–4
defines λ.

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ p = true if p ∈ KB . (1)

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ violated(n) = true

if ∃ θj , τ s.t. : d([n, θj , τ]) ∈ KB
(2)

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ violated(n, t) = true if
∃ θj , τ s.t. : d([n, θj ∪ [?add/t], τ]) ∈ KB

(3)

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ p = false otherwise. (4)

Equation 1 makes it possible to use the predicates of KB as atoms of LTL
properties. Equations 2 and 3 define properties about the normative state of a
configuration, allowing us to query the model checker for states where a certain
norm has been violated (optionally specifying an addressee).

The principal requirement to make the LTL model-checking decidable is for
the transition system to have a finite number of reachable states. However, the
fact that we represent time explicitly in KB means that the state space is infinite.
One way of dealing with this is to limit the state space to the states reachable in
a fixed number of transitions, l. We can do this, for example, by modifying the
specification of the system so that all the conditional rewriting rules that increase
the time by n are applicable only to states where time(KB) < l − n. Ideally,
however, we want to be able to verify system properties in the unbounded case.

146 L. Gasparini et al.

6.3 Unbounded Model Checking

In order to make the unbounded model checking problem decidable, we need to
remove any explicit reference to the current time from the semantics. We remove
the predicate cT(n) from KB and the references to activation and violation time
from instances and violations respectively (now represented as [idj , θk]). In order
to represent temporal deadlines, we take an approach similar to the one proposed
by Lamport [12]. When we activate an instance (Rule R7), instead of binding
?actTime, we add the assignment [?tick/n] in the substitution of instances of
norms that include a statement of type TEMPORAL(n). Rule R7 is substituted
with:

I2 = 〈[idi, (θj ∪ θk)] : . . . 〉 s.t. θj ∈ match(KB , acti) and
eval(KB , expi, θj) = false and θk = isTemp(ddli) and

[idi, θj] �∈ Π,Π2 = 〈[idi, θj] : . . . 〉 s.t. θj ∈ match(KB , acti),
r∗ = true iff (I2 �= ∅) or (r = true)

〈KB , ndi : Δ, I,Π,C, r〉 → 〈KB ,Δ : ndi, I2 : I,Π : Π2,C, r∗〉

(R7*)

where isTemp(ddli) checks whether a deadline is temporal and, in that case,
returns the initialisation for the ?tick variable.

isTemp(ddli) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[?tick/t]
if ddli contains one and only one statement

of the type TEMPORAL(t)

∅ otherwise.

We then modify the tick(C,m) operator so that, for each instance [idj , θk],
it will decrease all the values t such that [?tick/t] ∈ θk by a value equal to
the minimum of t and m. The semantics of eval(KB , TEMPORAL(n), θj) is then
changed to return true if and only if the ?tick variable reaches value zero:

eval(KB , TEMPORAL(n), θj) = true iff [?tick/0] ∈ θj .

In other words, for every instance of a norm with a temporal deadline, we
activate a timer that is decremented by a call to the function tick. The deadline
is considered expired when the timer reaches 0. Another consequence of removing
the explicit reference to the current time is that, without a reference to the
activation time, multiple instances or violations associated with the same pair
(ndi , θj) become indistinguishable. This leads to a number of problems at the
implementation level. Consider the example in Sect. 5. When the coalition fails
to intercept an unauthorized boat ub (violation of nd2), an instance of nd3 that
binds to ub will be activated and included in the list Π. Subsequent violations
will bind to the same substitution in the activation condition of nd3, preventing

CÒIR: Verifying Normative Specifications of Complex Systems 147

any new activation. In order to solve this problem we need to make sure that
every new violation of nd2 will match, for the activation condition of nd3, to
a substitution that is not currently in Π. We do this by adding a boolean flag
in the representation of the violation in the knowledge base. When the first
violation of nd2 associated with θj is detected, its description is added to KB
with the flag set to false. At every subsequent violation associated with the
same pair (nd2, θj) we change the value of the flag. We update the semantics
of match for the construct VIOLATION-OF(t1, s1) to include the variable ?flag
bound to the flag value instead of the variable ?violTime. When, for example,
the flag values goes from false to true, the previous match for the activation
of nd3 is deleted while the instance with ?flag set to true gets activated. This
mechanism guarantees that we can activate at least one CTD instance per step
for each pair (nd3, θj). Further, to correctly interpret the VIOLATED expression,
we need to check for a violation of the current instance. Again, without relying
on the activation time, we are not able to distinguish between different violations
associated to the same pair (ndi, θj). We solve this by adding to the substitution
θj of each instance [idi, θj] a variable ?violated which is initially unbound. We
modify Rule R4 (and the equivalent for violated prohibitions) to set ?violated
to true when a violation is detected, and update the semantics of eval for
VIOLATED as follows:

eval(KB , VIOLATED, θj) = true iff [?violated/true] ∈ θj (5)

As a result of these modifications, Rule R4 becomes as follows:

modi = O, θk = θj ∪ [?violated/true]
[idi, θj] �∈ Φ, eval(KB , ddli, θj) = true,

KB∗ = addV (KB , [idi, θj])
〈KB ,Δ, [idi, θj] : I, Φ,B, r〉 →

〈KB∗,Δ, I : [idi, θk], [idi, θk] : Φ,B, true〉

(R4*)

where θk is the substitution obtained by setting the value of the ?violated
flag and addV updates the content of KB as discussed above:

addV (KB , [idi, θj]) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

KB ∪ v(idi,p(θj),false)
if ∀f ∈ {true, false}
v(idi,p(θj),f) �∈ KB

KB \ v(idi,p(θj),f)

∪ v(idi,p(θj),¬f)
if v(idi,p(θj),f) ∈ KB

6.4 Model Checking Results

We implemented our scenario in Maude and ran the LTL model checker to verify
properties of the system for both bounded and unbounded cases.

148 L. Gasparini et al.

Table 1 shows the results for bounded model checking3. The scenario imple-
mented includes a single UAV a Helicopter and two unauthorized boats and is
regulated by norms nd1, nd2 and nd4. In all these scenarios agents can perform,
according to their capabilities, at most seven actions: start and stop monitoring,
start and stop intercepting, start and stop reporting, and move to a different
area. We checked the following property, which asks whether a state where uav
does not monitor the restricted area area2 always results in a violation of nd1:

�((¬monitoring(uav1, area2)) → violated(1))

To prove that this property is always true the model checker has to observe the
whole state space, giving us a worst-case scenario in terms of execution time.
We can see that both the execution time and the number of states increase
exponentially with the number of steps.

Table 2 shows the results for unbounded model checking in different scenarios.
cA is the number of coalition agents, uB the number of unauthorized boats,
while for each ndi , a � indicates that the norm was included in the scenario.

Table 1. Model checking results: bounded steps

Step limit

7 8 9 10 11

States 4647 12352 32336 81504 202007

Execution time 10 s 29 s 78 s 3 m 8s 8 m

The scenario in row 2 (Table 2.a) is equivalent to that used to produce the
results in Table 1. Note that the execution time for bounded model checking at
10 steps is higher than the unbounded case. This is due to the fact that, since we
include the time value in KB , conceptually equivalent states are not recognized
because their time values differ, making it impossible for the model checker to
take advantage of optimizations that rely on state matching.

As we can see from Table 2.a, the scenarios where both nd2 and nd3 are
enforced are those with higher execution times. We believe this is due to an
interaction between temporal deadlines and CTD obligations: In fact nd3 is a
CTD of nd2 and each of them has a temporal deadline of 3 steps. Values for
the ?tick variable range from 3 to 0 in instances of nd2 and, whenever nd2 is
violated, the timer for nd3 is initialized. Our intuition is confirmed by Table 2.b:
by decreasing the deadline to 1, we obtain significantly smaller state spaces and
execution times.

We now show how model checking can be used to verify that our normative
specification is correct, by checking that non compliant behaviours are detected

3 All tests ran on a Intel Core i5 2.7Ghz, 16 GB RAM.

CÒIR: Verifying Normative Specifications of Complex Systems 149

Table 2. Model checking result: unbounded

Part a: ddl2 = ddl3 = TEMPORAL (3)

cA uB nd1 nd2 nd3 nd4 States Time
2 2 � � 5250 20s Part b: ddl2 = ddl3 = TEMPORAL (1)

2 2 � � � 20012 2m cA uB nd1 nd2 nd3 nd4 States Time
2 2 � � � � 243994 1h,16m 1 2 � � � � 5717 40s
3 2 � � 19032 2m 2 2 � � � � 17653 5m
3 2 � � � 72327 15m 3 2 � � � � 75245 16m
3 2 � � � � 870165 25h

as violations. Let’s consider a variation of nd2 stating that, in order to optimize
the allocation of resources, we want one and only one member of the coalition to
intercept the unauthorized boat detected in the restricted area. Intuitively we
would be tempted to express the norm with the following goal:

goal2 = COUNT (?ag2 IN { memberOf(?ag2,?add)
/\ intercepting(?ag2,?ag1) }) = 1

which holds true if the number of agents (?ag2) that are members of the
coalition and are intercepting ?ag1 is equal to 1. We can now use model checking
to verify whether this specification captures the meaning we intend. For example,
we might ask whether it is true that having two agents intercepting the same
boat results in a violation. We refer to area2 to be the restricted area, ub the
unauthorized boat, and uav and heli the UAV and the helicopter respectively.
We check the following property, which says that having both uav and heli
intercepting ub always results in a violation of nd2.

�((intercepting(uav,ub) ∧ intercepting(heli,ub)

∧ inArea(ub,area2)) → violated(2))

The model checker returns an execution trace that violates the property as a
counter example. In fact, if the uav and heli start intercepting at two different
instants of time, the obligation is fulfilled (and thus deleted) when the first agent
starts intercepting. We can capture the intended meaning with an obligation to
have at least one agent intercepting before the deadline and a prohibition from
having multiple agents intercepting the same boat.

We now show, with an example, how model checking can be used to ver-
ify robustness-related properties. We want to verify whether compliance with
nd2 and nd3 guarantees that an unauthorized boat cannot enter and exit the
restricted area without being reported or intercepted. We denote by area1 and
area2 an unrestricted and a restricted area respectively. The following property
says that there is no path such that ub goes from area2 to area1 being neither

150 L. Gasparini et al.

intercepted nor reported and without triggering a violation of nd2 or nd3.

¬♦(inArea(ub,area2) ∧ ♦inArea(ub,area1) ∧
�(¬violated(2) ∧ ¬violated(3) ∧
¬intercepting(uav,ub) ∧ ¬reporting(uav,ub) ∧
¬intercepting(heli,ub) ∧ ¬reporting(heli,ub)))

The model checker shows as a counterexample a path where ub moves from
area2 to area1 before the deadline for it being intercepted, causing the expira-
tion of nd2. We thus verified that our normative system does not guarantee that
the specified critical situation will never occur, even if we consider only compli-
ant paths. If we want to make sure that, in a situation of compliance, a boat
that exits the area is at least reported, we can modify exp2, ddl2 and exp3 as:

exp2 = VIOLATED ; exp3 = false
ddl2 = TEMPORAL(3) \/ NOT EXISTS{inArea(?ag1,?ar)}

In this way, both the expiration of the temporal deadline or ub exiting area2
before being intercepted trigger a violation of nd2, thus activating an instance
of nd3. By applying model checking we can see that compliance with revised
norms nd2 and nd3 guarantees that the boat is intercepted or reported.

7 Discussion

The formalism we use to represent norms builds upon a number of approaches
to formalise norms for practical applications. For example Tinnemeirer et al.
[17] describe the operational semantics of a normative language with support
for norms with deadlines and CTD obligations. Hüber et al. [11] adopt an SOS-
approach to formalise the norm lifecycle (activation, fulfilment, violation, etc.)
and for monitoring the execution of norm-governed systems, which provides the
underpinning for a language (NOPL) for programming such systems. Alvarez-
Napagao et al. [2] propose a semantics based on production systems for a norm
monitoring component that supports norms with deadlines. Similarly, Hindriks
and Van Riemsdijk [10] propose a semantics based on timed transition systems
to keep track of activation, fulfilment and violation of obligation with real time
relative deadlines. This semantics could be used for verification purposes, for
example with tools such as Real-Time Maude [13]. This issue, however, is only
discussed briefly by the authors and no details are offered. We complement this
existing research by addressing the issue of verifying temporal logic properties
of such systems. còir also permits the representation of collective imperatives,
which are not considered in existing models defined using semantics at the oper-
ational level.

Existing research on the verification of properties of normative systems has
focussedon restricted representations of norms, considering only variations of
conditional deontic logic, without considering deadlines, event-driven norms, or

CÒIR: Verifying Normative Specifications of Complex Systems 151

collective imperatives. Dennis et al. [6], for example, integrate the ORWELL
normative language in the MCAPL verification framework in order to verify
properties of agents’ organisations. In ORWELL norms are represented through
counts as rules, which label states as compliant or non-compliant by saying that
a brute fact counts as an institutional fact (e.g. a violation) in a certain context.
Our results (Table 2), show that, despite using a more expressive representation,
verification times are comparable to those reported by Dennis et al. [6].

In research that shares some similarities with ours, Cliffe et al. [5] describe a
formalism for specifying obligations with deadlines, permissions and contrary to
duty norms. They use answer set programming to verify properties of systems.
Their approach is, however, only able to analyse execution traces up to a certain
length, and in this regard, is equivalent to bounded model checking.

Ågotnes et al. [1] consider transitions of a Kripke structure that are labelled
as compliant or non compliant. It is then possible to use model checking to verify
properties of the system under different compliance assumptions. While such a
labelling might be expressive enough to represent the kind of norms captured by
our formalism, it is not clear how to compute it from a declarative normative
specification.

We believe that this mismatch between formalisms used to specify and mon-
itor norms and those used to verify and analyse normative systems makes it dif-
ficult to ensure that norms satisfy certain desired properties. Our work attempts
to bridge the gap between norm specification, monitoring and verification by
providing an executable specification that is verifiable through model checking.

For future research we plan to explore techniques to exploit domain symme-
tries in order to improve performance and to extend our model to allow agents
to issue imperatives at run-time.

8 Conclusion

In this paper we proposed còir, a language for the specification of obligations
and prohibitions with support for common features of real world norms, including
deadlines, contrary to duty and event-based activation/deactivation. We showed
how, thanks to the fact that we allow existential and universal quantification over
variables, our formalism can be used to specify common patterns of collective
obligations. We then formalized how norms are to be interpreted by means of
an operational semantics which we then implemented in Maude. We discussed
how the fact that we explicitly represent time in our model leads to an infinite
state space, and hence proposed an abstraction that preserves the semantics
and makes unbounded model checking decidable. We then used the Maude LTL
model checker to validate our normative specification and to verify its robustness
to violations.

Acknowledgments. This research was sponsored by Selex ES.

152 L. Gasparini et al.

References

1. Ågotnes, T., Van der Hoek, W., Wooldridge, M.: Robust normative systems and a
logic of norm compliance. Logic J. IGPL 18(1), 4–30 (2010)

2. Alvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Normative
monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 321–336. Springer, Heidelberg
(2011)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press,
Cambridge (1999)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., et al.: All About Maude - A High-
Performance Logical Framework. Springer, Heidelberg (2007)

5. Cliffe, O., De Vos, M., Padget, J.: Modelling normative frameworks using answer
set programing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 548–553. Springer, Heidelberg (2009)

6. Dennis, L., Tinnemeier, N., Meyer, J.-J.: Model checking normative agent
organisations. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS, vol.
6214, pp. 64–82. Springer, Heidelberg (2010)

7. Dignum, F.P.M., Broersen, J., Dignum, V., Meyer, J.-J.: Meeting the deadline:
why, when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff,
C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg
(2004)

8. Gasparini, L., Norman, T.J., Kollingbaum, M.J., Chen, L.: Severity-sensitive
robustness analysis in normative systems. In: Ghose, A., et al. (eds.) COIN
2014. LNCS, vol. 9372, pp. 72–88. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25420-3 5

9. Grossi, D., Dignum, F.P.M., Royakkers, L.M.M., Meyer, J.-J.C.: Collective oblig-
ations and agents: who gets the blame? In: Lomuscio, A., Nute, D. (eds.) DEON
2004. LNCS (LNAI), vol. 3065, pp. 129–145. Springer, Heidelberg (2004)

10. Hindriks, K.V., Van Riemsdijk, M.B.: A real-time semantics for norms with dead-
lines. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS 2013, pp. 507–514. International Foundation
for Autonomous Agents and Multiagent Systems, Richland (2013)

11. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming
language for organisation management infrastructures. In: Padget, J., Artikis,
A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.)
COIN@AAMAS 2009. LNCS, vol. 6069, pp. 114–129. Springer, Heidelberg (2010)

12. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

13. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Timed CTL model checking in real-time
maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 182–200. Springer,
Heidelberg (2012)

14. Norman, T.J., Reed, C.: A logic of delegation. Artif. Intell. 174(1), 51–71 (2010)
15. Plotkin, G.D.: A structural approach to operational semantics. Technical report,

DAIMI FN-19, University of Århus (1981)
16. Şensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.: OWL-POLAR: a frame-

work for semantic policy representation and reasoning. Web Semant.: Sci. Serv.
Agents World Wide Web 12–13, 148–160 (2012)

http://dx.doi.org/10.1007/978-3-319-25420-3_5
http://dx.doi.org/10.1007/978-3-319-25420-3_5

CÒIR: Verifying Normative Specifications of Complex Systems 153

17. Tinnemeier, N., Dastani, M., Meyer, J.J.C., van der Torre, L.: Programming
normative artifacts with declarative obligations and prohibitions. In: Interna-
tional Joint Conference on Web Intelligence and Intelligent Agent Technologies,
pp. 145–152 (2009)

18. van der Torre, L.: Contextual deontic logic: normative agents, violations and inde-
pendence. Ann. Math. Artif. Intell. 37(1–2), 33–63 (2003)

19. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict reso-
lution in multi-agent systems. Auton. Agents Multi-agent Syst. 19(2), 124–152
(2009)

	 CÒIR: Verifying Normative Specifications of Complex Systems
	1 Introduction
	2 Motivating Example
	3 CÒIR Norm Specification
	3.1 Syntax
	3.2 Representing Collective Obligations

	4 CÒIR Semantics
	5 The Seaguard Example
	6 Formal Verification
	6.1 Maude Implementation
	6.2 Bounded Model Checking
	6.3 Unbounded Model Checking
	6.4 Model Checking Results

	7 Discussion
	8 Conclusion
	References

