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To analyse the use of a dynamic geometry environment for linear algebra by two students, we 
combine a semiotic mediation approach with a lens of students’ thinking modes. This way of 
approaching the data shows promise for a detailed understanding of the observed phenomena.  

RESEARCH QUESTION AND THEORETICAL FRAMEWORK 

In this paper, we address the research question, ‘Does a combination of the semiotic mediation 
approach and students’ thinking modes provide a better understanding of the learning of the notion 
of parameter using a dynamic geometry environment (DGE)?’ To elaborate on this question, we 
first consider the notion of thinking modes and the theory of semiotic mediation as a theoretical 
framework, and then reanalyse certain of the data presented in Turgut (2015). 

Thinking modes in learning linear algebra 

Sierpinska (2000) distinguishes three thinking modes (TM) in linear algebra; synthetic-geometric 
thinking (GST), analytic-arithmetic thinking (AAT) and analytic-structural thinking (AST). The 
GST mode refers to the geometric properties of the action, but does not concern their construction. 
The AAT mode refers to associated computations and numerical representations; the AST mode 
refers to the dialectics between epistemic and semantic aspects of the mathematical object. 
Consequently, synthetic thinking is related to visual perception, while analytical thinking refers to 
mathematical reasoning. 

Theory of Semiotic Mediation (TSM) 

TSM (Bartolini Bussi & Mariotti, 2008) is based on two principal notions; semiotic potential of an 
artefact and didactic cycles. The first requires an epistemological analysis of an artefact’s evocative 
power for the construction of mathematical meanings. Didactic cycles refer to the design of 
teaching-learning activities. The signs that emerge are categorized: (i) the signs related to the 
activity and specifically referring to the use of the artefact are named as artefact signs (aS), (ii) math 
signs they are used in the math community (i.e., students’ construction of a definition, a conjecture, 
a generalization or appearance of a proof and so on) and constitute the didactic goal are named 
mathematical signs (mS), (iii) the signs where their potential polysemy are used for the construction 
of the (interpretative) links between personal signs and math signs are named pivot signs (pS). 

Mathematical context and semiotic potential of DGE 

Solving linear equations not only corresponds to finding the intersection of lines in a plane, but also 
to intersecting planes or hyperplanes in three or higher dimensional spaces, which is needed for 
generalization towards linear systems. The key element in such computations is the notion of 
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parameter1, in relation to the different kinds of representations; algebraic, geometric and matrix 
forms of the associated system of linear equations in R3 . To articulate these views, GeoGebra 
provides simultaneous Algebra and 3D Graphics windows (Turgut, 2015). In this case, we 
distinguish the following tools and functions providing semiotic potential for teaching and learning 
the notion of parameter: (i) the Dragging function enables the user to manipulate given objects, but 
also to explore dependency and co-variance of objects; (ii) the Slider tool provides the means for 
dynamic (co)variation, meaning the user can observe the variations synchronously in the Algebra 
and in other windows; (iii) the Rotate 3D view tool is included in the 3D Graphics window, 
providing user spatial orientation, i.e., to explore the 3D Graphics window from a different 
perspective. 

As an exemplary task, think of the following system of parametrized linear equations (Anton, 1981, 
p. 54); 2=+ bzax , 44 =++ zbyax , bzay =+ 2 . The number of solutions of the system (i.e., no 
solution, one single solution or infinitely many solutions) depends on the values of the parameters a 
and b, since such parameters effect the position of the corresponding planes. In terms of the tools 
and functions summarized above, we postulate that students’ dragging of the slider(s) would 
provide a dynamic variation on the system of linear equations, its associated augmented matrix, the 
corresponding planes and the number of solutions. As such, this may evoke an understanding of the 
role of parameters. Therefore, the task delivered to the students was, ‘Move the sliders a and b, and 
systematically explore and explain what is happening’. Some exemplary cases of the task are 
presented in Figure 1. In this case study, two linear algebra students worked on this task. The 
students were 20 year olds at undergraduate sophomore level, with a background in coordinate free 
geometry, discrete mathematics and fundamental calculus. The session took place after a course on 
the topic of the system of linear equations and lasted 40 minutes. 

 
      (a): the case 0≠a , 2=b  (infinite solutions)       (b): the case 0=a , 2≠b  (no solution) 

Figure 1. Two exemplary cases of students’ parameter values of the task 

RESULTS 

Analysis from a TM perspective 

Students’ GST was apparent in understanding the relationships between the movements of the 
sliders and the positions of the planes. The students only focused on the movements of the planes; 
they did not focus on the planes’ equations and the algebraic meanings of a and b, although they 

                                         
1 For example, in the same context, the intersection of two non-parallel hyperplanes in R4 can be either a hyperline or a 
hyperplane. It depends on the number of parameters in the solution. 
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knew the algebraic equations of planes from previous lectures. While moving the sliders, they 
discovered the parameters’ effects on the position of the planes. As a next step, AAT appeared 
when they showed paradigmatic reasoning of the equations in the Algebra window, and on the 
algebraic meaning of a and b in the system of linear equations. Consequently, they tried to solve the 
system of linear equations through the Gauss-Jordan elimination method to understand how a and b 
are related in the system’s solution. Their study of the rows of the matrix and the movements of the 
sliders opened a door to connecting particular solutions of the system in terms of ‘completely zeros’ 
in the rows of the augmented matrix and intersections and positions of the planes. In this way, they 
established a connection among completely zero rows, number of free variables in the solution and 
the dimension of the intersection space, which is considered a manifestation of AST.  

Analysis from a TSM perspective 

Students began their work by moving the sliders. They first expressed some phrases including: 
“they are moving”, “slider’s movement” and “positions of the planes” which can be labelled aS. 
Next, they considered a variation of a, mentioning that ‘when 0=a , all planes coincide’ and ‘if 

0≠a  they intersect along a line’. They tested their conjectures through the 3D rotate tool, but not 
with a particular focus on the Algebra window. An emergence of pS was in the students’ 
exploration of the dialectic relationship between a and b and their role in the solution of system of 
linear equations: 

18 Student A: “Just a second. These [referring sliders] are same here [referring Algebra window].” 

… [They are forming linear equations step by step checking movements of sliders] 

38 Student A: “Hımm. I remember, and now understand, these equations are corresponding planes’ 
equations, but they depend on a and b, so affecting the movement of planes or positions. 
In fact this is a system of linear equations.” 

An emergence of mS was found when the students chose to solve the augmented matrix of the 
system of linear equations by the Gauss-Jordan elimination method. In this way, they connected the 
rows of the matrix, the parameters a and b, and the solution of the system. Next, the students made 
conjectures on the relationships between completely zero rows in the matrix, the dimension of the 
intersection space and the number of free variable in the solution. Finally, they validated their 
conjectures and constructed a meaning of the parameters as free variables. There was a chain of 
(mathematical) signs (Turgut, 2015); “consistent or inconsistent system”, “a completely zero row”, 
“a free variable”, “we have a one-dimensional thing: a line”, “two completely zero rows”, “two free 
variables”, “they intersect along a plane, a two-dimensional thing”, “no free variable” and “they 
intersect along a point, zero-dimensional thing”. 

Comparing the analyses and conclusion 

Table 1 provides an overview of the data from both perspectives. The joint analyses reveal the 
students’ conceptualization process step by step, but from different viewpoints. The view on the 
classification of the TM and the identification of the emergence of signs were largely 
complementary.  

In short, the combined analysis is promising. Meanwhile, we need an integrated analysis tool to 
better understand students’ learning of linear algebra in a DGE. For example, our case was limited 
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to the notion of parameter, whereas other main topics of (abstract) linear algebra, such as linear 
combination, span and linear independency, awaiting such an analysis.  

 
TM Analysis  Semiotic Analysis 

GST 

– Focus on the movement of the planes and 
sliders 
– Find the key values’ effects on the position 
of the planes through spatial perception 
 

aS 

– “… they are moving…” 
– “… slider’s movement…” 
– “… position of the planes…” 
– “… all planes coincide…” 
– “… they intersect along a line…” 

AAT 

– Focus on the algebraic meaning of a and b 
– Paradigmatic reasoning on the (linear) 
equations 
– Use of Gauss-Jordan elimination method 
– Analysing relationships between completely 
zero rows and a and b 

pS 

– “… these…” 
– “… here…” 
– “… this is…” 
– “… these zeros…” 

AST 

– Reasoning on the solutions of the system, a 
and b values, and position of the planes 
– Making connection among completely zero 
rows, number of free variables (parameters), 
and dimension of intersection space of the 
planes (as a set of points) 

mS 

– “… a completely zero row…” “…in 
relation to…” 
– “…a free variable…” 
– “…one-dimensional thing: a line…” 
– “… two completely zero rows…” 
– “… two free variables…” 
– “… they intersect along a plane, a two-
dimensional thing…” 
– “… no free variable…” 
– “… they intersect along a point, zero-
dimensional thing…” 

Table 1: An overview of two analyses 
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