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Soil hydraulic property information of the vadose zone is key to quantifying the temporal and spatial variability of
soil moisture, and for modeling water flow and contaminant transport processes in the near surface. This study
deals with exploring the feasibility of using diffuse soil spectral information in the visible, near-infrared and
shortwave infrared range (350–2500 nm) to estimate coarse-scale soil hydraulic parameters and predict soil
moisture profiles using a topography-based aggregation scheme in conjunction with a 1D mechanistic water
flow model. Three different types of parametric transfer functions (so-called spectrotransfer functions, STFs;
pedotransfer functions, PTFs; and spectral pedotransfer functions, SPTFs) were aggregated from the point scale
to 1 km2 pixel size. to provide coarse scale estimates of van Genuchten-Mualem (VGM) hydraulic parameters.
The coarse scale hydraulic parameters were evaluated by simulating soil water dynamics of the 1 km2 pixels
across the Zanjanrood River sub-watershed (ZRS) in northwest Iran. Resultant soil water states were compared
with ground-truthmeasurements and advanced synthetic aperture radar (ASAR) estimates of soil water content.
The topography-based aggregation scheme was found to provide effective values of the VGM hydraulic parame-
ters across the ZRS study site. The coarse scale STFs performed best in terms of simulating surface, near-surface
and subsurface soil water dynamics, followed by the coarse scale SPTFs and PTFs, which performed similarly.
The average simulated soil water contents of the surface layer closely correlatedwith ASAR estimates during rel-
atively wet periods. Simulated subsurface soil water dynamics matched well with the ground-truth measure-
ments. These findings indicate the feasibility of using spectral data to predict VGM hydraulic parameters and,
ultimately, to predict soil water dynamics at the larger scales.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Profile soil moisture, as a key dynamic state variable, plays a central
role in weather and climate predictions from the regional to the global
scale by controlling the exchange and partitioning of water and energy
fluxes between the land surface and the atmosphere (Vereecken et al.,
2008; Kornelsen and Coulibaly, 2014). Accurate knowledge of profile
soil moisture at various spatial and temporal scales is also important
for strategic management of water resources (Vereecken et al., 2016).
Soil moisture status and fluxes vary considerably in both space and
time due to inherent variations in the soil hydraulic properties
(Montzka et al., 2011), precipitation rates (Koster et al., 2004;
).
ce Department, The University
Rosenbaum et al., 2012), topographic features (Joshi and Mohanty,
2010; Jana and Mohanty, 2012b; Schröter et al., 2015), and vegetation
characteristics (Famiglietti et al., 1998; Guar and Mohanty, 2013).

A range of in-situ and remote soil water sensing techniques have
been developed, tested, and used with varying levels of success during
the past several decades (Vereecken et al., 2014). In-situ techniques
are generally confined to short-term field experiments or point-scale
sensor installations that are representative over a relatively small spatial
scales since soil water is subject to considerable spatial heterogeneity
(Greifeneder et al., 2016). Indirect estimates of soil moisture can be ob-
tained using active (Ulaby et al., 1996; Baghdadi et al., 2012; Jagdhuber
et al., 2013; Kornelsen and Coulibaly, 2013) and passive (Jonard et al.,
2011; Montzka et al., 2013; Dimitrov et al., 2014, 2015) microwave re-
mote sensors that have had the greatest success in estimating soil mois-
ture in a spatially and temporally consistent behavior. These methods
provide surface soil moisture estimates of only the top few centimeters
(0–5 cm) of a soil profile (Kerr, 2007). The somewhat low spatial
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resolution (several tens of kilometers) of passive microwave measure-
ments has prompted research on downscaling to expand applicability
(Pellenq et al., 2003; Merlin et al., 2008). However, non-invasive geo-
physical methods, such as ground penetrating radar (GPR)
(Weihermuller et al., 2007; Jonard et al., 2011), electromagnetic induc-
tion (EMI) (Robinson et al., 2012), and electrical resistivity tomography
(ERT) (Vanderborght et al., 2013), have been used to bridge the gap be-
tween point and satellite measurements of soil moisture.

Soil-vegetation-atmosphere-transfer (SVAT) models are commonly
used to numerically simulate state variables such as soil moisture, as
well as for estimating energy-mass exchange fluxes. The performance
of SVAT models is usually confined by uncertainty of the driving forces
and its parameters. While soil hydraulic properties are very important
in distributed SVAT models, they are mostly observed only at the
point scale or generalized to soil maps. Amajor challengewhen running
these models at a larger scale is obtaining accurate model inputs and
physically realistic hydraulic parameter values. Aggregation of soil hy-
draulic properties from field to watershed or regional scales is critical
for SVAT model performance at these scales (Zhu and Mohanty,
2002a, 2002b; Vereecken et al., 2007; Jana and Mohanty, 2012a,
2012b, 2012c; Vereecken et al., 2016). Hence, a need exists for upscaling
schemes that enable one to convert point scale data to much larger
extents.

Coarse scale characteristics of the soil hydraulic parameters are
governed predominantly by soil texture and structure (especially at
the field scale), and topography (especially at watershed scales and be-
yond) (Jana, 2010). Topography plays a key role in soil classification.
Several studies have shown that topography-based scaling algorithms
are able to capture much of the variations in soil hydraulic parameters
required to generate equivalent flows and soil moisture states in a
coarsened domain (Wilson et al., 2004; Jana and Mohanty, 2012a,
2012b).

Practical methods for estimating soil moisture continuously over
time and relatively large spatial areas likely involve a combination of re-
mote sensing and modeling (Entekhabi et al., 1999; Vereecken et al.,
2014). Recent studies have demonstrated that profile soil moisture
could be estimated well by assimilation of remotely sensed surface
soil moisture data into a hydrological model (Das et al., 2008a; Ines
and Mohanty, 2008a, 2009; Montzka et al., 2011; Han et al., 2013,
2014; De Lannoy and Reichle, 2016; Vereecken et al., 2016). Despite
the important role of surface and subsurface soil moisture in hydrolog-
ical and meteorological predictions, detailed spatial and temporal
modeling of profile soil moisture at the large scale is often still lacking.

During the past few decades, visible, near-infrared and shortwave
infrared (Vis-NIR-SWIR) reflectance spectroscopy has been shown to
be an effective alternative to conventional in-situ or laboratorymethods
for providing rapid, noninvasive and cost-effective estimates of a wide
range of soil properties. Many studies have shown the capability of lab-
oratory scale Vis-NIR-SWIR (400–2500 nm) spectrometry to accurately
estimate basic soil properties such as the soil particle size distribution,
organic carbon content, water content, and clay mineralogy (Gomez et
al., 2008; Lopez et al., 2013; Minasny et al., 2008, among many others).
These properties are at the same time key input parameters for many
pedotransfer functions (PTFs) for estimating the unsaturated soil hy-
draulic properties (Vereecken et al., 2010). Despite extensive literature
on predictions of basic soil properties fromVis-NIR-SWIR data, more re-
search is needed to more directly and reliably estimate the soil hydrau-
lic properties. A few studies recently analyzed the potential of soil
spectral information in the Vis-NIR-SWIR region to estimate soil hy-
draulic properties using point (Janik et al., 2007; Minasny et al., 2008;
Lagacherie et al., 2008; Babaeian et al., 2015b) and parametric (Santra
et al., 2009; Babaeian et al., 2015b) transfer functions. These studies pro-
vided soil hydraulic parameters at point scale. While some scale mis-
match between mostly point measurements of the soil hydraulic
parameters and hydrologicalmodels appears to be unavoidable, a better
understanding of the required upscaling process is very much needed.
While the advantages of PTFs have been demonstrated for quantify-
ing soil hydraulic properties (e.g., Vereecken et al., 1989; Schaap et al.,
2001; Homaee and Farrokhian Firouzi, 2008; Ghorbani Dashtaki et al.,
2010; Khodaverdiloo et al., 2011), they are rarely implemented in hy-
drologic models where a broad definition and application of soil types
still dominate simulations of soil moisture. Parametric PTFs provide
soil hydraulic parameters that could be used directly in hydrological
models. Guber et al. (2009) compared a number of published PTFs and
the HYDRUS-1D model (Šimůnek et al., 2005) to simulate water flow
in a soil profile.

The spectral behavior of a soil is a dynamic soil property that can un-
dergo rapid changes because of changes in soil composition due to, for
example, agricultural activities, soil erosion and biological processes.
Using spectral data as PTF input provides an effective way of including
the temporal processes in hydrological models. Babaeian et al. (2015a,
2015b) recently derived and validated the accuracy of spectrotransfer
functions (STFs) and spectral pedotransfer functions (SPTFs) to predict
the unsaturated soil hydraulic properties. STFs relate the hydraulic
properties directly with spectral reflectance parameters, while SPTFs
use additional basic soil data such as the particle size distribution and
bulk density.

In this paperwe present a study to test the effectiveness and robust-
ness of coarse-scale derived parametric PTFs, STFs, and SPTFs by study-
ing surface, near-surface and subsurface soil water dynamics in a semi-
arid region, the ZanjanroodRiver sub-watershed (ZRS), in northwestern
Iran. The accuracy of simulated surface soil water states is tested against
estimates frommicrowave satellite imagery. Our primary objective was
to assess coarse scale values of the vanGenuchten-Mualem soil hydrau-
lic parameters (van Genuchten, 1980) to simulate surface, near-surface
and subsurface soil water dynamics at the 1 km × 1 km domain/pixel
size, while incorporating the influence of the local topography into the
aggregation algorithm. Reference soil water states for comparison
were obtained from the advanced synthetic aperture radar (ASAR)
through the IEM algorithm developed by Rahman et al. (2008). Our
findings will help to assess the value of air- and space-borne
hyperspectral data for studying the spatio-temporal dynamics of profile
soil water contents.

2. Materials and methods

2.1. Study area

The Zanjanrood River sub-watershed (ZRS), located in the north-
western part of Iran, was selected as the test area for our study. The
ZRS area of approximately 250 km2 was chosen for its variety in terrain
and land use characteristics, soil type and soil distribution patterns
(Fig. 1). The topography consists of level to slightly undulating slopes
varying approximately from 0 to 4%, with elevations ranging from
approximately 1380 to 2160 m above mean sea level. The climate is
semi-arid, with an average annual precipitation of 320 mm. The maxi-
mum (43 °C) andminimum (−30 °C) yearly temperatures occur in Au-
gust and January, respectively, while the average yearly temperature is
about 11 °C. Soil texture varies from clay to sandy loam,with themajor-
ity of soils classified as clay loam and loam. Rain-fed agriculture with a
land cover of wheat (75%) and poor rangeland (25%) dominate land-
use in the area. Using Arc GIS FishNet tool (ESRI), the entire ZRS was di-
vided into a grid of 1 km×1 kmpixels tomatch the ASAR (globalmode)
pixels. We selected 20 pixels across the study area for analysis so that
they represent different locations, soil types, topographies and land
uses (see Fig. 1). A summary of various geophysical attributes of the se-
lected pixels are given in Table 1.

2.2. Numerical simulations

The HYDRUS-1D software package was used to simulate vertical
water flow in the soil domains (Šimůnek et al., 2005). HYDRUS-1D



Fig. 1. Figure showing the ZanjanroodRiver sub-watershed (ZRS) study area, including locations of the sampling points, selectedpixels, and themeteorological station (a), the soil type (b),
and land-use (c) maps.
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uses the Richard's equation to simulate unsaturated flow, while incor-
porating a general sink term to account for rootwater uptake as follows:

∂θ hð Þ
∂t

¼ ∂
∂z

K hð Þ ∂h
∂z

−K hð Þ
� �

−S ð1Þ

where θ is the soilwater content [cm3 cm−3], h is the soilwater pressure
head [cm], zis soil depth [cm], t is time [d], K is the hydraulic conductiv-
ity [cm d−1], and S is the sink term [d−1] (i.e., root water uptake).
Table 1
Land-use, average elevation, average slope, and soil texture classes of the selected ZRS pixels.

Dominant land-use Average elevation

Pixel 1 Rangeland 1529
Pixel 2 Agriculture 1682
Pixel 3 Agriculture 1671
Pixel 4 Agriculture 1719
Pixel 5 Agriculture 1691
Pixel 6 Agriculture 1779
Pixel 7 Agriculture 1826
Pixel 8 Agriculture 1846
Pixel 9 Agriculture 1832
Pixel 10 Rangeland 1577
Pixel 11 Agriculture 1612
Pixel 12 Agriculture 1660
Pixel 13 Agriculture 1752
Pixel 14 Agriculture 1770
Pixel 15 Agriculture 1771
Pixel 16 Agriculture 1859
Pixel 17 Rangeland 1589
Pixel 18 Rangeland 1536
Pixel 19 Rangeland 1632
Pixel 20 Rangeland 1540

Spring wheat is the dominant agriculture in the region
For the soil hydraulic properties (θ(h) and K(h)) in Eq. (1), we used
the original van Genuchten-Mualem (VGM) expressions as derived by
van Genuchten (1980):

Se ¼ θ hð Þ−θr
θs−θr

¼ 1þ αhj jn� �−m ð2Þ

K hð Þ ¼ Ks

ffiffiffiffiffi
Se

p
1− 1−S1=me

� �mh i2
ð3Þ
(m) Average slope (%) Dominant soil type

1.81 Clay loam
1.94 Clay loam
1.85 Clay loam
2.28 Clay loam
1.95 Clay loam
3.04 Clay loam
3.56 Clay loam
4.16 Clay loam
3.40 Clay loam
2.13 Loam
1.93 Loam
1.75 Loam
2.50 Loam
2.70 Loam
2.30 Loam
3.15 Loam
2.30 Sandy loam
2.18 Sandy loam
2.38 Sandy loam
1.92 Sandy clay loam
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Fig. 2. A pixel-scale non-interacting and homogeneous soil profile used for the numerical
experiment across the study area.
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where θr and θs are the residual and saturated water contents, respec-
tively [cm3 cm−3], α is an empirical shape parameter approximately
equivalent to the inverse of the air entry value [cm−1], n is a pore size
distribution parameter [], and m = 1–1/n.

The numerical simulations were performed for all the 20 selected
pixels of 100-cmdeep soil profiles, where each pixel assumed to be rep-
resentative of each 1 km2 pixel. We did not employ numerical simula-
tions for the rest of the study area, because these 20 pixels were
selected based on different locations, soil types, topographies and land
uses and thus can be considered as an indicator of the whole study
area. We used a non-interacting and homogeneous soil column
Fig. 3. Time series of the precipitation and evapotranspiration (left), air (min., max., mean) and
January 2012.
approach (Vereecken et al., 2007) in which the soil hydraulic properties
did not vary with depth (Fig. 2). The choice of uniform soils with depth
is justified by the fact that the horizontal extent of the study domain
(comprised of 1 km × 1 km pixels) was much greater than the vertical
profile (with 100-cm depth). We hence assumed that the effects of
changes in the soil properties versus depth due to layering close to the
soil surface are relatively minor in the overall aggregation scheme.

The 100-cm deep soil profiles were discretized into 200 non-equi-
distant finite elements having a size of 0.5 mm at the soil surface and
a size of 35 mm at the lower boundary (Scharnagl et al., 2011). Atmo-
spheric time-dependent boundary conditions and a free drainage condi-
tion (∂h/∂z = 0) were imposed at the upper and lower boundaries of
the soil profiles. As initial condition we assumed a linearly decreasing
water content from 0.4 cm3 cm−3 at the soil surface to 0.2 cm3 cm−3

at the bottom of the profile (Montzka et al., 2011). A 30-day spin-up
timeperiodwas used to allow the assumed initial soil water distribution
in each of the 20 pixels to align with the local weather conditions. After
employing the aggregation scheme and providing coarse scale soil hy-
draulic parameters, each pixel area was considered flat from a run-off/
run-on perspective, thus assuming that water flow only occurred in
the vertical direction.

Aggregated effective VGM parameters (see Section 2.3) were
assigned to each selected coarse pixel.Wheat crops, being the dominant
vegetation cover in the study area, are commonly planted in the end of
March (DOY–90). Hence, we neglected transpiration and rootwater up-
take processes due to sparsely vegetation cover, and only considered
evaporation. The Penman-Monteith approach, as implemented in
HYDRUS-1D, was used to estimate potential soil evaporation rates
based on atmospheric forcing data from the meteorological station in
the region (Šimůnek et al., 2008). We simulated a period of 100-days,
starting on January 1, 2012, with a temporal resolution of one day in
the precipitation/potential evaporation data. Fig. 3 demonstrates the
reference potential evapotranspiration (ET) and precipitation patterns
during the study period.

2.3. Aggregation algorithm

The power average operator (PAO), a topography-based aggregation
algorithm as described by Yager (2001), was used in this study to coars-
en themeasured and retrieved VGM soil hydraulic parameters. The PAO
approach combines two aggregationmethods, a mode-likemethod and
soil (mean) temperature (right) forcing data from themeteorological station time starting
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a mean type aggregation, to provide a very useful tool for coarse scale
soil hydraulic parameters. In the mode-like method, the emphasis is
on finding the most probable value of a parameter from a given set,
while in mean-type aggregation the aim is to find the mean value of
the given set. The PAO is defined as:

P� p1;p2;…;pnð Þ ¼
Xn

i¼1
1þ T pið Þ½ �piXn

i¼1
1þ T pið Þ½ �

ð4Þ

in which

T pið Þ ¼
Xn
i ¼ 1
j≠i

Sup pi; pj

� �
ð5Þ

where P⁎ is the power average of parameter values p1,p2, …,pn, Sup(pi,
pj) is the support of pi from pj in which Sup(pi, pj)∈[0.1]. A general
form of the support equation is

Sup pi;pj

� �
¼ e−η pi−p jð Þ2 ð6Þ

where

η ¼ z jmax
−z jmin

zi−z j

	 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xj
� �2 þ yi−yj

� �2
þ zi−z j
� �2r

S
ð7Þ

where η is the scale factor (η ≥ 0)), x, y and z are the Cartesian coordi-
nates of the point, and S is the scale (resolution) to which the hydraulic
parameters are being aggregated (i.e., 1 km). In nature scale factor can
be affected by many factors such as variation in atmospheric parame-
ters, vegetation cover, soil type, distance between observations and to-
pography. Here we constrained the other factors and considered η as a
function of difference in topography (elevation) and distance between
sampling points.

A more detailed description of the PAO is provided by Jana and
Mohanty (2012a, 2012b). The PAO was used separately for providing
coarse scale VGM hydraulic parameters (pi) so that aggregated values
(estimated/measured parameters) were obtained using the difference
in distance (horizontal and vertical) between the sampling points and
their values. The elevation data were used to determine vertical dis-
tance between the sample points.

2.4. Radar model and soil water content retrieval

The Integral Equation Model (IEM) is a widely used analytical and
physically based radar backscatter model developed for bare soils
(Zribi and Dechambre, 2002; Rahman et al., 2008). In general, IEM
quantifies the backscattering coefficient as a function of soil water con-
tent and surface roughness, which are unknown, and the radar configu-
ration:

σ ∘ ¼ f hRMS; Lc; θð Þ ð8Þ

where σ∘ is the backscattering coefficient [decibel, dB], hRMS is the root
mean squared height variation of the surface at the centimeter scale
[cm], Lc is the correlation length of the height variation, and θ is the
soil water content as before.

Zribi and Dechambre (2002) indicated that differences in the back-
scatter coefficient, Δσ∘, generated with the IEMmodel using two differ-
ent incidence angles while keeping all other parameters constant, is
proportional to the surface roughness only. They also found that Δσ∘ is
proportional to the ratio of hRMS and Lc:

h2RMS=Lc ¼ g Δσ ∘ð Þ ð9Þ

Using the backscatter coefficient obtained for dry surface conditions
(σdry

∘ ), it is possible to derive both hRMS and Lc as follows:

σ ∘
dry ¼ h hRMS; Lcð Þ ð10Þ

Using Eqs. (9) and (10), and substituting terms, it is possible to solve
for the two roughness parameters, hRMS and Lc, to obtain

Lc ¼ ω Δσ ∘;σ ∘
dry

� �
ð11Þ

hRMS ¼ ϕ Δσ ∘;σ ∘
dry

� �
ð12Þ

The resulting roughness parameters are used to parameterize the
IEM model and to retrieve the soil water content. The values of the
roughness parameters can be then substituted in Eq. (9):

σ ∘
moist ¼ λ Δσ ∘;σ ∘

dry; θ
� �

ð13Þ

which can be inverted to obtain the soil water content:

θ ¼ λ−1 Δσ ∘;σ ∘
dry;σ

∘
moist

� �
ð14Þ

We used the method developed by Rahman et al. (2008) to provide
estimates of roughness parameters (hRMS, Lc) from multi-angle radar
images at two incidence angles from two dry images in August and Sep-
tember 2011. Dry backscatter coefficient (σdry

∘ ) was also obtained from
ASAR images in this two dates. We used Next ESA SAR Toolbox
(NEST) software (https://earth.esa.int/web/nest) for computing back-
scatter coefficients.

2.5. Data collection and analysis

Basic soil attributes (i.e., clay content, silt content, sand content, bulk
density, organic carbon content and geometric mean of the soil particle
diameter) and VGM hydraulic parameters (i.e., θr, θs, α, n and Ks) of the
ZRS study area were obtained for 174 soil samples (point scale with av-
erage distance about 1.5 km) collected from the study area using a com-
bination of relatively standard field soil sampling procedures and
laboratory measurements (Dane and Topp, 2002). The saturated hy-
draulic conductivity was measured using constant- and falling-head
methods in the laboratory. Gravimetric water contents were measured
at nine matric potentials (i.e., 0, −5, −10, −330, −1000, −3000,
−5000, −10,000, and −15,000 cm) of the water retention curve
using sand-box apparatus and pressure plate extractor methods in the
laboratory (Vereecken et al., 2010). Using nonlinear least-squares opti-
mization, the retention models were fitted to the measured soil–water
content values to obtain the hydraulic parameters (see also Babaeian
et al., 2015a, 2015b for more details). These laboratory-based hydraulic
parameters were considered as observed VGM parameters.

Using these basic soil properties and laboratory-measured spectral
reflectance data in the visible, near-infrared and shortwave-infrared re-
gion (350–2500 nm), three different types of parametric transfer func-
tions were developed to provide estimated sets of hydraulic
parameters. The transfer functions included spectral transfer functions
(STFs), pedotransfer function (PTFs) and spectral pedotransfer func-
tions (SPTFs). A detailed description of how the soil spectral data were
processed and used to derive the transfer functions is given by
Babaeian et al. (2015b).

The PAO aggregation schemewas subsequently used to aggregate i)
estimated VGMparameters from the transfer functions, and ii) observed

https://earth.esa.int/web/nest
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VGM parameters from the laboratory so that they could be used to sim-
ulate soil water dynamics at the pixel scale (1 km× 1 km). The soil pro-
file for this purposewas divided into three layers: 0 to 5, 5 to 10, and 10
to 30 cm. The three parameters α, n and θs in Eq. [2] and the one addi-
tional parameter Ks in Eq. [3], were estimated for each layer using the
derived parametric STFs, PTFs and SPTFs proposed by Babaeian et al.
(2015b). Briefly, the parametric STFs, PTFs and SPTFs are simple linear
regression equations which use spectral data, basic soil properties and
spectral based basic soil predictions, respectively, as their inputs to esti-
mate VGM parameters. In-situ soil water content data (n = 15) of the
bare profiles were collected using time domain reflectometry (TDR)
method (Topp et al., 1980) at five different times and at two depths (z
– 0–10 cm, z – 30 cm) along transects within one field site (with area
~1 km2) close to the meteorological station (Fig. 1). Elevation data
were provided at a 30m resolution. Meteorological data (e.g., daily pre-
cipitation, maximum and minimum temperature, relative humidity,
wind speed and solar radiation) were obtained from a meteorological
station located north of the study area (Fig. 1) for themonths of January
through March 2012. Time series of daily average precipitation and
evapotranspiration are shown in Fig. 3. As can be seen, relatively wet
and dry periods alternated during the study period.

Using ENVISAT/ASAR active microwave data (C-band, Global Mode
with a resolution of 1 km × 1 km, ascending pass) and the inversion al-
gorithmof IEM, surface soil water contentswere retrieved for 13 days of
the year 2012. The sensormeasured the total soil backscatter at pixels of
1 km × 1 km, as stated earlier, which were then used to provide soil
water estimates. Surface roughness values needed for the IEM model
were derived from a set of two ASAR images at dry soil conditions, cov-
ering the study area at different view angles (Verhoest et al., 2008). In
order to validate the estimates, we used measured surface soil water
contents at the field scale. ASAR-based surface soil water contents with-
in the study area, valid for the top centimeter of the soil (Mohanty et al.,
2013; Adams et al., 2013), were considered as a basis to evaluate simu-
lated surface soil water contents obtained with HYDRUS-1D. We used
the mean error (ME), the root mean squared error (RMSE) and
Pearson's correlation coefficient (r) of the simulated and measured
Fig. 4. Aggregated values of the estimated and observed VG
values to evaluate the accuracy of our numerical experiments and the
performance of the coarse scale transfer functions (Zarei et al., 2010):

ME ¼ 1
N

XN
i¼1

Si−Mið Þ ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Si−Mið Þ2
vuut ð16Þ

r ¼
XN

i¼1
Si−S

� �
Mi−M
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Si−S

� �2XN

i¼1
Mi−M
� �2r ð17Þ

where Si and Mi denote the ith simulated (estimated) and measured
values, S and M are means of simulations (estimations) and measured
values respectively, N is the number of data pairs consisting of Si and
Mi. Also, we added the p value (1 and 5%) of the correlations.

3. Results and discussion

3.1. Accuracy of coarse scale transfer functions for the VGM hydraulic
parameters

In this sectionwe show the performance of the PAO scheme in terms
of coarse scale soil hydraulic parameters and providing effective values
of the VGM parameters. Fig. 4 shows a comparison between observed
and estimated VGM hydraulic parameters that were aggregated using
the PAO scaling scheme from the fine scale to the 1 km2 coarse resolu-
tion for the 20 selected pixels (1 km × 1 km) within the study area. As
can be seen, the coarse scale estimates for each parameter are slightly
different from the coarse scale observations. Relatively large differences
were observed for the saturated water content, θs (Fig. 4a). The coarse
scale transfer functions (estimated VGM parameters) showed a similar
and very close trend with the observed values of α, n and lnKs across
M hydraulic parameters for 20 pixels across the ZRS.



Table 2
Comparison between coarse-scale estimated and observed VGM hydraulic parameters
across all selected pixels of the ZRS.

Coarse scale θs[cm3cm−3] α[cm−1] n[−] lnKs[cm ⋅d−1]

r RMSE r RMSE r RMSE r RMSE

STFs 0.321 0.0294 0.648b 0.0545 0.703b 0.0148 0.863b 0.2471
PTFs 0.554b 0.0427 0.309 0.0676 0.655b 0.0137 0.555a 0.3678
SPTFs 0.123 0.0374 0.366 0.0656 0.659b 0.0139 0.681b 0.3774

r andRMSERMSE are correlation coefficient and rootmean squared error, respectively. Su-
perscripts ‘a’ and ‘b’ represent significance at the 0.05 and 0.01 levels, respectively.
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all pixels (Figs 4b, d). The coarse scale transfer functions overestimated
θs formost of the pixels, with the largest value being for the PTFs (ME=
0.034) and the smallest one for the STFs (ME= 0.005). The coarse scale
transfer functions slightly underestimated α, n and lnKs of most pixels,
with ln(Ks) having the largest ME values (−0.066, −0.064 and
−0.013 for the PTFs, SPTFs and STFs, respectively), and n having
smallest ME values (ME = −0.007, −0.003 and −0.003 for the STFs,
PTFs and SPTFs, respectively).

Table 2 provides a comparison between VGM parameters from the
coarse scale transfer functions and those obtained from coarsening the
observed values, in terms of Pearson's correlation coefficient (r) and
RMSE information for providing effective VGM parameters. As indicat-
ed, coarse scale STFs performed the best for parameters α (r = 0.648,
p b 0.01, and RMSE = 0.0545), n (r = 0.703, p b 0.01, and RMSE =
0.0148) and lnKs (r = 0.863, p b 0.01, and RMSE = 0.2471), followed
by the coarse scale SPTFs. By comparison, the r values for θs were quite
low (r b 0.55). The coarse scale PTFs performed best for θs, having r
and RMSE values equal to 0.554 (p b 0.01) and 0.0427, respectively.
Overall, the strong and significant correlations between the coarse-
scale estimated and observed VGM parameters are indications that the
PAO scheme used to aggregate the fine scale soil hydraulic parameters
is providing an appropriate set of VGM hydraulic parameters at the
coarse scale.

3.2. Coarse scale transfer functions and soil water dynamics

The temporal dynamics of soil water contents of the selected pixels
at three soil depths as simulated using the three sets of coarse scale
transfer functions are shown in Figs. 5, 6 and 7, alongwith the observed
Fig. 5. Simulated time series (January throughMarch 2012) of surface (0–1 cm) soil water con
observed VGM parameters) and ASAR-based estimates for 20 pixels of the ZRS study site. Grou
values (using measured VGM parameters) and ASAR estimates. The
three curves in each plot represent daily model outputs of the water
content using the coarse scale led transfer functions. Two additional
curves show the fine- and coarse-scale daily outputs when observed
VGMparameters were used in the forward run. Ground-truthmeasure-
ments of soil water and ASAR estimates are marked by symbols. As ex-
pected, the surface soil (z – 0–1 cm) exhibitedmore variations in the soil
water contents (range between 0.10 and 0.45 cm3 cm−3) than the other
two depthswhere the variations are graduallyweakened (Figs. 6 and 7).

Results indicate that at the beginning of the simulated period, due to
several precipitation events, the surface layer nearly reached saturation.
Soil water contents reflected rapid infiltration ofwater during precipita-
tion events atDOY29, 34, 90 and 94due to dry soil condition.During the
strongest precipitation events (i.e., DOY 34, 91 and 95), the upper and
lower soil layers reached saturation, which persisted for several days.
At the mid of the simulation period (DOY between 50 and 90), the soil
surface dried out rapidly within a few days, with water contents
reaching a constant value of about 0.15 cm3 cm−3. This was due in
part to used residual water content (θr =0.05), initial/boundary condi-
tions, and less precipitation,while evaporation rates continued from the
surface soil. The evapotranspiration (ET) values (see Fig. 3) are larger
than precipitation values between DOY 50 and 88. So this could result
in non-response to the precipitation events during this period.

According to the meteorological station data, on several days, how-
ever, the mean air and soil temperatures went down to below 0 °C
(see Fig. 3). It should be noted that these values were obtained from
one meteorological station located in the northwest of the study area
and elevation about 1800 m. This was consistent with the presence of
a snow cover and a frozen surface soil as observed in themeteorological
station site. Infiltration and water flow is essentially non-existent in a
frozen soil.

The results of Figs. 5, 6 and 7 also show that the transfer function-
based soil water signatures closely followed each other as well as the
observed (fine and coarse scale) signatures for most pixels. A compari-
son of the various curves gives additional information about the role of
precipitation as a key factor controlling surface soil water status. For ex-
ample, the coarse scale transfer functionsproduced very similar time se-
ries that were shifted in various degrees with respect to each other. The
scatter in the simulated water contents was found to be substantial at
the deeper layers, particularly during dry period (Figs. 6 and 7). Notice
further that simulations obtained with the coarse-scale transfer
tents using coarse scale transfer functions, versus fine and coarse scale observations (from
nd-truth (measured) values are shown for pixel 13.



Fig. 6. Simulated time series (January to March 2012) of near-surface (z – 5 cm) soil water contents using coarse scale transfer functions versus fine and coarse scale observations (from
observed VGM parameters) for 20 pixels of the ZRS study site.
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functions continuously over-predicted soil water contents of the near-
(z – 5 cm) and subsurface (z – 30 cm) layers. The coarse scale PTFs
and SPTFs also tended to over-predict thewater contents ofmost pixels.

Fig. 8 showsME and the RMSE values between the average daily soil
water contents for the selected pixels at three soil depths as obtained
using the coarse-scale observed VGM parameters and those calculated
using three different sets of coarse scale transfer functions in the
HYDRUS-1D simulations. As can be seen, for most of the pixels at
three soil depths, the coarse scale STFs performed the best with mean
RMSE andME values of 0.012 and 0.004 cm3 cm−3, respectively, follow-
ed by the coarse scale SPTFs (mean RMSE and ME equal to 0.019 and
0.010 cm3 cm−3, respectively) and the PTFs (mean RMSE and ME
equal to 0.021 and 0.015 cm3 cm−3, respectively). While the simulated
water contents were overestimated in many pixels, in general they
Fig. 7. Simulated time series (January to March 2012) of subsurface (z – 30 cm) soil water con
observed VGM parameters) for 20 pixels of the ZRS study site. Ground-truth (measured) value
were reasonable accurate. This signifies that the simulated soil water
contents were relatively close to the reference values. Results suggest
the feasibility of using spectral data to estimate VGM parameters and
predict the soil water dynamic at the larger scale.
3.3. Comparison of simulated soil water contents with ASAR estimates

Fig. 5 illustrates average daily soil water contents of the surface soil
(z – 0–1 cm) as simulated using the coarse-scale observed VGM param-
eters and those obtained with the coarse scale transfer functions, along
with the ASAR-based estimates for the selected pixels. As can be seen,
the estimated (ASAR) and simulated soil water trends show a good
match with the precipitation pattern (see Figs. 3 and 5).
tent using coarse scale transfer functions versus fine and coarse scale observations (from
s are shown for pixel 13.



Fig. 8.ME and RMSE values between average daily simulated soil water contents using three different sets of transfer functions, and those obtained using the coarse-scale observed VGM
parameters for each pixel at three soil depths.
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We found that the lowest simulated soil water contents were about
0.10 cm3 cm−3, while the ASAR-based estimates were less than the
simulated values (b0.10 cm3 cm−3) (Fig. 5). This indicates that the
ASAR data were more sensitive during relatively dry conditions.
Except for a few cases, the ASAR estimates produced lower water
contents for about half of the selected pixels (i.e., pixels 1, 2, 6, 9,
10, 11, 12, 15 16 and 19) during the study period. This may point
out that the probability of underestimation is about 50%. However,
more investigations are needed to improve our estimations. This differ-
ence in water contents may be attributed to soil roughness () and soil
freezing (Jagdhuber et al., 2014). They pointed out that as soon as
the soil temperatures fall below0 °C, a distinct drop occurs in the dielec-
tric constant for all soil types. This then keeps the dielectric level
close to the lower physical limit for all freezing states (Jagdhuber et
al., 2014). In such case, the soil mediumwill show dielectric properties
of a dry soil.

Part of the differences may be due also to some differences in the ef-
fective sensing depths of the ASAR sensor and TDR probes (Wang et al.,
2011). The surface layer of a soil is commonly drier than the subsurface
layers, particularly in arid and semi-arid regions (Wang et al., 2011).
ASAR signals (C-band, 5.33 GHz) essentially perceive the dielectric
properties of the surface soil layer (at about 1 cm or less). For the
TDR-based ground-truth measurements we used for the validation,
the detected water content is the integral value of the entire sampled
layer (0–10 cm) in the measured soil volume. This could partly explain
the underestimation of the water content, as suggested also in the liter-
ature. However, this does not explain all of the underestimated soil
water measurements. Another source of errors may be related to as-
sumptions about the roughness estimation. In our study the surface
roughness was considered to be temporally stable, with the roughness
parameterizations assumingdielectric properties for dry soil conditions,
while soilmanagement practices (e.g., agricultural land preparation, soil
erosion) may change the surface roughness between relatively dry and
wet periods. Soil roughness can also change due to change in soil water
conditions.
Correlations of the average daily water contents simulated with the
coarse scale transfer functions with those from the ASAR-based esti-
mates are given in Table 3. The data show that the average simulated
surfacewater contents from the coarse scale transfer functions generat-
ed good correlationswith ASAR estimates for all pixels acrosswet, inter-
mediate and dry days, with the r-values being between 0.10 and 0.84.
Significant correlations were found for pixels 1, 4, 5, 10, 12, 13, 18, 19,
20, which showed r values between 0.62 and 0.84. This may illustrate
that the probability of 50% for correlation/uncorrelation within these
pixels. However, no significant differences in correlations were ob-
served between simulatedwater contents from the coarse scale transfer
functions (Table 3).

3.4. Comparison of average simulated soil water contents and ground-truth
measurements

For each coarse scale transfer function, we analyzed the r, ME and
RMSE of simulatedwater contents for the surface (z – 0–1 cm) and sub-
surface (z – 30 cm) soil layers for which ground-truth measurements
(defined as measured) and ASAR estimates were available. Results are
shown in Table 4. While the previous section provided insight into the
performance of the PAO scheme with respect to providing effective
VGM hydraulic parameters, the ultimate test of the practical applicabil-
ity of the scheme is how well the simulated soil water states match the
measurements. Accordingly, we compared the coarse-scale simulated
water contents to the average of the values (n = 15) from one experi-
mental field site, which arithmetically were resampled to the 1 km
scale, as well as the remotely sensed ASAR soil water estimates. Our ap-
proach could be validated only for one pixel (pixel 13) because of a lack
of sufficient in-situ measurements. Still, this provides a base of judging
the performance and robustness of the coarse scale transfer functions
and the hydrologic simulation model.

Table 4 shows that for surface layer the correlations were relatively
good (r values between 0.499 and 0.581), but that the biases (errors)
between the simulated and the ground-truth measurements were



Table 3
Correlation coefficient (r) between simulated soil water content from coarse scale transfer functions and ASAR-based estimates (z – 0–1 cm) for the selected pixels at ZRS.

Coarse scale STFs Coarse scale SPTFs Coarse scale PTFs Coarse scale measurements

Pixel 1 0.62‡ 0.63‡ 0.65‡ 0.62‡

Pixel 2 0.10 0.10 0.10 0.10
Pixel 3 0.51 0.51 0.51 0.50
Pixel 4 0.62‡ 0.62 ‡ 0.63 ‡ 0.62‡

Pixel 5 0.73§ 0.75§ 0.75§ 0.73§

Pixel 6 0.09 0.10 0.10 0.10
Pixel 7 0.36 0.35 0.36 0.37
Pixel 8 0.28 0.26 0.26 0.24
Pixel 9 0.31 0.33 0.33 0.32
Pixel 10 0.82§ 0.82§ 0.82§ 0.82§

Pixel 11 0.24 0.24 0.24 0.24
Pixel 12 0.82§ 0.82§ 0.81§ 0.80§

Pixel 13 0.72§ 0.73§ 0.73§ 0.71§

Pixel 14 0.57 0.57 0.57 0.56
Pixel 15 0.33 0.32 0.32 0.32
Pixel 16 0.56 0.56 0.57 0.56
Pixel 17 0.49 0.49 0.49 0.49
Pixel 18 0.84§ 0.84§ 0.83§ 0.87§

Pixel 19 0.72§ 0.73§ 0.73§ 0.75§

Pixel 20 0.73§ 0.75§ 0.74§ 0.71§

Superscripts ‡ and § represent p b 0.05 and p b 0.01 respectively.
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considerable (RMSE values between 0.107 and 0.138 cm3 cm−3 andME
values between 0.004 and−0.015 cm3 cm−3). For the subsurface layer,
however, the transfer functions were found to perform much better
than for the surface layer. At the fine scale and in the subsurface layer,
the simulated water contents matched the in-situ measurements very
well (r = 0.999, ME = 0.016 and RMSE = 0.015 cm3 cm−3). At the
pixel scale, the simulated soil water dynamics also closely matched
the in-situ measurements. The best results were obtained with the
coarse-scale observed hydraulic parameters (r = 0.995, ME = 0.010,
RMSE = 0.009 cm3 cm−3) and the estimated hydraulic parameters
from the STFs (r = 0.998, ME = 0.018, RMSE = 0.018 cm 3 cm−3),
followed by the SPTFs (r = 0.896, ME = 0.033, RMSE = 0.034 cm 3

cm−3) and PTFs (r = 0.871, ME = 0.035, RMSE = 0.036 cm 3 cm−3),
with the SPTFs and PTF performing very similarly. These field validation
results support the robustness of the coarse scale spectral transfer func-
tions as shown earlier also in Section 3.2.

4. Summary and conclusions

In this paper we presented results of the newly developed diffuse
spectral reflectance-based transfer functions of Babaeian et al.
(2015a, 2015b), and used a topography-based aggregation scheme
Table 4
Summary of performance of the coarse scale transfer functions in simulating surface
(z – 0–1 cm) and subsurface (z – 30 cm) soil water contents for the pixel 13 of the ZRS
study site.

Simulated versus Measured

r ME RMSE

z – 0–1 cm
Fine scale (Obs.) 0.537 0.027 0.132
Coarse scale (Obs.) 0.581 0.004 0.107
Coarse scale PTFs 0.532 −0.010 0.140
Coarse scale SPTFs 0.499 −0.010 0.138
Coarse scale STFs 0.578 −0.015 0.123

z – 30 cm
Fine scale (Obs.) 0.999⁎⁎ 0.016 0.015
Coarse scale (Obs.) 0.995⁎⁎ 0.010 0.009
Coarse scale PTFs 0.871 0.035 0.036
Coarse scale SPTFs 0.896⁎ 0.033 0.034
Coarse scale STFs 0.998⁎⁎ 0.018 0.018

* and ** represent p b 0.05 and p b 0.01, respectively.
(PAO) to assess coarse-scale transfer functions (i.e., STFs, SPTFs and
PTFs). The ultimate objective was to predict surface and near-surface
soil water dynamics at a semi-arid region, ZRS, in northwestern Iran.
Using the PAO algorithm, which is based only on topographic attri-
butes (elevation), we aggregated point-scale estimated and ob-
served VGM hydraulic parameters to a coarse resolution (1
km2 pixel size). The equivalence of the coarse scale transfer func-
tions was subsequently tested by simulating soil water dynamics
for 20 pixels through the watershed. Simulated soil water contents
of the surface and subsurface layers were compared across scale,
and also with the ground-truth measurements as well as with
those made using the ASAR spaceborne radar sensor in combination
with the IEM model.

We found significant correlations between aggregated values of the
estimated and observed VGM hydraulic parameters for the selected
pixels of the ZRS site. The coarse scale STFs performed the best for pa-
rameters α, n and lnKs, followed by the coarse scale SPTFs. The coarse
scale PTFs performed best for θs,. The coarse scale STFs performed best
in simulating surface and near-surface soil water dynamics in terms of
RMSE and ME values, followed by the coarse scale SPTFs and PTFs,
which produced very similar results. While the simulated water con-
tents were slightly overestimated in many pixels, in general they pro-
duced reasonable accurate values. Average simulated water contents
of the surface layer showed significant correlations with the ASAR esti-
mates for most pixels, particularly during wet periods. The simulated
soil water dynamics matched the ground-truth measurements well, es-
pecially in the root zone layer.

Overall, the PAO scheme used to aggregate the fine-scale soil hy-
draulic parameters provided a useful set of VGM hydraulic parameters
for the coarse scale. Our findings point out the feasibility of using spec-
tral data to estimate VGM hydraulic parameters and, ultimately, to pro-
vide predictions in time and space of prevailing soil water contents.
Future work could be designed to implement and test this approach at
the larger scale using air-borne and space-borne hyperspectral (e.g.,
EnMAP, Hyperion) and multi-spectral (e.g., Landsat-8, Sentinel-2) re-
mote sensors. This study was conducted during the winter time,
where soil water measurements through the experimental field were
only available for a short period corresponding to this season. Since
ASAR data is recorded in C-band, they significantly are affected by
dense vegetation cover of agricultural lands in summer. Thus this
could provide uncertain estimates of soil water during the summer
time.
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