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Abstract An overview on the tectono-stratigraphic frame-
work of the Arabian plate indicates obvious differences be-
tween two distinct areas: the hydrocarbon-prolific sector and
non-hydrocarbon-prolific sector. These differences resulted
from the interplay of a variety of factors; some of which are
related to the paleo-geographic configuration (eustatic sea lev-
el fluctuations, climatic conditions, and salt Basins), others to
differential subsidence (burial) and structural inversions.
During the Paleozoic, the regional compression was caused
by far field effects of the Hercynian orogeny. This led to major
folded structures in central and eastern Saudi Arabia (e.g.
Ghawar anticline). During the Mesozoic, the most important
tectonic factor was the stretching of the crust (extension), ac-
companied with the increase in temperature, resulting in an
increase of the accommodation space, and thicker sedimentary
successions. Regional unconformities are mostly found where
folded structures are dominant, and they acted as a carrier
systems for the accumulation of hydrocarbon and groundwa-
ter. A good understanding of the stratigraphy and tectonic
evolution is, thus, required to develop carbon capture and
storage (CCS) and to design efficiently enhanced oil recovery
(EOR) in both sectors. Oil and gas reservoirs offer geologic

storage potential as well as the economic opportunity of better
production through CO2-EOR. The world greatest hydrocar-
bon reservoirs mainly consist of Jurassic carbonate rocks, and
are located around the Arabian Basin (including the eastern
KSA and the Arabian Gulf). The Cretaceous reservoirs, which
mainly consist of calcarenite and dolomite, are located around
the Gotnia salt Basin (northeast of KSA). Depleted oil and gas
fields, which generally have proven as geologic traps, reser-
voirs and seals, are ideal sites for storage of injected CO2.
Each potential site for CO2-EOR or CCS should be evaluated
for its potential storage with respect to the containment prop-
erties, and to ensure that conditions for safe and effective long
term storage are present. The secured deep underground stor-
age of CO2 implies appropriate geologic rock formations with
suitable reservoir rocks, traps, and impermeable caprocks.
Proposed targets for CCS, in the non-hydrocarbon-prolific
sector, are Kharij super-aquifer (Triassic), Az-Zulfi aquifer
(Middle Jurassic), Layla aquifer (Late Jurassic), and Wasia
aquifer (Middle Cretaceous). Proposed targets for EOR are
Safaniya oil field (Middle Cretaceous) (Safaniya, Wara and
Khafji reservoirs), Manifa oil field (Las, Safaniya and Khafji
reservoirs) (Late Jurassic), and Khuff reservoir (Late Permian-
Early Triassic) in central to eastern KSA.

Keywords Tectono-stratigraphy . Hydrocarbon/
non-hydrocarbon-prolific sectors . Paleoclimate . EOR&
CCS . Arabian plate . KSA

Introduction

The Arabian plate extends from the eastern Mediterranean
region to the western Zagros thrust zone, and comprises
the whole Arabian Peninsula. It is enclosed by latitude
13° and 38° N and longitudinal 35° and 60° E. The
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Arabian plate is subdivided in distinct geologic domains,
i.e. the Arabian Shield in the west, the Arabian platform
into the Center and the Arabian Gulf in the east. The
study area covers the Kingdom of Saudi Arabia (KSA),
which constitutes most of the Arabian plate (Fig. 1).

A comprehensive literature review of previous work
and the general geology of the KSA were first conduct-
ed. It covered issues related on the geodynamics, tec-
tonics, stratigraphy, paleoclimate, sea-level variations,
hydrogeology, hydrostratigraphy, petroleum systems,
and petro-physical properties of the rock formations,
[i.e., Powers et al., 1966; Beydoun, 1991; Cole et al.,
1994; Stump and Van Der Eem, 1995; Al-Sharhan and
Narin, 1997; Al-Aswad and Al-Bassam, 1997; Al-
Bassam et al., 2000; Sharland et al., 2001; Zeigler,
2001; Le-Nindre et al., 2003; Pollastro, 2003; Haq and

Al-Qahtani, 2005; Bell and Spaak, 2007; and Rahman
and Khondaker, 2012].

In order to summarize and analyze the vast wealth of avail-
able information, 12 synthetic lithostratigraphic columns were
compiled representing the main oil productive and non-oil
productive sectors (Fig. 2). Eight sites are located between
the Tabuk area in the northwest and Ash-Sharawarh in the
southwest across Wajid area (Figs. 1 and 2). The four other

Fig. 1 Simplified geological map of the Arabian Peninsula, showing the studied hydrocarbon wells, aquifers and the regional cross section A-B of Fig. 5
location. (After Le-Nindre et al. (2003))

�Fig. 2 Twelve synthetic lithostratigraphic columns, representative of the
main hydrocarbon productive and non-hydrocarbon productive sectors in
the Arabian plate. The main unconformities in both sectors are illustrated.
(Data compiled from [Morton, 1959; Powers et al., 1966; McClure, 1978;
Murris, 1980; Wilson, 1981; Bazanti, 1988; Cole et al., 1994; Stump and
Van Der Eem, 1995; Al-Sharhan and Narin, 1995, 1997; Cagatay, et al.,
1996; Oterdoom et al., 1999; Jones and Stump, 1999; Al-Shayea, 2000;
Pollastro, 2003 and Al-Ramadan et al., 2004])
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sites are located between Safaniyah in the northeast and Oman
in the southeast, and include the Ghawar area (Figs. 1 and 2).

Geo-sequestration of CO2 is burdened with systematic risks,
which relates to the geological characteristics of the site, nature
and efficiency of reservoirs, underlying and overlying impervi-
ous formations, and the prevailing fluid-flow regimes [Kaldi,
2008; Barkto et al., 2009; and Taglia, 2010]. Understanding the
links between tectonics and stratigraphy, throughout a large,
geological time-scale, is believed to help in defining suchmajor
factors (listed above) that affects the success of CO2 under-
ground storage and eventually, associated EOR.

First, a stratigraphical model is proposed including most of
aquifers and reservoirs in the study area (i.e., the KSA). Then,
we identify, in this contribution, the potential rock units suit-
able for long term application of CO2 sequestration and reser-
voirs which could be used for enhanced oil recovery (EOR), in
order to reduce anthropogenic greenhouse gases, and their
effects on global climate change.

Geological setting

Based on generalized plate-scale chronostratigraphy charts,
unconformities, sea level variation, climate and the paleogeo-
graphic location of the plate across geological times, the im-
pacts of paleoclimate and tectonic activity on depositional
environments and hydrocarbon evolution can be highlighted.
The Paleozoic rock series have been characterized, according-
ly, through two distinct cycles.

During an early Paleozoic cycle (Cambrian–Ordovician–
Silurian), the Arabian plate was first located near the equato-
rial line in the Cambrian time, resulting in a relatively warmer
climate, and an increase in the accommodation space due to
induced sea level variation. This coincided with rifting, exten-
sion, at the northern Gondwana margin [Konert et al., 2001]
(Fig. 3). In the Ordovician, the Arabian plate drifted toward
the south latitudes and that coincided with several tectonic
pulses. Consequently, collision tectonics led to major uplifts
(e.g., Oman), and affected considerably sedimentary and fa-
cies patterns [Oterdoom et al., 1999; Al-Jallal and Al-Sharhan,
2005] (Fig. 4). The Arabian plate continuously moved toward
the South Pole until it reached the latitude of 55° [Konert et al.,
2001]. Here, the paleoclimate witnessed an expansion of ma-
jor continental ice sheets in Ashgillian time, and the effects of
late Ordovician glaciations [El-Ghali, 2005], which reached
eastward, from Jordan through western Saudi Arabia
[McClure, 1978]. This remained until the Silurian, when the
whole plate returned to the equatorial line. It was accompanied
with the increase in temperature, resulting in deglaciation and
sea level rise, consequently source rock (hot shale) deposited
in anoxic conditions [McClure, 1978].

The late Paleozoic cycle (Carboniferous–Permian–Early
Triassic), started with a remarkable event of erosion and
non-deposition driven by the propagation of far field compres-
sional stresses through the area, the “Hercynian event.” The
Arabian plate moved again toward the South Pole and the
paleoclimate started to control the plate-scale depositional
processes. Glaciations spanned the Late Carboniferous and
ended with return to the equatorial line associated with in-
creased temperatures in the late Permian-early Triassic, coin-
cident with slab pull in the south-facing subduction zone
[Konert et al., 2001] (Fig. 3).

Throughout the Mesozoic, the stratigraphic architectures
and geometries confined within the Arab Basin, resulted from
the sea level fluctuations, due to the effects of eustatic changes
or relative uplift and subsidence in the vicinity of the Arabian
Arch. Besides, the petroleum systems within this Basin (and
the hydrocarbon-prolific sector) are pretty much influenced by
such stratigraphic configuration. During the middle Jurassic to
early Cretaceous times, the axial zone of the Arabian plate
underwent subsidence in both prolific and non-prolific sec-
tors, leading to sea level rise and marine sedimentation cover-
ing large areas of the Arabian plate (Fig. 4).

From early to middle Cretaceous, continuous subsidence in
the Arabian arch occurred in the hydrocarbon-prolific sector,
whereas the Arabian Arch was reactivated and uplifted toward
the west in the non-prolific sector. This led to a local sea level
fall and deposition of siliciclastic (marine and non-marine
series) (Figs. 2 and 4).

Accordingly, there are obvious differences in the tectonic
evolution between prolific and non-prolific areas, which could
be illustrated through the presence of distinct structural fea-
tures. In the prolific area (eastern margin of the Arabian Gulf),
there are wide spreading of faults due to extension and subsi-
dence, whereas in the western part, uplift structure are domi-
nant and that can be observed by the difference in topography
between these two areas. In addition, the thicknesses of the
sediments may reflect the related tectonic events, which in-
crease toward the eastern part of Saudi Arabia, and that could
be due to the continuing subsidence and deposition, mostly
without breaks and evidenced by a decrease of the number of
unconformities, whereas in the western part, most of the geo-
logical rock formations are thinner, with relatively high
amount of unconformities (Figs. 2 and 5).

Water dominant sector (non-hydrocarbon prolific
area)

In the eastern part of Saudi Arabia, where hydrocarbon accu-
mulations are rather lacking, aquifers are mainly Paleogene in
age [Bakiewicz et al., 1982], i.e., the Umm Er Radhuma and
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Fig. 3 Conceptual composite figure showing the tectonic drifting of the Arabian plate and Paleoclimate. (Modified from [Brown, 1972 and Scotese,
1998])
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Dammam formations. The Rub’Al-Khali embayment prov-
ince hosts also such aquifers [Edgell, 1987a]. In northwestern
Saudi Arabia, the major aquifer-hosting, tectono-sedimentary
Basins are the Tabuk Basin, the Wadi as Sirhan Basin, the
Widyan Basin margin and the northeastern interior homocline
[Edgell, 1987a, b] (cf. Figure 1).

Al-Aswad and Al-Bassam [1997] have divided the
deeper Paleozoic rock series into eight basic aquifer
units separated from each other by aquitards. The
hydrostratigraphical units of the Mesozoic-Cenozoic in

Saudi Arabia overly the Sudair mega-aquitard [Al-
Bassam et al., 2000], and the classification proposed
by the latter authors was based on the inherent proper-
ties of the sedimentary rocks, namely the porosity, per-
meability, presence of aquitard, thickness and areal ex-
tent. Accordingly, based on the combination of large
amounts of hydrogeological data from previous pub-
lished articles and unpublished work, we present a sum-
marized hydrostratigraphical chart of the Arabian plate
(Fig. 6).

Fig. 5 Schematic section from Zagros suture zone—to Arabian Gulf—to Arabian shield. (Modified from [Beydoun, 1998 and Konert et al., 2001]). For
location see Fig. 1

Fig. 4 Conceptual figure shows
the impact of the tectonic activity
and the eustatic sea level
variations on the Arabian plate
evolution across geological times
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Hydrocarbon dominant sector

The major Paleozoic reservoirs of central Arabia are sand-
stones of the Devonian Jauf and Permian Unayzah formations.
Further to the east, in the Arabian Gulf region, the main
Paleozoic reservoirs are made up of carbonates of the Upper
Permian Khuff formation. Other reservoirs include clastics of
pre-Qusaiba sequence that are fault-bounded and sourced lat-
erally by down-faulted Qusaiba shale member. These

reservoirs are characteristically affected by silica cementation,
which decreases their flow properties [Jones and Stump,
1999].

Many of the Ordovician sandstone reservoirs are sealed by
the overlying Lower Silurian Qusaiba shale. The Devonian
Jauf sandstone reservoir is sealed by a very distinctive shaly
unit called (D3B) in the Ghawar field [Pollastro, 2003]. The
impermeable anhydrite, carbonate rocks and shale beds of the
Khuff formation and/or equivalent unit, also constitute a major

Fig. 6 The Hydrostratigraphical
units of Paleozoic, Mesozoic, and
Cenozoic of Saudi Arabia.
(Modified from [Al-Ahmadi,
2009; Edgell 1987a, b, 1990;
Al-Aswad and Al-Bassam, 1997;
Al-Bassam et al., 2000; BRGM,
personal communication and
Ministry of Agriculture and
Water, 1984])
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regional seal for the central Arabia, Qusaibah Paleozoic se-
quence. Basal Khuff strata form the top seal to the Permian
Unayzah reservoir in Ghawar field.

Traps are mostly structural and related to basement block
faulting, tectonic salt movement and deformation
(halokinesis) as well as wrench faulting [Pollastro, 2003]
(Fig. 7). Generally, in Saudi Arabia and Iraq, the direction of
hydrocarbon migration is toward the west [Cole et al., 1994]
(Fig. 5).

The best and most prolific Mesozoic reservoirs occur
in the Upper Jurassic Arab formation; especially Arab C
and D members, where bulk rock porosity averages
25 % and permeability exceeds 100 md [Edgell,
1987a, b]. Seal units for the carbonate rock reservoirs
of the major Arab formation are made up of anhydrite
beds of the upper part of the Arab and Hith formations
[Murris, 1980]. Other known reservoirs include the po-
rous carbonate-rock units within the Hanifa and Tuwaiq
Mountain formations [Koepnick et al., 1995]. During
the middle Cretaceous, regressive sandstones, which
are prolific hydrocarbon reservoirs (Wara, Safaniya,
Khafji) of the Wasia group, were deposited. They are
sealed by Rumailah member which consists of lime-
stone, and Ahmadi member which consists of shale of
the Wasia formation.

Long term CO2 sequestration

The major factors that are believed to influence the
sequestration of CO2 as (CCS) in aquifers are: lithology,
storage coefficient, transmissivity, porosity, permeability,
thickness, depth, TDS, reservoir type, and hydro-
stratigraphical units (Table 1). Most of these factors
were documented and compiled from previously pub-
lished work during this study, allowing the characteriza-
tion of the best candidate aquifers with respect to geo-
logical sequestration (discussed below).

With respect to prospective geological CO2 sequestration
for EOR within producing oil/gas fields in the prolific sector,
many issues should be taken into account; such as the source
of CO2, chemistry of water, hydrocarbon miscible activity,
original oil in place (% OOIP), depth, dip of the layer, initial
pressure, saturation pressure, fracture pressure, and tempera-
ture. CO2 displacement processes are highly sensitive to pres-
sure, reservoir type, wetness, heterogeneity, and oil density
(API) [i.e. Barkto et al., 2009].

Climatic implications and economic perspectives

Due to continuously rising global demand for energy, the con-
sumption of fossil fuels is expected to rise through 2035,

leading to greater CO2 emissions [International Energy
Agency, 2011], CCS technology offers the opportunity to re-
duce emissions while maintaining a role for fossil fuels in
national energy portfolios. The CCS technology has the po-
tential to reduce CO2 emissions from a coal or natural gas-
fuelled power plant by as much as 90 % [Finkenrath, 2011];
hence, it could provide efficient means for significant reduc-
tions of CO2 emissions.

Besides, oil produced by CO2-EOR projects can be
considered to be relatively less carbon releasing than oil
produced by standard techniques [Taglia, 2010].
Consequently, whether CO2 sequestration is applied
through CCS projects into aquifers or as CO2-EOR pro-
cedures in old producing fields, the net results are a
decrease in anthropogenic greenhouse gases and a glob-
ally more economic and cleaner energy production.

Discussion

The main objectives of this study are to highlight the
significance of understanding the tectono-stratigraphic
and paleoclimatic evolutions on selecting sites for car-
bon capture and storage (CCS), and to provide a first-
hand inventory of potential targets for CCS and CO2-
EOR in the Kingdom of Saudi Arabia (KSA). The KSA
possesses mature oil and gas fields, which have trapped
hydrocarbon for millions of years. They may provide
excellent choices for CO2 underground sequestration.
Besides, EOR can be achieved by pumping CO2 in
some depleting reservoirs, resulting in an economic ap-
proach for improving production and decreasing green-
house gases emissions. Still, some of the deep lying
aquifers with low quality groundwater can be also used
for CCS, under vast, unpopulated regions (such as the
Rub’ Al-Khali region).

According to a generalized geological review of the
KSA, an easternmost prolific sector and an adjacent
westward non-prolific sector have been defined (see
above). For instance, obvious changes in thicknesses
and lithologies are observed in these two sectors as
Saudi Arabia was affected by far-field effects of the
Hercynian orogeny.

The non-hydrocarbon-prolific sector belongs to a zone
which remained tectonically stable from early Cambrian till
late Ordovician. It is characterized by deposition of clastics
formations [Siq, Quweria, and Saq sandstones, as well as
Qasim (transgressive-regressive cycles)].

During late Ordovician, two glaciations episodes affected
the Arabia plate, represented by the Zarqa and Sarah forma-
tions [McClure, 1978; Bell and Spaak, 2007].

Then, a new period of increasing temperature due to
the move of the Arabian plate toward the equatorial
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Fig. 7 Schematic representation
of the major petroleum systems of
the Arabian Plate. (Compiled
From [Ayres et al., 1982;
Benedyczak and Al-Towailib,
1984; Al-Marjeby and Nash,
1986; Al-Husseini, 1991; Abu-
Ali et al., 1999; McGillivrary and
Husseini, 1992; Fox and
Ahlbrandt, 2002; Al-Ghamdi
et al., 2008 and Arouri et al.,
2009])
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position (Fig. 3). The deposition of the Tawil formation
during early Devonian consists of continental clastic sand-
stone, and middle-late Devonian is recorded by the Jauf
formation which consists of carbonate and shale. It was
then followed by the late Devonian Jubah formation
[Jones and Stump, 1999] (Fig. 2).

Paleozoic carbonate rocks are rare, and in general sand-
stone is the dominant lithology in the rock formations
toward the south (Rub’Al-Khali region). The thicknesses
of the Paleozoic formations are almost twice larger in the
hydrocarbon-prolific sector (compared to those in the
non-prolific sector), which matches with the general
northeastward trend of thickening and tilting [Beydoun,
1991, 1998] (Fig. 5). During the Permian, the northern
and eastern margins of the plate were affected by rifting
(inducing a rise of the asthenosphere) as well as a general
increase in surface temperature caused by warmer climatic
conditions [Murris, 1980, and Konert et al., 2001]. By
mid-Permian time, an eperic carbonate platform was
established. Evaporites are present in the central part of
the KSA and toward the northeast. Clastic material was
mainly derived from the erosion of the western hinterland,
with local supplies from the east in the high Zagros
[Murris, 1980].

During Early Triassic, hot arid conditions are
prevailed over the whole Basin. A coeval increase in
clastic influx from the western hinterland is evident.
The climate became less arid and there was apparently
a relative drop in sea level, caused either by eustatic
lowering of the sea level or a rise of the Arabian
Arch (Fig. 4). During the Jurassic, high sedimentation
rates characterized the transgressive limestone deposits
of the Marrat formation (Figs. 3 and 8). A gradual re-
turn to more humid climate occurred in the Early
Cretaceous (Fig. 3). This led to the disappearance of
evaporite from the sedimentary records. The regional
sea level dropped, and ramp type deposition prevailed.
Whereas the clastic influx was still limited, and restrict-
ed to the far southwestern part of Arabia. It was follow-
ed by a period of increasing clastic influx represented
by the Biyadh formation, which occupied the area from
the central-west to the southwestern parts of the Saudi
Arabia [Powers et al., 1966]. Clastic influx restricted
carbonate production. It was followed by the deposition
of the Wasia formation (sandstone with shale), whereas
toward the northeast (hydrocarbon-prolific sector) this
formation consists mainly of transgressive carbonate
and evaporite deposits (Fig. 8).

Differential sea level variations between two sectors
are suggested resulting from the re-uplift of the axial
zone of the Arabian Arch from early to middle
Cretaceous. Hence, a local apparent sea level fall has
affected this area (including most of the non-prolificT
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sector) (Fig. 4). In the northeastern area, the subsidence
of the Arch was continuous. It started in the middle
Jurassic and spanned through middle Cretaceous times,
leading to relative sea level rise. With the prevailing
humid climatic conditions, different lithologies are ob-
served for the same chronostratigraphic units in the

Cretaceous, as we move from west to east across the
Arabian Basin. For instance, the Wasia/Sakaka forma-
tion in the northwest are characterized by clastic sand-
stones deposited on a proximal shelf environment,
whereas the same chronostratigraphic unit is made up
of relatively deeper carbonate intrashelf facies in the

Fig. 8 Simplified stratigraphic sections and sea level variations representing the northwestern and northeastern sectors of the Arabian plate, respectively.
(Modified from [Sharland et al., 2001; Haq and Al-Qahtani 2005])
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northeast (Fig. 8). Furthermore, the overlying Aruma
formation (Late Cretaceous) is mainly made up of sand-
stone in the Tabuk area (northwest of KSA), and grades
laterally to carbonate rocks to the northeast, where it
accumulates hydrocarbon instead of water as in the
Tabuk area (Fig. 8).

The Paleozoic times are supposed to be of lower
overall temperatures and higher humidity than the
Mesozoic [Konert et al., 2001]. This seems to remain
undifferentiated across Arabia. During the Mesozoic,
slightly different paleo-climatic conditions appear to
have been established in the eastern and western mar-
gins of Saudi Arabia; toward the west, temperatures
seem to have been lower and a higher humidity
prevailed, invoking considerable erosion and weathering.

The Paleozoic rock aquifers have relatively low TDS
(mostly lower than 1500 mg/l) with lower porosity and per-
meability values compared to those of the Mesozoic units
[Ahmed and Abderrahman, 2008; Saudi geological Survey,
n.d.] (Table 1). Accordingly, the major proposed targets for
CCS in the non-prolific regions are Kharij super- aquifer
(Triassic), Az-Zulfi aquifer (Middle Jurassic), Layla aquifer
(Late Jurassic), and lastly, the Wasia aquifer (Middle
Cretaceous).

Extensive studies on the reservoirs properties in the
KSA have been achieved for hydrocarbon exploration
[e.g., Magara et al., 1992; Sail et al., 1998; Koepnick
et al., 1995; Hussain et al., 2006; Sahin et al., 2007;
Macrides, and Neves, 2008], compiled the results of
these studies with the present geological assessments
resulted into proposition of the best targets for EOR
(i.e., Safaniya oil field (Middle Cretaceous) (Safaniya,
Wara and Khafji reservoirs), Manifa oil field (Las,
Safaniya and Khafji reservoirs) (Late Jurassic), and
Khuff reservoir (Late Permian-Early Triassic)) in central
to eastern the Kingdom of Saudi Arabia.

Unconformities across the Arabian plate constitute an im-
portant factor for CO2 storage, because most of them act as a
lateral carrier systems which allow higher circulations of fluid
(water, gas, and oil). The present study has identified 12 major
unconformities (Fig. 2).

Conclusions

& This study recognized hydrocarbon-prolific sector (mainly
reservoirs area) in the northeastern, eastern and central
parts of KSA and non-hydrocarbon-prolific sector (mainly
aquifers areas) in the western parts of KSA.

& The Paleozoic rock sequences are affected by far field
Hercynian orogeny. Relatively thinner rock units with
clastics as dominant sediments, prevailed. The Mesozoic

rock sequence is affected by extension. Relatively thicker,
less unconformities, a smaller number of reservoirs, main-
ly carbonate sediment, and a relatively higher numbers of
seals. It was a period of relative tectonic quiescence, main-
ly controlled by an increase of temperature and sea level
rises.

& The main differences in lithology between the two sectors
across the Arabian plate are driven by tectonic inversion
operating in the axial part of the central Arabian Arch,
which induced uplift and erosion in the western (non -
hydrocarbon-prolific sector), and relative subsidence in
the eastern (hydrocarbon-prolific sector). This is evi-
denced by the lithology variation of the Wasia formation
in the two sectors.

& Proposed targets for CCS, in the non-prolific sector, are
Kharij super-aquifer (Triassic), Az-Zulfi aquifer (Middle
Jurassic), Layla aquifer (Late Jurassic), and Wasia aquifer
(Middle Cretaceous).

& Proposed targets for EOR are Safaniya oil field (Middle
Cretaceous) (Safaniya, Wara and Khafji reservoirs),
Manifa oil field (Las, Safaniya and Khafji reservoirs)
(Late Jurassic), and Khuff reservoir (Late Permian-Early
Triassic) in central to eastern KSA.
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