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Abstract 

The aim of this paper is to evaluate the environmental performance of a Concentrating Solar Power (CSP) plant 
based on HYSOL technology. The plant under investigation is a solar tower system with 14 hours thermal energy 
storage using biomethane as auxiliary fuel and using a 100 MWe steam turbine and a 80 MWe gas turbine in the 
combined cycle (Brayton and Rankine) characteristic of the HYSOL technology. The results evidence that HYSOL 
technology performs significantly better in environmental terms than conventional CSP. This evidence is 
particularly relevant in the climate change category where HYSOL plants presents 43.0 kg CO2 eq /MWh. In 
contrast, the hybrid CSP plant operating with natural gas emits 370 kg CO2 eq /MWh. This difference is attributable 
primarily to the nature of the auxiliary fuel (biomethane in HYSOL and natural gas in conventional CSP), but also to 
the higher thermal efficiencies achieved in the HYSOL configuration, which prevents the emission of 106 kg CO2 
eq /MWh. The environmental significance of the additional components and infrastructure associated with the 
Brayton cycle in the HYSOL technology (gas turbine, Heat Recovery System and Low Temperature Energy 
Storage) are negligible. 
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1. Introduction 

Scientific and commercial developments worldwide have proven the technology viability of using concentrated 
solar energy for the production of electricity at a large scale. However, conventional Concentrating Solar Power 
(CSP) plants are still criticized for their high costs and inability to produce power on demand. HYSOL is the 
acronym of a research project lead by the Spanish engineering company ACS-COBRA and funded by the European 
Commission under its 7th Framework Programme (FP7-ENERGY-2012-1, CP 308912) and the title Innovative 
Configuration of a Fully Renewable Hybrid CSP Plant. The aim of this project is to develop and test a new hybrid 
configuration for CSP plants intended to achieve higher energy efficiency, reduced economic and environmental 
costs, and also improved firmness and dispatchability in the generation of power on demand. Furthermore, HYSOL 
plants would operate using biomethane as auxiliary fuel, resulting in the generation of electricity that is 100 % 
renewable.  

HYSOL plants will be able to work as a peak-load, generating power directly from the sun during the day, using 
stored solar energy during the night and the gas turbine when the storage system is empty. Additionally, they may 
also operate as a peak-base, working with both turbines (steam and gas) at the same time. The design and operation 
of HYSOL can be adapted to the requirements of the location in terms of solar resource availability and also cost 
and characteristics of auxiliary fuels, which may be of fossil or renewable nature. The HYSOL concept is based on a 
CSP plant with Thermal Energy Storage (TES) in the form of molten salts, and may be applied both to parabolic 
trough or solar tower systems. The plant incorporates a Brayton cycle that operates in combination with a 
conventional Rankine cycle, making use of the thermal energy entrained in the exhaust gases of the gas turbine. By 
doing so, the plant is able to maximize the share of electricity produced by solar resource and also to optimize the 
efficiency in the transformation of the auxiliary fuel into electricity, so that power is produced in a dispatchable, 
firm and efficient manner with optimized fuel consumption 1. 

Despite its renewable nature, solar power also generates environmental impacts that need to be identified, 
quantified and evaluated. Various publications have been dedicated to evaluate the environmental performance and 
carbon footprint of conventional CSP plants, including those based on tower technology, parabolic trough and also 
TES 2-6. These analyses are all based on Life Cycle Assessment (LCA) methodology. The objectives of this 
investigation are threefold: (1) to evaluate the environmental performance of a CSP plant based on HYSOL 
configuration; (2) to compare the environmental performance of the HYSOL configuration using natural gas or 
biogas as auxiliary fuels, (3) to compare the HYSOL configuration against a conventional hybrid CSP configuration 
producing the same amount of electricity. 

2.      Methodology 

2.1. Description of the CSP plant 

The CSP plant used as a reference in this analysis is based on HYSOL configuration, as developed in FP7-
ENERGY-2012-1, CP 308912. Details about the specifications and plant configuration are described in Figure 1 and 
Table 1 (under the column Reference plant). Power plant characteristics and electricity generation for the HYSOL 
plant located in southern Spain were calculated and supplied by IDie (Investigación, Desarrollo e innovación 
energética, S.L.), a Spanish engineering firm. The plant under consideration is based on a combined cycle 
configuration incorporating a 100 MWe steam turbine and a 80 MWe gas turbine. The solar field (number 1 in 
Figure 1) is based on tower technology and consists of 9151 heliostats presenting a surrounding layout. The solar 
radiation reflected by the heliostats is directed to an external central receiver (2) increasing the thermal energy 
contained in a Heat Transfer Fluid (HTF). This HTF consists of binary nitrate molten salts and fulfils two 
objectives: transporting the heat to the steam generation system, and storing thermal energy using TES. HYSOL 
configuration comprises a 14 hours indirect two-tank TES (3) used to support dispatchability and increase electricity 
generation. The thermal energy gathered by the HTF is subsequently used to drive the thermodynamic Rankine 
cycle (4) based on air cooling technology for reduced water consumption (at the expense of lower electricity 



1112   Blanca Corona et al.  /  Procedia Computer Science   83  ( 2016 )  1110 – 1117 

generation efficiencies and higher economic costs). The aero derivative gas turbine (5) consumes biomethane as 
auxiliary fuel and it is used to support electricity generation when thermal storage is empty or to increase electricity 
generation at peak-base. Exhaust gases from the gas turbine are driven to a Heat Recovery System (HRS) where the 
HTF is reheated (6), thus improving fuel utilization efficiency and storage dispatchability. Electricity generation, 
adapted to the Spanish electricity demand curve, has been calculated to amount to 928,620 MWh/yr of gross 
electricity output; 847,248 MWh/yr of net electricity (which takes into consideration parasitic electricity 
consumption and efficiency losses); and 797,423 MWh/yr of electricity sold to the Spanish electricity market (which 
takes into consideration additional efficiency losses due to grid/plant availability and curtailment, and annual 
degradation of components). 

  

Figure 1 Configuration of the HYSOL plant. Figure 2 Configuration of a hybrid tower power plant: Scenario B 

Table 1 Power plant characteristics and electricity sold to the Spanish electricity market for each scenario. 

Characteristics of the power plant Reference 
plant 

Scenario A: HYSOL 
with natural gas 

Scenario B: Hybrid 
CSP with natural gas 

Direct Normal Irradiation, KWh/m2 2086 2086 2086 

Heliostats, units 9151 9151 9151 

Aperture, m2 1,321,174 1,321,174 1,321,174 

Tower height, m 201 201 201 

Annual gross electricity generation, MWh/yr 928,620 928,620 935,683 

Annual electricity sold, MWh/yr 797,423 797,423 797,423 

Solar fraction, % 45 45 46 

Thermal cycle efficiency, gas to electricity (%) 52 52 40 

Consumption of gas, MJ/yr 3.40E+09 3.40E+09 4.56E+09 

The environmental performance of the reference HYSOL CSP plant was compared against two alternative 
scenarios: (A) HYSOL configuration using natural gas as auxiliary fuel (instead of biomethane), and (B) 
conventional CSP (no HYSOL) tower plant using natural gas (NG) as auxiliary fuel. The power plant in scenario A 
has the same characteristics and configuration as the reference plant, while the CSP plant analyzed in scenario B 
follows the configuration shown in Figure 2. This configuration is based on a conventional CSP tower plant where 
the auxiliary fuel (natural gas) is used to increase thermal energy contained in the HTF via an auxiliary boiler. It is 
assumed that the solar field configuration and the amount of electricity sold in scenario B are the same as in the 
reference plant, which involves the consumption of 1.14E+11 MJ of natural gas, for a solar fraction of 46 %. 
Specifications of this scenario are described in Table 1 under the column Scenario B. 
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In scenario A, biogas is produced and injected into the NG grid after being upgraded into biomethane. Biogas 
facilities placed in different locations within Spain are assumed to provide biomethane to the NG grid, which is 
subsequently used by the CSP plant. This biogas is produced from biowaste consisting of a mixture of sewage 
sludge, agri-food waste and pig/cow manure. The standard biogas facility considered consume 26.000 t/year of 
biowaste for the production of 1.300.000 Nm3/year of biogas through anaerobic thermophilic fermentation.  

2.2. Scope and inventory 

The LCA was conducted according to standard methods ISO 14040:2006 and ISO 14044: 2006. The functional 
unit to which all the impacts are referred to is the generation of 1 MWh of electricity sold to the electricity market. 
The lifetime of the plant has been assumed to be 25 years. The analysis was based on a comprehensive inventory 
covering the following phases: (1) acquisition of raw materials and manufacturing, (2) construction, (3) operation 
and maintenance, and (4) dismantling and waste management. Most of the inventory was supplied by IDie and 
ACS-COBRA. Impact estimations take into consideration extraction of raw materials, manufacturing and 
transportation of plant components and waste management of components at the end of their lives. 

 Material extraction and manufacturing (E&M): This phase takes into consideration extraction of raw materials as 
well as manufacturing and transportation of plant components. The following elements were considered in the 
life cycle inventory of the CSP plant: 

- Central receiver system: central tower, receiver, piping and circulation pumps. 
-  Solar field: sun collectors (frame, mirrors, foundations), sun tracking system, controls.  
- Thermal storage: piping, tanks, foundations, insulation, heat exchangers, pumps, salts. 
- Power block: components associated with the Rankine steam cycle and the Brayton cycle. 
- Facilities: buildings, roads, water treatment plant. 

 Construction (C): This phase includes the use of machinery and the consumption of energy for the construction of 
the CSP plant. It also includes auxiliary structures and materials used for construction. 

 Operation and maintenance (O&M): This phase takes into consideration the vehicles for maintenance operations, 
water consumption for cleaning mirrors, lubricating oil, consumption of auxiliary fuel, heliostats replacement and 
electricity generation. It also includes consumption of gas necessary to melt nitrate salts in start-up operations. 

 Dismantling and disposal (D&D): Dismantling of the CSP plant and waste management of plant components 
were considered in this phase. Due to lack of data for dismantling operation, energy and machinery requirements 
in this stage have been assumed to be the same as indicated in other studies of a similar power plant7. 

EcoInvent v.3 was used to obtain generic environmental information about the following elements: processing of 
raw materials, manufacturing of plant components, construction activities, operation and maintenance of the CSP 
plant, and transport processes. It has been assumed that the steam turbine and molten salts pumps are manufactured 
in Germany, the gas turbine in Italy and the molten salts in Chile. Each component was modelled to be transported 
by ship to the port nearest to the CSP plant, and by lorry from the port to the plant. Data related to solar field 
foundations, tower materials and heliostat pedestal materials was not provided to the authors. Thus, inventory data 
published in studies of similar CSP plants was used in each case 7,8. 

The assessment of biomethane production follows a “cradle to grave” approach, starting from the transport of 
biowaste and ending with its upgrading. The core processes include pre-treatment of biowaste, fermentation and 
post-fermentation, and upgrading of raw biogas. It also includes as core processes environmental impacts derived 
from the construction and decommission of the biogas plant and equipments. The lifetime of the biogas plants is 
assumed to be 20 years. Transportation of the biowaste to the biogas plants, production of auxiliary elements and 
purchased electricity are modelled as upstream processes. The biowaste used for biomethane production is modelled 
free of any environmental burdens, since it is a residue derived from other product systems. Additionally, solid and 
liquid digestate obtained in the processing of biogas is considered as a co-product of the biogas and is returned to the 
environment in the form of free fertilizer offered to local farmers. It was considered that anaerobic digestion of 
pig/cow manure was an improved agricultural practice with respect to the conventional treatment (storage in an 
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uncovered tank before field application as fertilizer), therefore the avoided emissions of CH4 and N2O from the 
conventional treatment were considered into the study, as described by Giuntoli et al9. Environmental impacts 
derived from the NG life cycle were determined by ecoinvent v3 database, adapting the original CORES data to 
Spanish NG imports10 as follows: 69% of Algerian NG, 16% of Nigerian NG, 10.9 % of Norwegian NG and 3.9% 
of Netherlands NG. 

2.3. Impact assessment methods 

Simapro 8.0.3 software was used for calculations. Recipe Midpoint World (H perspective) was used for 
aggregation of environmental impacts. The Cumulative Energy Demand (CED) v9 method11 was applied to 
determine primary energy demand for each case. The water stress index was calculated taking into account direct 
water consumption during the operation and maintenance of the CSP plant and the corresponding regional water 
stress index published by Pfister et al.12. The water stress index, defined as the ratio of total annual freshwater 
withdrawals to hydrological availability, ranges from 0 (no water stress) to 1 (extreme water stress). The Pfister et 
al. method implemented in Google Earth13 indicated a 0.9927 index for the location under study (Talarrubias, 
Badajoz). 

3. Results and discussion 

Table 2 shows the characterized impacts of the HYSOL CSP plant in the four life phases considered: E&E, C, 
O&M, and D&D. The selection of impact categories is based both on their environmental significance and also on 
international environmental concern. These are: climate change, terrestrial acidification, human toxicity, freshwater 
eutrophication, freshwater ecotoxicity and marine ecotoxicity. 

Table 2 Characterized impacts of the reference plant (HYSOL configuration) per impact category and life phase. 

Impact category E&M C O&M D&D TOTAL 

Climate change, kg CO2 eq/MWh 9.80 1.79 37.7 -3.35 45.9 

Terrestrial acidification, g SO2 eq/MWh 47.6 8.41 465 -11.7 509 

Freshwater eutrophication, g P eq/MWh 4.21 0.44 13.0 -0.80 16.9 

Human toxicity,  kg 1.4-DB eq/MWh 5.21 0.59 22.4 -0.68 27.5 

Freshwater ecotoxicity, g 1.4-DB eq/MWh 216 19.5 792 4.71 1,033 

Marine ecotoxicity, g 1.4-DB eq/MWh 209 19.9 797 2.76 1,028 

Cumulative Energy Demand MJ/MWh 120 21.0 1,220 -25.1 1,337 

Water Stress m3/MWh - - 0.164 - 0.164 

Environmental impacts in the selected categories are as follows: climate change 45.9 kg CO2 eq/MWh; 
acidification 509 g SO2 eq/MWh; eutrophication 16.9 g P eq/MWh; human toxicity 27.5 kg 1,4-DB eq/MWh; 
freshwater ecotoxicity 1033 g 1,4-DB eq/MWh; marine ecotoxicity 1028 g 1,4-DB eq/MWh: CED 1337 MJ/MWh; 
water stress 0.164 m3/MWh. The low emissions obtained for climate change category are due mainly to the use of 
biomethane as auxiliary fuel, since it includes the environmental benefits associated with the management of 
biowaste (CH4, N2O emissions).  

Most of the environmental impacts of the HYSOL configuration are attributed to the O&M phase, since the 
impacts derived from the production and combustion of the auxiliary fuel are higher than those of the manufacturing 
of power plant components. This pattern of impacts is similar to the one obtained in the life cycle assessment of 
conventional hybrid CSP plants14. The results suggest that the production of biomethane represents between 69 % 
and 91 % of the life cycle environmental impact on every category, except for water stress whose contribution is 8.4 
%. Higher contributions were detected to the CED, human toxicity and climate change categories (92, 84 and 83 % 
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respectively). Human toxicity impacts for biomethane production are due mainly to the higher electricity 
consumption during upgrading and biogas generation, since the disposal of mining spoils and uranium tailings (from 
fossil fuels contributing to the electricity mix) have emissions with high toxicity to humans. Climate change impacts 
from biomethane production are associated mainly with energy consumption during biogas production and CH4 
emissions during the upgrading process. 

The CED associated with the life cycle of the HYSOL reference plant was calculated to be 1,337 MJ/MWh. The 
consumption of external energy (considering the entire life cycle of the technology) represents 37 % of all the 
electricity sold to the electricity market. O&M is the most energy intensive phase (34 % of the electricity sold) due 
mainly to consumption of biomethane for power generation, maintenance and start-up operations. This is followed 
by E&M (3.3 %) due to energy use associated with extraction of raw materials involved in the construction of the 
plant. Consumption of external energy in the construction (C) and Dismantling and Decommissioning (D&D) 
phases is very limited (below 1 %).  

 
 

Figure 3 Normalization profile of the reference plant per impact 
category and life phase. 

Figure 4 Normalization impact of the reference plant (HYSOL)  
compared to scenario A (HYSOL with NG) and B (Hybrid CSP).  

  

Figure 3 shows the normalized impacts associated with the reference plant. These results indicate the higher 
relative impact of the toxicity categories compared to the rest of environmental impact categories. The impact on the 
human toxicity category is mainly associated with the production of biogas (81 % of the life cycle impact on this 
category), followed by the manufacturing of heliostats (14 % of impact related to heliostats’ materials). Impacts on 
the marine and freshwater ecotoxicity categories originate primarily from the production of biogas, but also from the 
extraction and manufacturing of materials and components in the E&M phase of the life cycle of the plant (18% and 
23 % of impact respectively is attributable mainly to the use of metals in the heliostats). 

3.1. Comparison of scenarios 

Table 3 describes the environmental performance associated with the generation of 1 MWh of electricity in the 
different scenarios contemplated in the study. The results evidence a deterioration in the environmental performance 
of the CSP plant (per functional unit of electricity) when operating with NG, especially in the hybrid scenario. This 
deterioration is especially remarkable in the climate change category, whose indicator changes from 45.9 kg CO2 
eq/MWh to 294 kg CO2 eq/MWh in scenario A and 392 kg CO2 eq/MWh in scenario B. Variations in other impact 
categories were less significant. It should be noted that the environmental impact on human and marine toxicity 
regarding the reference plant is higher than in scenario A. This is due to the higher human toxicity potential of 
biogas with respect to NG, which is associated with the transport activities during slurry waste management and the 
materials employed in the construction of the biogas plant. The environmental impact associated with the 
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construction of the Brayton cycle and the HRS required to operate the plant in HYSOL configuration is negligible 
compared to the total life cycle impacts. 

CED results indicate that the primary energy consumed during the life cycle of the power plant in scenario A and 
B is more than four and six times higher than that of the reference plant, respectively. The difference observed 
between the reference plant (1,337 MJ/MWh) and scenario A (6,344 MJ/MWh) is attributable to the changes in 
primary energy demand associated with the life cycle of biomethane and NG. In the case of scenario B (8,484 
MJ/MWh), the difference is also due to inferior efficiency associated with the production of electricity by 
combustion of NG in a single cycle auxiliary boiler, compared with the combined cycle technology. 

Table 3 Life cycle characterized impacts of the reference plant (HYSOL) compared to scenario A (HYSOL with NG) and B (Hybrid CSP).  

Impact category Reference plant Scenario A: HYSOL 
with NG 

Scenario B: Hybrid 
CSP with NG 

Climate change, kg CO2 eq/MWh 45.9 294 392 

Terrestrial acidification, g SO2 eq/MWh 509 694 891 

Freshwater eutrophication, kg P eq/MWh 16.9 14.4 17.9 

Human toxicity,  kg 1.4-DB eq/MWh 27.5 21.4 26.8 

Freshwater ecotoxicity, kg 1.4-DB eq/MWh 1,033 1,052 1,320 

Marine ecotoxicity, g 1.4-DB eq/MWh 1,028 711 866 

Cumulative Energy Demand MJ/MWh 1,337 6,344 8,484 

Water Stress m3/MWh 0.164 0.151 0.161 

Figure 4 shows a comparative analysis of the normalized impacts in different categories for different scenarios: 
reference plant (HYSOL), scenario A (HYSOL with NG), and scenario B (hybrid CSP with NG). The results 
evidence that marine and freshwater ecotoxicity are the categories most significantly affected in all cases, followed 
by human toxicity. The relative impact on freshwater ecotoxicity is higher in the alternative scenarios than in the 
reference plant, due to the activities related to the extraction of NG. 

4. Conclusions 

The environmental performance of a CSP plant based on HYSOL technology is significantly better than the one 
observed for a conventional hybrid CSP plant considering the same net electricity production and similar plant 
characteristics. This evidence is particularly relevant in the climate change category, since the HYSOL configuration 
45.9 kg CO2 eq/MWh while the hybrid CSP plant operating with NG emits 392 kg CO2 eq /MWh. This difference is 
mainly due to the nature of the auxiliary fuel (biomethane in HYSOL and NG in conventional CSP), but also to the 
higher thermal efficiencies achieved in the HYSOL configuration. The environmental results of the HYSOL 
technology operating with NG compared to the hybrid CSP plant indicates that higher thermal efficiencies in 
HYSOL configuration prevents the emission of 98 kg CO2 eq /MWh, while the impacts of the components and 
infrastructure associated with the Brayton cycle (gas turbine, HRS and LTES) are negligible. 
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